TEMPORARY CHANGE REQUEST

TCR NO.TCR-ENG-008, R0-002

(e.g., TCR-ENG-021,R0-001)

The Temporary Change Request (TCR) Form is to be used to process urgent or minor changes for PPPL Policies, Organization/Mission Statements and Procedures. The TCR should be used when changes are: 1) urgent, and can not wait the 2-4 week period for Department Head review/comment, or 2) minor, and do not warrant Department Head review.

Person Requesting Change: Michael Zarnstorff

Department Name: Deputy Director, Research

Document Number: ENG-008

Document Title: Failure Modes and Effects Analysis

Reason for change:

Added a requirement that Lithium work requires a failure modes and effects analysis (FMEA) to be developed during the design process.

Change description: (Summarize and attach changed pages, with changes clearly indicated) In the Applicability section: Added a requirement that Lithium work involving more than 1 gram of lithium or any amount of finely divided lithium (such as powder) requires a failure modes and effects analysis (FMEA) to be developed during the design process.

1. Does this TCR significantly alter the intent or scope of the document?	YES:	NO: <u>X</u>
2. Does this TCR significantly impact ES&H?	YES:	NO: <u>X</u>

If 1 or 2 is **YES**, Explain why the changes should not be routed for Department Head review:

Michael Zarnstorff	6/8/2015		
Department/Division Head Approval	Date		
J.B. Graham for J. DeLooper	6/8/2015		
Head, Best Practices and Outreach/designee	Date		
Release/Effective date of this TCR: <u>6/8/2015</u>			
Incorporate this TCR into next revision of this document?	YES: X NO:		

Phone Ext: 3581

Revision No.: 0

PPPL	PRINCETON PLASMA PHYSICS LABORATORY	PROCED	URE No. ENG-008 Rev 0 page 1 of 2
Subject:		Effective Date:	Initiated by:
Failur	e Modes and Effects	April 20, 1999	Associate Director, Engineering and Infrastructure
	Analysis	Supersedes:	Approved:
		TOP 22.019	
		dated 11/1/88	
			Director

Applicability

This procedure applies to all activities at C and D-Sites of the Laboratory where need for failure modes and effects analysis (FMEA) has been determined., all Lithium work involving more than 1 gram of lithium or any amount of finely divided lithium (such as powder) requires a FMEA to be developed during the design process. The FMEA shall be performed for the required equipment or levels as defined in project requirements documents, work planning documents, or by management directive. The FMEA shall be documented as part of the projects' system design processes and may be included as part of a project's safety documentation (e.g., Safety Analysis Report, Safety Assessment Document, etc.). (TCR-ENG-008,R0-002)

Introduction

This procedure establishes the requirements for the preparation, review, and release of the FMEA. The depth of the analysis, and its documentation, will vary with the system or project under analysis. In situations where failure probability and severity must be determined, the FMEA should be expanded into a Failure Modes, Effects and Criticality Analysis (FMECA). FMECA is also useful in situations where many multiple failures are a concern. However, the analyst should be aware that a statistically significant reliability database is needed to make the probability estimates used in a FMECA. Guidance for performing a FMECA is available in both of the reference documents below.

Reference Documents

EC Standard 812Procedure for Failure Mode and Effects Analysis (FMEA)MIL-STD-1629AProcedures for Performing a Failure Mode, Effects and Criticality Analysi			
Deenensihility	Action		
<u>Kesponsionity</u>	Action		
Responsible Line Manager	1. Assigns individual to perform FMEA (analyst) and another individual to review it (reviewer). The reviewer shall by qualified by having like or greater expertise and technical experience as the analyst.		

PPPL	PRINCETON P PHYSICS LAB	LASMA ORATORY	PROCEDURE	No. ENG-008 Rev 0 page 2 of 2		
Analyst	2	Describes sys or uses existi their performa level of the an	tem under analysis and eithe ng documentation to depict ance criteria. The level of a alysis.	r prepares system diagrams all major components and assembly will vary with the		
	3.	Performs FMI	EA using the guidance of Atta	achment 1.		
	4.	Documents results using the guidance of Attachment 2.				
	5.	Signs FMEA a	and provides it to the reviewe	T.		
Reviewer	6.	Reviews FMI problems are analyst.	EA for technical content an identified. Otherwise discu	nd signs if no significant usses the FMEA with the		
Analyst	7.	Files FMEA in	n the Operations Center.			

Attachments:

- 1. Guidelines for Performance of a FMEA
- 2. Guidelines for Documenting a FMEA.
 3. FMEA Documentation Example

PPPL	PRINCETON PLASMA PHYSICS LABORATORY	PROCEDURE	No. ENG-008 Rev 0 page 1 of 3
Guidelines fo	r Performance of a FMEA		Attachment 1

Purpose

This attachment describes the standard steps involved in performing an FMEA.

Performing the FMEA

The basic steps for an FMEA are:

- 1) Define the system and its functional and operating requirements;
 - 1.1 Include primary and secondary functions, expected performance, system constraints, and explicit conditions that constitute a failure. The system definition should also define each mode of operation and its duration.
 - 1.2 Address any relevant environmental factors such as temperature, humidity, radiation, vibration, and pressure during operating and idle periods.
 - 1.3 Consider failures that could lead to noncompliance with applicable regulatory requirements. For example, a failure that could result in a release that exceeds environmental permit limits.
- 2) Develop functional block diagrams showing the relationships among the elements and any interdependencies. Separate diagrams may be required for each operational mode. As a minimum, the block diagram should contain:
 - 2.1 a breakdown of the system into major subsystems including functional relationships;
 - 2.2 appropriately and consistently labeled inputs and outputs and subsystem identification;
 - 2.3 any redundancies, alternative signal paths, and other engineering features that provide "failsafe" measures.

Existing drawings developed for other purposes may be used for the FMEA if the above elements are adequately described.

- 3) Identify failure modes, their cause and effects.
 - 3.1 IEC 812 1985 provides a list of failure modes, reproduced here as Table I, to describe the failure of any system element.
 - 3.2 Identify the possible causes associated with each postulated failure mode. The list in Table I can be used to define both failure modes and failure causes. Thus, for example, a power supply may have a specific failure mode "loss of output" (29), and a failure cause "open (electrical)" (31).
 - 3.3 Identify, evaluate, and record the consequences of each assumed failure mode on system element operation, function, or status. Consider maintenance, personnel, and system objectives as well as any effect on the next higher system level.
- 4) Identify failure detection and isolation provisions and methods. Determine if other failure modes would give an identical indication and whether separate detection methods are needed.

PPPL	PRINCETON PLASMA PHYSICS LABORATORY	PROCEDURE	No. ENG-008 Rev 0 page 2 of 3
Guidelines for Performance of a FMEA			Attachment 1

- 5) Identify design and operating provisions that prevent or reduce the effect of the failure mode. These may include:
 - 5.1 redundant items that allow continued operation if one or more elements fail;
 - 5.2 alternative means of operation;
 - 5.3 monitoring or alarm devices;
 - 5.4 any other means permitting effective operation or limiting damage.
- 6) Identify specific combinations of multiple failures to be considered. The more multiple failures considered, the more complex the FMEA becomes. In many such cases it would be advantageous to perform a FMECA using the guidance of IEC Standard 812 or MIL-STD-1629A. Using the FMECA, the severity of failure effects are categorized, the probability is determined, and the number of redundant mitigating features needed to keep probability of failure acceptably low are better determined.
- 7) Revise or repeat, as appropriate, the FMEA as the design changes. Changes may be in direct response to the results of the previous FMEA or may be due to unrelated factors.

Guidelines for Performance of a FMEA

Attachment 1

page 3 of 3

No. ENG-008 Rev 0

TABLE I Generic Failure Modes (IEC 812-1985)

1 Structural failure (rupture)	17 Restricted flow		
2 Physical binding or jamming	18 False actuation		
3 Vibration	19 Fails to stop		
4 Fails to remain (in position)	20 Fails to start		
5 Fails to open	21 Fails to switch		
6 Fails to close	22 Premature operation		
7 Fails open	123 Delayed operation		
8 Fails closed	24 Erroneous input (increased)		
9 Internal leakage	25 Erroneous input (decreased)_		
10 External leakage	26 Erroneous output (increased)		
11 Fails out of tolerance (high)	27 Erroneous output (decreased)		
12 Fails out of tolerance (low)	28 Loss of input		
13 Inadvertent operation	29 Loss of output		
14 Intermittent operation	30 Shorted (electrical)		
15 Erratic operation	31 Open (electrical)		
16 Erroneous indication	32 Leakage (electrical)		
33 Other unique failure conditions as applicable to the system characteristics, requirements and operational constraints			

PPPL	PRINCETON PLASMA PHYSICS LABORATORY	PROCEDURE	No. ENG-008 Rev 0 page 1 of 2
Guidelines for Documenting a FMEA			Attachment 2

DOCUMENTING THE FMEA

The following information is required to be documented for an FMEA. The headings below presume use of the sample form shown on the next page: Complex systems may need more extensive descriptions preceding the tabular portion of the FMEA.

1) <u>Heading</u>

Identify the system, subsystem or assembly being addressed, the modes of operation, the analyst, and the date. Where appropriate, include or reference a description of the system.

- 2) <u>Operating Mode</u> For which of the operating modes is the failure being evaluated?
- 3) Failure Mode & Cause

Address each failure mode and cause separately unless two or more failures have the same basic cause and produce the same effect on the remainder of the system.

4) <u>System Effect</u>

What would be the effect of the failure on the next higher level of assembly, and if applicable, the Project objectives if no mitigating action were taken. Quantitative descriptions of affected performance parameters as well as safety related conditions (fire, toxic smoke, radiation release, etc.) should be noted.

5) Fault Detection/Isolation

How will the failure be detected and when (e.g. during maintenance inspection, real time monitor, etc.)? Detection of related conditions, such as fire, smoke, leakage, etc., should also be indicated How will the location of failure be determined and how will the specific component that has failed be indicated?

6) <u>Compensating Provisions/Failure Recovery</u>

List any provisions designed into the equipment or system or available externally to circumvent or alleviate the effects of the postulated failure mode. Also, indicate by what method, if any, the failure will be repaired. Particular note should be made of any remote repair expectations.

7) <u>Remarks</u>

Any clarifications, recommendations or justification notes should be here. Recommendations should include design changes or operation restrictions intended to avoid the failure.

PPPL	PRINCETON PLASMA PHYSICS LABORATORY	PROCEDURE	No. ENG-008 Rev 0 page 2 of 2		
Guidelines fo	r Documenting a FMEA		Attachment 2		
Project:		FAILURE MODES AND EFFECTS ANALYSIS	Page:	of	
WBS Element	::	Performed By:	Date:		
Component:		Reviewed By:	Date:		
Function:					

Operating Mode	Failure Mode/Cause	System Effect	Fault Detection/ Isolation	Compensating Provisions	Remarks

PPPL	PRINCETON PLASMA PHYSICS LABORATORY	PROCEDURE			No. ENG-008 Rev 0 page 1 of 1	
FMEA Documentation Example						
Project: NS	ГХ	FAILURE M	ODES AND EFFECTS ANA	ALYSIS	Page:	1 of <u>8</u>
WBS Element	: 1.2 Vacuum Vessel & Suppo	ort Structures	Performed By:	the engineer	Date:	date
Component: Support Structures			Reviewed By:	the reviewer	Date:	date

Function: The coil support structures provide mechanical support for the outer PF coils and outer TF coil legs, and provide dielectric breaks where required (PF5). The vacuum vessel legs support the vacuum vessel and provide dielectric breaks.

Operating Mode	Failure Mode/Cause	System Effect	Fault Detection/ Isolation	Compensating Provisions	Remarks
Bakeout	Physical binding or jamming Failure of sliding joint of umbrella structure	Excessive stress in umbrella and vacuum vessel, possible structural deformations, failure of welds, weakening of structure	Maintenance inspection, magnetic diagnostics	None-Shutdown and repair	This is a simple. passive component unlikely to fail. No known design alternatives identified.
Bakeout	Physical binding or jamming Failure of sliding joint of vacuum vessel leg support	Excessive stress in leg and structure, possible structural deformations, failure of welds, weakening of structure, possible dislocation of vacuum vessel, loss of vacuum integrity	Monitoring of displacement of vacuum vessel. Maintenance inspection,	None-Shutdown and repair	This is a simple. passive component unlikely to fail. At higher cost redundant joints could be developed.
CHI Operations	Structural failure Failure of dielectric joint(s) associated with outer PF coils supports or vacuum vessel leg supports	Fault on CHI power supply, arcing, burning, melting.	Maintenance inspection & test, magnetic diagnostics, power supply system ground and overcurrent fault detection.	None-Shutdown and repair	This is a simple. passive component unlikely to fail. At higher cost redundant joints could be developed.