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Determination of Diffusivity and Solubility in Two Phase Systems*

- Frederick W, Camp‘rand Ernest F'. Johnson
Department of Chemical Engineering

Princeton University
Princeton, New Jersey

Recently in this laboratory, the problem arose of measuring the solubility
and diffusivity of sﬁperheated steamn in molten lithium nitrate. Since the restric-
tio;ms imposed by this type of system preclude the use of the common methods of
diffusivi;ty determination, it was found necessary to develope and extend a simple
technique, which, timugh not new (2), has not been widely used. As shown below
this technique is applicable to a wide variety of two-phase systems,

In its barest essentials the method involves following the concentration of
the diffusing component, hereaiter called the sorbate, in response to a step change
in that concentration in a system in which total volume and temperature are constant,
Both solubility and diffusivity of the sorbate in the solvent, hereafter called the sor-

bent, are determined simultaneously in a single experiment.

* Presented at Symposium on Experim-ént'al Techniques in Kinetics Studies, Amer-
ican Institute of Chemical Engineers Annual Meeting, December 1962, Chicago,
1. ‘

T Sun Oil Company, Marcus Hook, Pa.
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The method is applicable to solid or liquid sorbent phases. While a liquid
phase will, of course, always assume a planér configuration, a solid may approx-
imate a plane, cylinder, or sphere. The sorbent phase must be stagnant, and
both sorbate and sorbent phases must be of finite extent. The sorbate must be
well stirred, and it may be gaseous or liquid. A particularly convenient well-
stirred sorbate is a pure gas, the concentration of which may be followed by
observing the total pressure. The following description will be confined to
this particular case. However, the equations presented may easily be extended
to other systems,

Consider a container of known and fixed volume, maintained at a constant
temperature, and containing a fixed volume of the sorbent. Initially (Condition 1)
let equilibrium obtain at Py sorbate phase partial pressure, and < sorbate con-
centration in the sorbent phase. This condition may be arranged, for instance,
by evacuating the chamber until both concentration values are sensibly zero. At
the initial time admit gas to the chamber to a known pressure {Condition 2). This
known pressure determines the amount of sorbate admitted. The gas will diffuse
slowly into the sorbent until eventually the pressure remains constant with time,
and the system is again at equilibrium (Condition 3). The pressure Py determines
the amount of gas remaining in the gas space, and the amount of gas absorbed may
be taken by difference. From these quantities, the solubility of the gas at the pres-
sure p, is determined. The cycle may now be repeated, with P, from the last de-
termination becoming Py for the next. Obviously, determinations may be made

either by adding more gas at Condition 2, or by removing some of the gas then
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present, Furthermore, from the time record of pressure decay (between Con-
ditions 2 and 3) it is possible to calculate the diffusivity of the sorbate in the
sorbent.* The time record of pressure will be of one of the two forms shown
in Figure 1,

The Solubility Problem

Material balances may be written for the terminal conditions, 1, 2, and 3,
and for the transient period. At Condition 1, the number of moles of gas in the
system is

n, = n + n {1)

Assuming the perfect gas law applies,

pV = nR#A (2)
and assuming further that Henry's law governs the solubility relationship,

p = Kc i (3)
Neither of these assumptions is necessary for establishing the pertinent material
balances. However, the simplifications are convenient and will be retained. Sub-
stituting Eqs. (2) and (3) into Eq. (1) gives

ny = pl[(Vz/K) + (Vg/RB)] (4)

Condition 2 is established by a step pressure increase (or decrease) at

zero time,

n, =0 tn, = pIVE/K + pZVg/RG (5)
J) g ’
Condition 3 occurs at infinite time, when equilibrium is re-established.

n, = n, = P3[ (VE/K) + (Vg/RB)] (6}
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During the transient period equilibrium does not obtain. A material balance
can be written by considering the average sorbate concentration in the sorbent,

= 7
c nl/VI . (7}
At any time during the transient period (between Conditions 2 and 3)

n, = vEE + plt) Vg/RB (8)

The progresgs of sorption may be followed by defining the mean increment of sorbate

in the sorbent.

W(t) = ¢ {t) - ¢, (9)

The fract‘ional completion of sorption is given by W/W3, and from Eqs. {3,5,6, and

8},

W(t) c_ - ct) plt) - p
1- = 23 = 3 (10)

W, €3¢ + Py " P3

It is convenient to collect several terms and define

L = VgK/VIRB (11)

This constant may be 'identified in terms of experimental variables by rearrange-
ment of Eqs. (5) and (6).

L = (p, - pl)/ (p, - P,) (12)

The ratio LL may be called the effective volume ratio. It measuresg the relative
capacity of the sorbent and gas volumes for the sorbate. It is practical and in
many cases desirable to make several successive runs with P, from the last

run becoming Py for the next. At the completion of the ith successive run, the

concentration of sorbate in the sorbent, Cytse is
1
Hl
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-V

= —L -
€3,i - 3,0 7 vV, RO Z\ (p, p3); (13)
]

The Diffusion Problem

Since the sorbate phase is well stirred, molecular diffusion occurs only in

the sorbent phase. For a planar sorbent, the diffusion equation is

2 2
9c/ot -Dd cx =0 for 0 <x <X
0<t <® (14)

where x is the sorbent depth, zero at the bottom of the sorbent vessel {(or at the
sorbent midplane if both faces are exposed to sorbate), and X at the interface.
The boundary condition which makes this particular problem an interesting one

is that which describes the transport of sorbateﬁ as the flux j acro's»sn t}}f' n{te;fgjéé

of area A,

- = = i = - dt =
dn, dng Aj dt = -AD(3¢c/3 x)] < (Vg/RB) dp

dp/dt = -ARGD/Vg (dc/8x)] < (15)

It is reasonable to assume equilibrium at the interface, so that from Eqs. (3) and
(11)

dc/oat] - =:-(D/LX)(8¢c/8x)] % 0<t<0, x=X (16)

Other boundary conditions may be treated in a straightforward manner. At
Condition 1 the concentration is uniform and equal to c
cf{x) = ) att = 0, 0<x< X (17)

At Condition 3 the concentration is again uniform and equal to sy

cix) = Cq att = 00, 0<x<X (18)
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Between Conditions 2 and 3, since there is no leakage of sorbate from the bottom
of the sorbent vessel,
| 9c/9x = O 0<t<®, x = 0 {19)

The diffusion equation and boundary conditions for the cases of cylindrical
and spherical sorbent shape are completely analogous. The diffusion equation,
with this particular set of boundary conditions, is mentioned only in passing in
the standard references (3,4). Carman and Haul (2) have collected the solutions
previously available in the literature, and have presented closed-form approxi-

mations applicable to various stages of the sérption process., For constant D

a2
P

the general sclutions are

e 0]
(1-wW/W_) = z Z exp -q 2T (20)
3 n n
n=
with
z_ = 2L + Lz) ; (plane) (21a)
1+L+L g
n
4 .
Zn = L+ L)Z 5 {cylinder) (21b)
41 + L) + Lg
n
Z = 6L{ + L) (sphere) (21c)

2
91 + L) + qun

and T, a2 dimensionless time measure, defined by
2 I
T = Dt/X (22)

The quantities q are successive positive roots of
n .




tanq+ Lq = 0

2J,(q) + LqJ (q) = 0~

2
tan q = 3q9/(3 + Lq )

{plane)
(cylinder)

(sphere}

(Zéa)

(23b)

{23c)

A function, here denoted G, is denoted e erfc by Carslaw and Jaeger

{3), who give tables of its value,

G(£) = e erfc (&) = exp (&2) erfc (&}

The function erfc is the error function complement

erfc {£) = 1 - erf (£)

3
erf (£) = (z/Jn)y exp (- CZ) d{

and in terms of this function the approximate solutions are

1- W/W3 = (1+L)G(NT/L) - L

[ b 2 b
1'%”“1‘) b-!iG IEJT)’Lb;iG
3 [ 73774 374
[ b
- ¥ L) bl{, (3b1\rT\+ 2 g (
W, Lbl+b2 L b +b
with
by = (1/2) V(3+¢4n)/3 +1
b, = b ~1
b, = 1/2) Va+1) +1
b, = b_ -1

4 3

2b 4'J_T)

-

i

(24)

(25)

(26)

(plane)
{27a)

-L (cylinder)

(27b)

1
) -L. (sphere)

(27¢)

(28)

(29}

(30)

(31)
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The general solution may be presented in another form. From Eqgs.

(10) and (20)

[+ o]
5 ]
P-P; = P,-P, Z z_exp-q T (32)
o0
g(pp)dt=(pzp)§22nGXPq T dt (33)
o o n=l

Under the proper conditions of convergence, here satisfied,

y (p-p,) dt = (p,-p,) Z g exp-q D?f dt (34)
n=1 X
D o - zn
> { eoppat = b,p) ) —3 (35)
o] n=l qn

Analysis of Experimental Results.

Starting from Eqs. (11), {12); (3), (13); and (20), (27); or (35) experimental
data may be reduced and analyzed in several ways. The use of Egs. (11), (12};
{20}, (27) has been discussed in detail for the case of a planar sorbent (_l).. Carman

and Haul {2) discuss the use of the same equations for planar, cylindrical, and

spherical sorbents.

Solubility
The solubility of sorbate in sorbent, as measured by the Henry's law con-
stant K may be obtained from the results of several successive runs, or from a

single run, When the cumulative sorbent concentrations ¢, , given by Eq. (13)
3,1




-9-

are plotted as ordinate vs. the equilibrium pressures p3,i as abscigsa a straight
line should be obtained, if the system does in fact obey Henry's law. From Eq.
(3} the inverse of the slope of this line is the Henry's law constant. Since with
this procedure data from several runs are utilized, the value obtained for K
may be denoted Ko, the overall value:

If it is known or may reasonably be assumed that

= = 0
C3,O Cl,l : {36)

P30 =0 (37)

the plot described above will extrapolate to the origin., Successive values of the

cumulative sorbent concentration give directly a value for K,

R
Py ; VRO Py,
c c. vV Z (p,-p,)
g 2 "3

(38)

Values of K obtained by this method are equivalent to the inverse of chord slopes
in the plot described above, so that K is denoted KC.

Incremental values of K may be calculated, regardless of whether success-
ive runs are made, by

Apy ;. VRO (py . -py )

K. = = - ' (39)
i Ac, Vg (pz p3) ; )

Since

Py i1 = Pp i (40)

This method is identical to the use of Eqs. (l1) and (12).

VJZ R AL
Ko=—~v— (41)
4
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The relationships among the various calculation methods are shown graph-
ically in Figure 2. The natul;e of the physical system is such that values of Ki
are ne‘gatively correlated. That is, if a low value of Ki is obtained, Ki +1 wilk
be high. Thus experimental values of Kc and Ko.Wﬂl exhi?it a smaller variance
than values of Ki. On the other hand a value of Ki may be obtained from one

run, whereas a series of runs as needed to determine Kc. and Ko.

Diffusivity
' When K {and hence L) is determined,’ the diffusivity may be calculated
using Eqs. (20) and {27). Three 'steps are required, |

1. Construct a plot of (1 - W/WB) vs. T, usingl the appropriate form of
Eq. (20)., At high values of (1 - W/W3) i.e. at low values of T the series require
several terms for convergence. It is in this region that the approximations given
by Eq. (27) are useful. One such plot must be constructed for each value of L,
Figure 3 éhows, for the Pla.ne, several plots of this type.

2. From the experimental data, calculate using Eq. (10} the values ob-
served for {1l - W/W3) at various times, t. From the plot (Figure 3) obtain
corresponding values of T.

3, As shown by Eq. (22) a plot of T vs. t should be linear and extra-
polate to zero. The slope of this plot gives the diffusivity.

- In the case of the plane sorbent shape, two sirnpliﬁca.ti:)ns of this general
calculation method may be used.

The series Eq. {20) for the plane shows more rapid convergence than

do the series for the cylinder and sphere. Thus over a considerable portion
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of the experimental range, the series may be represented by one term, Using
Eq. (10) |

2
P-p, = Zl(P;-P_,J) exp -q T {42)
. 2
log (p—p3) = log (Z-l [pz-p3] ) - 9y T/2.303 (43)

A semilogarithmic plot of (p-p3) vs, t should be linear, with intercept
[log Zl(pz—p3)] and slope [-qlzD/Z. 303_}{.2] . The slope of this plot gives the
diffusivity’.

Furthermore, rearrangement of Eq (27a), using Eqs. (10) and (12) gives

F(p) = (p-p)/lp, - p) = G(NT/L) (44)

For experimentally observed values of F(p), each at a given time t, obtain
corresponding values of 'I‘/I_;z from a graph of G (£) vs. {£). A plot of these
values of 'I‘/L2 vs. the corresponding values of t should be linear with zero
intercept. The slope of this plot gives the diffusivity.

One convenient method of obtaining the time record of pressure réquired
for diffusivity determinations is by use of a suitable pressur; transducer and
high-speed recorder. Instruments are available which will, with reasonable

accuracy, give not only the pressure record, but also its integral. If the inte-

gral

0

1 = S‘ (p-pg) dt (45)

D -

can be measured, the diffusivity can be obtained from Eq. (35) as

2 %0
D = X (PZ”P3) zn | (46)
- I 2

n=1 qn
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The particular convenience of this method is that the series converges quite
rapidly, three terms being sufficient even at low values of L. Values of this

series for the plane are shown in Figure 4.

Accuracy of the Experimental Method

If an experimental result z is calculated from independently measured
quantities x, y, and if the errors in measurement of x, y are independent then

the variances of x, y are additive so that the accuracy of z will be given by

2 2
dz 2 9z 2
Zz = —_— x + —— 5 47
6& 3% . 3y y (47)

The accuracy of the measured quantities §x, §y is usually not well
defined by the manufacturers of measuring instruments. If, for instance,
ox, 6¥ represent the standard deviations of %, y, then §z will be the standard
deviation of the result z. Regardless, however, of the precise definition of
0x, 6y, it is usually possible for the experimenter to assign a useful value.
If, then, the functional relationship between x, y, and z is known, §z may
be predicted. The value predicted for §z, using Eq. (47) will be termed the

standard error of z. The application of Eq. (47) to the standard error of the

slope of a line is discussed in Appendix I. The results of this discussion are

used below.

Solubility
The overall Henry's law constant Ko--is the inverse of a slope b which
may be obtained by the method of least squares., In order fo obtain an approx-

imate expression for the standard error of Ko’ several simplifying definitions




and assumptions may be made.

Define

Assurmne

g £
5'p2'1 = 5p3,1
6x. = )

i
i = bxl
Ax, = Ax

so that

P
A /2.
8y 15?

—y-_ . = —v—-—-:—'— =
i

then from Eq. (A27)

-13-

'\/213 - 21 212 + i 22'1

b _ N25p
b Ap

where the sumrnations are taken from i

runs,

= 0 to the final number of successive

(48)

(49)

(59)

(51)

(52)
(53)
(54)

(55}

(56)

(57)
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dK 5

o

=
N2 (1+L)6p\/§i - 21 212 + 1_221

=
- T2
S X 37

The assumptions made in obtaining this result are that

{(58)

(1) Errors in all measurements except pressure (concentration)

are negligible (Eq. 50).
(2) All pressure errors are of equal magnitude.

are considered to be known without error (Eqs. 51, 52).

Values of X,

(3) Values of X, y, are equally spaced. (Eqs. 54, 55).

(4) The data, when plotted, do not deviate from a linethrough

the origin (Eq. 53).

These assumptions allow reduction of more general expressions to a

standard error ratio which is a function only of the number of observations, i.

This ratio is shown in Figure 5.

The incremental value of the Henry's law constant Ki is calculated from

Eq. (41). Again making the first two assumptions above, Eq. (47) gives

2

Z R .
51 = 4\/ ._:l_ 61312 + _-"I_J__ 6P2 + ____]:il_ 5p32
P,"P3 P, P,y P, Pj
(59)
Z
6L = '\ﬁL +L+1) [(Gp/(pz-p3)] (60)
K, 2(L4'+ 31 var? 4 3L 4 1)
i fép = oL [dp _ = F =~
K, /PPy L |p,7P) 1 L2

(61)
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The value of the function E, is shown in Figure 6,

The value of the effective vold;-ne ratio may be set by the design o£ the
experimental apparatus. Values of 0,1 to 10 are practical; the range d.4< L<2.5
is pa?ticularly desirable because of thet I.)lateau in Ei in this range.

While the steﬂmdard error of Ki is a minimum at L = 1, that of Ko decreases
with L, ag shown by Eq. (58). The stanc_ia‘rd error of the mean Ri of several de-
terminations of Ki decreases as the sqﬁuart;, toot of the number of determinations.
The ratio of these standard érrors is gshown in Figure 7,

Diffusivity
When the diffusivity is calculated -from Eq. (20,27) as described above, it is

obtained from the slope b of a line. In order to obtain a useful form of the results

of Appendix I, restrictive assumptions may be made:

(1} Errors in all measqréments except pressure {concentration)
are negligible.

(2) The logarithmic standard error of T is constant,

6T, = k T, (62)
1 1

Values of ti are known without., error.

(3) The data, when plotted, do not deviate ftom a line through

the origin.

With these assumptions, from Eq.(A 17)

: -2 2
8D . &b =kvz(ti-t) i
b .l

(63)

Pt
—}

D
2
>
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It is not reasonable to assume, as in the case of Ko, that individual values of
ti are equally spaced. However once a spacing is selected, Eq. (63) need be
evaluated only once as it is a function only of the independent variable t, In
a series of runs made in this laboratory, ti were selected from 1 to 2000 or
more seconds in intervals of 1 sec. up to t = 10, 10 sec. to t = 100, 50 sec,
tot = 300, 100 sec. to t = 1000, and 250 sec. thereafter. This choice was
made arbitrarily to provide fairly equal pressure decrements for each time
interval. The standard error ratio for this choice of ti is shown in Figure 8,
For calculation of the standard error in T, T may be regarded as a
function of § = (I-W/W3) and of L, given implicitly by Eq. (20). Straight-
forward but algebraically complicated calculation yields expressions for
the derivatives 8T /8S and 3T /9L. These expressions are themselves series
which are much too cumbersome for repeated application. Since all that is
needed is an approximate expression, reference may be made to Figure 3.
This figure shows that.plots of T vs. S are similar in shape throughout a large
rarige of L, and that the effect of L is to shift the plot on the T ;ins. From
Figure 3 it is apparent that over a fairly large range of S,

&n T= ‘ST—T ~ 12688 (64)

The standard error of S may be obtained from an equation analogous

to Eq. (60). At the optimum value of L = 1,

6s = '\/;(1 -5+ SZ) 5p/(p2-p1) (65)

Over the same range of S in which Eq. (64} is valid, Eq. (65) becomes

65 = 2,66p/{pa-pl) (66)
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so that from Eq. (62, 64, 66)

k= 8T /T, = 1255 230 6p/(p,-p)) (67)

1 1

If the diffusivity is calculated instead from Eq. (46), it may be assumed

. that all errors are negligible compared with that in the continuously recorded

pressure, so that

oD . . 0I .
5 = T (68)
From Eq. (45)
o0 = e}
9 3 :
2w - szg (p-p,) dt = S a (69)
8] o]

As a practical matter, the integral I has zero value after a time of the order of

2 - .
X" /D, so that the integral, Eq. (69) need not have a value of infinity,

2
91 X
I = e ~ —. 5
& p 5P D P | (70)

then, from rearrangement of Eq. (46), using Eq (12, 70)

0D GP 1 ép 1+ 1,
D— = —H—_F . Z = p ve 7.0 (71)
P, Py Z = P,™P Z >
~ qn qn

The value of the standard error of the slope (Eq. 63, Figure 8) is roughly

0.5, so that from Eq. (67), for calculation of D by Eqs. (20) and (27)

8D , 45 0P (72)
D PPy

>
The value of the function (1 + L} /Z Zn /qn” (Eq. 71)
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is roughly 10 to 25, so that the standard error of D calculated by the integral

method {Eq. 46) is the same as that of D calculated by the slope method.

Conclusions

The experimental method described here offers the following advantages:

1. applicability to several types of experimental systems,
2. simultaneous measurement of two parameters,
3. simplicity of construction and execution;

4. rapid determinations.
The method suffers from the common fault of many transient response
techniques in that it is of only modest precision, Nevertheless determinations
of both diffusivity and solubility may be made to an accuracy better than that

which is required for many engineering design calculations.




-19-

Nomenclature

Meaning, Consistent Units

slope of least square line

b4 defined constants, Eq. (27-30}, dimensionless
concentration of sorbate in sorbent, mole/liter
diffusivity, cmz/sec.

defined standard error ratio, Eq. (49), dimensionless
defined pressure function, Eq. (34}, dimensionless
defined function, Eq. {23)

defined pressure intégral, (Eq. (45) mm Hg sec

flux of matter, mole/cmz second

Bessel function of i order

logarithmic standard error of T, dimensionless
Henry's law constant, mm Hg. liter /mole

effective volume ratio, dimensionless

humber of moles

pressure, mm Hg.

roots of Eq. (22)

gas law constant, 62,361 mm Hg. liter /g. mole °K
defined fraction of completion of sorption, Eq. (10}, dimensionless

time, seconds

dimensionless time measure




1t

v INA

A

exp
log

In

tan
Subscripts

1, 2,3
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volume, cm
concentration increment, mole/];iter
linear dimension, cm.

Depth of planar sorbent, radius of spherical or cylindrical
sorbent, cm.

aefined const'ant, Eq. (20), dimensionless
temperature, c)K

equality

approximate equality
identity or definition
summation

greater than

less than

partial differential operator
total differential operator
standard error

exponential function
logarithm, base 10
logarithm, base e

estimated standard deviation
estimated variance

tangent

conditions 1, 2, 3 as described in text
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g gas or sorbate

. .th ,

i i successive run

2 liquid or sorbent
Superscripts

- average value

A least square estimate of parameter
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o 8

[ N T TR ¥ T - N o L -]

S = N b O

1,

W N N vV vV NV

571

.632
.671
.716
. 759
. 837
. 907
.029
.107
.216
. 381
. 645
. 863
142

Lo S L RS L b L I . T - SR S S - N "G N N

O @ e ™ 0 0 =~ o~ = =~ =] = =]

. 854
. 866
. 875
. 885
. 896
L9217
.938
.979
.009
.058
.151
. 392
.708
. 425

10

11,

11.
11,
11.
11.
. 409
. 701

11
11

12,

Values of q, for use in Equation 20

Gy

. 995
11,
11.
11,

004
011
018

041

086

108

144
215

566

W oW W W oW W NN N IV NN NN

. 405
.485
.533
. 589
. 641
. 734
. 816
. 950
. 031
. 139
. 290
.511
. 655
.832

Table 1

cylinder

13
. 654
677
L 691
.710
.730
767
. 803
. 874
.923
.002
. 142
9.440
9.730
10.173

N0 00 o o o ™ O o o W

:q4
11,810
11,814
11,820
11.833
11.848
11,875

11.903

11.956
11.995

12.058

12,175
12.453
12,766
13.320

Bl B R W W W W W W W W W W

sphere

142
.232
.286
. 349
.406
. 519
. 591
.726
. 807
.908
. 056
.235
. 345
712

i e B R = Y = R - AR+ DAY+ LS = NERY » ' e N,

. 283
. 330
. 361
. 388
.434
. 502
. 566
. 681
.758
. 865
.030
. 295
. 487
. 854

9.425
9.456
9.477
9.503
9.528
9.578
9.626
9.716
9.778
9.874
10.033
10. 330
10.575
10.995

12.556
12.590
12,606
12,626

12.645

12,683
12,720
12,793
12. 845
12.926
13.069
13. 369
13.651
14,137
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Appendix

Standard Error of the Slope of a Line

It is often the case that experimental data are graphed as a line and that

the slope of the line is the desired result. One useful method of obtaining the

slope is that of least squares. This method is by no means the only one avail-

able but it has the advantages that

a) it is well known and commonly accepted, and

b) computational formulae are well-known and well suited for

desk computation,

with

From a group of data, (xi, yi) the slope is computed from

b = ley/ziﬁz (Al)

n .
ORI (a2)

)
L]
-
11

n
2 -2
Z x EZ\ (xi-x) (A3)
The variance of the least - square slope may be calculated from
1
2 2 . 2
o) =t/ ) (45)

Lore () b Y ) (46)
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This variance is a measure of the scatter of the data from the least - square

line. It is not an uncommon experimental situation, however, to have successive

values (xi, y.) highly correlated. Such a situation may arise, for instance, if
i ;

these values are taken from a continuous recorder trace. In this case, Eq. (A5)

may give a variance for the slope which approaches zero. -But if the accuracy

of measurement is not as good as the precision (which is improved by correlation)

then this variance is not a useful measure of the accuracy of the slope,

An expression for the standard error-of the slope of a line may be ob-

tained by applying Eq. (47) to Eq. (Al). Assume that the values of x, are known

without error.

Several special cases are of interest.

Case 1:

Gyi =

BT

8b_
b

Oy

-2 2 i ‘2

/Z(xi-x)by':w Zx
R
xX

|
vy o
6y *

ny

(A7)

(A8)

(A9)

(A10)

(All)
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Case 2: 6y, = kx, ' (Al12)

/ ' — 2z 2z
= Z {x, - x) x,
6b = — ! 1 (A13)

= —— ' (A 14)
2{ 2
x
Case 3: 5yi = kYi {A15)
and y. = bx {A16)
i i
t‘l.
5
{A17)

Case 4: by = kyi/\/i (A18)

and y = bx (A19)

{A20)

c‘|0°
o
I
-
(%]
>
"
—
[]
E
hare
E
-
(8]

- Z : -zzz L Z L (a2
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Case 5: If the x, are equally spaced so that

x, = iax (A22)

Z x2 = sz Z i2 (A 23)

then

and

4 _ - - -
‘\/Yx_ -sz,3+x2x.2=Ax2\/Z_4-ZiZ.3+izz.2
i i i i i i
{A 24)

Then Case 2 'beconges

éb =

K \/21‘.4-21- Zi3+ ?2212 (A 25)
3¢ |
1 B

and Ca.se' 3 becomes

= " ‘ (A 26)
b z--' 2
i
and Case 4 becomes
‘\/213 21_212 +T° zl
- ' | | (a27)
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