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Abstract
A new scheme for particle simulation based on the gyrophase—averagéd
Vlasov equation has been developed. It is suitable for studying low-freqiency
microinstabilities and the associated anomalous transport i1in magnetically
confined plasmas. The scheme retains‘ the gyroradius effects but not the
gyromotion; 1t 1is, theréfore, far more efficlient and versatile than the

conventional ones. Furthermore, the reduced Vlasov equation 1s also amenable

to analytical studies.



I. Introduction

Gyrokinetic approach has been widely used in recent years for studying
low-frequency microilnstabilities in a magnetically confined plasma.since its
inception more than a decade ago.l’2 It employs the gyrokinetic ordering that
the characteristic frequencies of the waves and gyroradii are small compared
to the gyrofrequencies and unperﬁurbed scale 1lengths, respectively, and
perturbed parallel scale 1lengths are of the order of unperturbed scale
lengths. .Such an ordering enables one to be rid of the explicit dependence on
the phase angle of the Vlasov equation through gyrophase-averaging while
retaining the gyroradius effects to the arbitrary value of the gyroradius over
the perpendicular scale length. Finite gyroradius effects, as we know, are
essential for many microinstabilities of interest in magnetic confinement
devices such as tokamaks . Contrary to the original approach, Cattol has
recently developed a gyrokinetic technique whichAfirst transforms the particle
variables to the gulding center variables in the Vlasov equation before
performing the gyrophaée-averaging. The purpose of it 1s to ohtain finite
gyroradius effects 1in a more convenient manner for arbitrary magnetic
fields. As it turns out, this technique of gyrokinetic change of variables
also provides a starting point for the development of the particle simulation
scheme reported here.

Particle code simulation has long been recognized as a useful tool for
understanding nonlinear plasma behavior and has contributed significantly in
this regard over the years. In the area of microinstabilities in tokamaks,
the excitation of the convective cells due to unstable drift waves? and the
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magnetic field line reconnection caused by shear-Alfven waves® are just two

examples. However, not unlike other numerical schemes, particle che




simulation also has its share of limitations. For conventional codes which
operate on the first principles of Newtonian dynamics, the time step for
particle pushing 1s limited by the highest characteristic frequency in the
plasma, which can be several orders of magnitude larger than the frequency of
interest. It 1is, therefore, rather inefficient, if possible at all, to
simulate low-frequency phenomena with such a code. Efforts have been made in
the past to eliminate high frequency oscillations in the simulation plasma.
For example, drift-kinetic approximation for electrons has been made in the
codes used for the investigations in Refs. 4 and 5.6,7,8 However, the lower
hybrid oscillation, which represents the highest frequency in the plasma for
such cases, 1s still much larger than the frequency of interest. In this
paper, we wlll present a particle simulation scheme which keeps finite
gyroradius effects that are vital to the physics at hand, but, at the same
time, eliminates the oscillations associated with particle gyromotion.
Henceforth, particle pushing can be accomplished in the time scale of the low-
frequency microinstabilities. The scheme is, therefore, most suitable for the
simulation of tokamak plasmas.

Recently, long-time-step particle simulation has also been tackled on a
different front. Several implicit schemes have been developed, in which the
high-frequency oscillations are filtered out through numerical
methods.?,10,11 They represent a basic difference in philosophy than the
scheme discussed in this paper as well as those in Refs. 6 and 8, in which the
elimination of high-frequency oscillations 1s contingent upon the underlying
physics. Although the implicit schemes are more general in nature, their
applicability to two and three-dimensional tokamak plasmas has yet to he

demonstrated.

In the present paper, the focus is on the development of an electrostatic



particle simulation scheme in the slab geometry. The scheme 1s accurate
linearly for . arbitrary values of klpi’ where Py is the 1ion gyroradius.
Nonlinearly, it is wvalid for kipi < 1. . The two-and~one~half-dimensional
(X»Y»Vx,vy,vz) simulation results from the present scheme agree very well in
every aspect of the instability with those obtained eariler using particle
ions and guiding center electrons.'”s13  1g addition to the use of longer
time-steps for particle pushing, the scheme also can afford to use fewer
particles to study weaker instabilitles because the numerical noise associated
with the particle gyration is no longer a problem. Therefore, it represents a
tremendous saving in computing resources. Since the procedures described here
is rather general, they can be used easily to obtain the electrostatic and
electromagnetic.. (low- B) versions of the scheme in the toroidal geometry. In
view of the recent development of the multiple-scale particle simulation
model,14 in which the plasma equlibrium scale lengths are separated from the
perturbation scale 1lengths, it 1s now possible to simulate fully three-
dimensional steady-state plasma turbulence in the toroidal geometry with the
present generation of computers. This paper represents the first step toward
that direction.

The paper 1is organized as follows. 1In Sec. T1I, the basic formulatlon of
the gyrokinetic equation in general geometry 18 presented. The procedures for
the development of electrostatic particle simulation scheme 1in the slab
geometry is discussed in detail in Sec. III. The particle pushing algorithm
and the simuldation results are given in Sec. IV, together with their
comparisons with previous particle code results. Conclusions and

recommendations for future work are given in Sec. V.



II. Basic Formulation

let us first apply Catto's gyrokinetlec change of variables3

from x, vto R , pu , vy ¢ to the Vlasov equation in general geometry,
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where F(R, p, v , ¢, t) is the distribution function, E(x) 1s the perturbed
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2

field, p = vl/ZB, E =y b/ Q Q= qB/mc, v, = vl(cos ¢ e + sin ¢ 22),
Yy T VpRobhme xep Rextp, and |
b
dp_ _pdB_ 'y ( ok ) ey
d x Bdax B '3%x ~L 2
d vy 3 b

5% = ;7 ( L ) o ( v, X b )+ ( 5% ) e €

For a low-B (= plasma pressure/magnetic pressure) plasma, the electric field

is given by
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where & (x) 1s. the electrostatic potential and Au(x) is the parallel vector
potential. Invoking the gyrokinetic ordering of w/Q ~ ¢ p/L ~ g, and
L~ L" where ¢ 1s a smallness parameter, o the gyroradius, L the equilibrium

scale length and L" the perturbed parallel scale length, one can write down

the lowest order equation of Eq. (1) as
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Here the perturbed fields are also considered to be 0(e). With
F=f+c¢g(s) , ' (4)

where f is the solution of Eq. (3) and 1is independent of phase ¢, Eq. (1) to

the next order reduces to
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have been used 1in arriving at Eq. (5). By assuming that all the fileld
quantities are independent of ¢ and by taking the gyrophase average of Eq.

(5), we then recovér the usual drift-kinetic equation
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are the curvature and VB drifts and the parallel acceleration, respectively.

3 and

The parallel drift 1s ignored in Eq. (8) because it 1s higher order in g,
J/. voe ( GP/GE) d¢ = 0. Tt should be mentioned here that, together with Eq.

(2) and

2
b= VL/ZB = constant,
Eq. (8) can be used for particle pushing for electrons for a low—~Bf plasma in
the general geometry. If we now assume that f is the part of the distribution
function which can be described by the drift-kinetic equation, Eq. (5) then

indicates that g = (q/m) (&/B) (d £/3d p) which gives

- q®df
F=f+do2° . | (9)

T

Subsituting Eq. (9) 1into Fq. (1), and using again Eqs. (6) and (7) together
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we can write the gyrokinetic equation as
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The last term 1in Eq. (11) can be eliminated through gyrophase-averaging.
Thus, this equation, which is the reduced form of Eq. (1), 1is amenable to the
development of gyrokinetlic particle simulation schemes for electrostatic as
well as finite-f plasmas. In the following sections, our focus will be on the
development of an electrostatic particle simulation scheme 1in the slab

geometry. More general cases using Eq. (11) will be reported later.

IITI. Flectrostatic Gyrokinetics in Slab

The gyrophase-averaged electrostatic pgyrokinetic ‘equation in the slab
geometry can be obtained from Eq. (11) by neglecting the geometric terms, and

it takes the form
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where < > = (21:)-1 J{. d¢. Let the electrostatic potential be

& (x) = ¥ o (k) exp(ik + x) = ¥ & (K)exp(ik * R - ik * p) , (13)
and its gyrophase average becomes
kyvy
B> =<Dd> = ) (k) I [ - ) exp(ik ¢ R) , (14)
o K ~" "o 0 : ~ o~
in which

< exp(+ ik « p) > =J, (klvl/Q]

is used, and J, is the Bessel function. From Eq. (9), the gyrophase-averaged

distribution can be expressed as

<5 >

_ q o df
<F>—f+IF—B———-g-u— (15)
Using the relation
@ k'v k"v
” — -L-L ‘L.L
Cexp [ #1(k' +k") e p 1> = nzm J ( 5 ) I ( 5 ] cos n8d ,
(16)
where 0 = cos—l(kl k| /Ky ki], the coupling term becomes
¢ 3 <& >1 3 <d >1
2> B> B> +2 3 ‘TR , an

1

where only the first two leading term in Fg. (16) are kept and
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klvl

= I ( 5 ) exp(ik ¢ R) - (18)

With the use of Eqs. (14) - (18), Eq. (12) reduces to
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Note that ?d<® >o/6p = 0. Substituting Eq. (21) into Fq. (19), we obtain
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0.2 . AN ) a<e> |2
- 2z X b e + *b <F> =0 |,
T Qg /2 " O E 3R DR 3V, 3R,
(22)
where
. _a 1 3 <a > |2
. T (1> /T | 5K | °
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This equation, which is totally independent of ¢, describes the evolution of
the guiding center distribution <F> in terms of the gyrophase-averaged field

quantities. The original distribution function F in Eq. (9) is related to <F>

through Egs. (15) and (21) as

- _ <F> q -
F = <P = 57T 7 (2= <@> ). (23)

The next step is to transform the field quantities from the guiding

center coordinates R back to the particle coordinates x. This transformation

can be accomplished by performing the.integration Of.f” do f vldvl on Egs.
o
(2?2) and (23) and assuming
<F> = F(R, vio B £ (v, (24)

where ﬁm is Maxwellian in v, and homogeneous spatially. The multiple-scale
particle simulation model,14 which is the extension of the present scheme, has

to be used to handle cases involving the perpendicular temperature gradient,

i.e., fn = fm(g, Vl)' It is straightforward to carry out the iIntegration for
terms in Eqs. (22) and (23) involving neifther <& >o nor <& >1. For those

with <& >o only, the integration yields




12

B = T o, (Kvi/Plexp(ik + x) (25)

)
k

1
where v, = ('1‘/‘111)/.-'2 is the thermal velocity, and

k,v
_ b 1 ® 2,. 2y .2 I
T,(b) =1 (bye = = L exp/ vl/2vt1 I ( = ) vidv, o, (26)
t
where b = ki pz = kivi/o,?‘, Io is the Bessel function. The integration

of <& >0 <& >o and <& >1<€b >1 can be carried out using Eq. (16), in which

again only the two leading terms are kept, and the integrals of

2
© k'v kv
1 V1 2, 711y (2
= Joexe( - =) (=) 3 (5= ) vy
v o 2v
t t
n n
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and
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1 2,,.2y 2 L0 1y [2 L 1 "
— f exp(-—vl/th) J1 f-—-c—)——) J1 [ 5 ]vldvl =-2—b'b + 00, 29
v, o
t
where b' = k'2 2 and b" = k"2 2, Consequently, the integtration of Eq. (22)
L Pe L%

in ¢ and v, glves

L
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oF L 2F a1l p aay, 0. 0F a(n ggy.52F L
st T4 x ﬁ'ﬁ'( sx*® 1 x b 3x m ( 3 x «s ) ~ 9 v, ’
' (30)
where
p2
~ q Pt a,mlz ~
"“1"1"’2‘”’6? /@
~1
and the integration of Eq. (23) in ¢ and VL as well as in v, yields
=n-3 - & q 5 q.2 2 3 |2

[Fdy =n -1 (-3 1 +43) n+ P p LE n , (31)
where

n = f F (§, Vi t) dv" (32)

Since the difference between the particle coordinates x and the guiding-center
coordinates R vanishes after two gyrophase—-averaging processes, the

independent variables in Eq. (30) are now X, v t. The = potentials

(g
® (x) and kS (x) are defined by Eqs. (13) and (25), respectively. Tt should be

pointed out here that the terms of the orders of (kipﬁ\z (qm/TWZ and

ip%\ (qQ/T]3 have been neglected in obtaining Eqs. (30) and (31). Thus, the

2 2
L P

(k
term & & in FEq. (31) 1is accurate only to k From Fgs. (31) and (32),

Poisson's equation can then be written as

2
2 2 ™ ~ P12 en?
vas-kmﬁ;[(@-ep)-,[_vl,ri_]=_4ne(ni—ne),

(33)

where subscripts 1 and e denote species, k%i= by ezno/Ti and ny, is the spatial
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average of ny. Here electron gyroradius effects are assumed to bhe small and
neglected.

It is interesting to observe that the gyrokinetic equation, FEq. (30), in
essence 1s a drift-kinetic equation with a gyrophase-averaged fileld g &, and
the second term on the left-hand side of Eq. (33) accounts for the
polartization effects. Furthermore, ¥, which is related to the phase-agveraged
quantity <F> in Eq. (24), is now the guiding-center distribution and n 1s the
guiding-center density. Thus, the actual number density associated with the
original distribution F consists of two parts, i1.e., the guiding-center number
density and the density due to polarization effects, as shown 1n Fq. (31).
Fquations (30), (32) and (33) form a convenient set of equations that can bhe
used for the particle pushing. Moreover, zince these equations are simply the
usual gyrokinetic-Poisson systém casting In a different form, they can also he
used for analytical purposes. Contrary to the usual gyfokinetie formulation,
the present scheme retailns the gyroradius effects without the subsidiary
ordering of the distribution function F. These equations are correct linearly

for arbitrary values of k

and nonlinearly for k < 1. ‘Te i1inclusion of

1Pe Pe
2 2.2

the gyroradius effects to the next order, 1.e., (klpt) (qm/T)z, can easily be
accomplished hy retaining the corresponding terms in Fqe. (27) - (29) in the
derivation. Since the resulting formulation 1s somewhat tedlous, we prefer

not to discuss it at the present time. The extension of the present scheme to

include terms of the order of (kipi) (qcfv/T)3 and beyond requireg the techrlque
described 1n Ref. 14.
The definition of actual number density, Fq. (31), in the absence of the

perturhbed fields needs further discussion. let's define

nx) = [ 7 dy
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and
n(k) = lj.j F exp(-1kex) dx dv -
N

Since Jacobian, J(x,v/R,v), is unity in the slab geometry, the latter can be

written as

n(k) = Lo [ F exp(- 1keR) exp(+ tkep) dR dy - (34)

L

From Eq. (23), F = <F> when & = <(T>>o = 0. Subsituting Eq. (24) into Eq. (34)

and carrying out the integration in v, we obtain

2 2
~ 1 k' pe
n(k) = ;E'I n exp(- ——) exp(- ik¢R) dR (35)

where
2 2 2

- [ exp (- ‘L Y3 (klvl\ v dv, = exp { - “1Pe )
7 y 2 ' o Q 11 2 .
vt o) 2v

has been wused, and n(R) = [ F dv" is gulding center number density.

For kipt < < 1 where kl describes the equilibrium variation, Eq. (35) gives
£(§) ~n + %-pz Vi n . (36)

Hence, the actual number density associated with the distribution function F
should include the contribution from equilibrium density gradient. [For cases

with a temperature gradient, i.e., for fm(R’vl)’ the contribution

2 2

is (1/2) let

n.] Accordingly, the ion guiding center number density ny on the
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right~hand side of Poisson's equation, Eq. (33), should he replaced
by ;i(§) in Eq. {36), and becomes

RHS of Eq. (33) = - 4m efn, + %-p -n ). (37)

Here niq represent the part of the ion guiding center number density when the
perturbed fields are absent, whereas ny is the total number density. The
contribution of this additional term 1s usually very small and has been
neglected in most analytical studies. However, for some cases in the particle

simulation, 1ts presence cannot be 1gnored because of the large density

gradient used and the boundary conditions imposed for Poisson's equation.

IV Gyrokinetic Simulation Code and Results

As we have mentioned earlier, the resulting gyrokinetic equation, 'Eq.

(30), resembles closely the usual drift-kinetic equation. Using the

distribution function ¥ in its discrete form,

Fx,v,,t) = T 61x = x,(6)] 8[v, = v, ()] , (38)

L e -

i=1

where N 1s the total number of particles of the particular specles in the

system, we obtain from Fq. (30) the equations of motion for the 1-th particle:

dx

Ri _q1 ?(a®) y .
A Tan Tx X, ot * R (39
Wyt q 2 0

dt m - ox fi’t ~
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which are simply the characteristics of Egq. (30). They are the basic
equations for our particle pushing and can be solved numerically using the
usual predictor-corrector finite-difference scheme.® 1In the code, the ions
are pushed with a modified potential of a¥ , defined in FEqs. (25) and (30),
while the electrons are acted upon by the original potential &. Since the
particle gyration has been eliminated from the equations of motion, longer
time-steps corresponding to the frequency of interest may be used 1in FKgs.
(39). The additional constraint of kvtAt < 1 ordinarily does not pose any

problem for our purposes. At every time step the number density is calculated

by
8[x - §1(t)] (40)

and 1s substituted into Poisson's equation, Eqs. (33) and (37), to

2 term is in the

determine ®&. The modified Poisson's equation without the &
form of an 1nhomogeneous Fredholm equation of the second kind 1n the
Fourier &—space, and 1t can be solved réadily using the method of successive
approximations,15 with the constraint that number density associated with the
polarization effects 1is conserved. The small nonlinear term can be included
perturbatively. The determination of niq in Eq. (37) 1s somewhat difficult
due to particle diffusion during the course of the simulation. However, 1t

can be approximated by taking the mean of the spatial averages of electron and

lon number densities in the homogeneous directions, i.e.,

B < ni + ne >h0m0¢

/2 .

This ambiguity can be removed in the multiple scale particle simulation
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model.14

The gyrokinetic particle simulation scheme has heen implemented in a tuwc~
and-one-half dimensional (x,y,vx,vy,vz) code 1in the slab geometry. To
simplify d1ts algorithm we have dropped all of the nonlinear terms
in &, 1.e., @ =1 in Fq. (39) and pf Vi mz 20N in FEq. (31). The simulation
plasma 1s bounded by two conducting walls In the x Jdirection where the
potential & vanishes and the simple reflecting condition 1s imposed for the
particles hitting the wall. The periodic condition 1s used for beth the waves
and the particles in the y direction. The magnetic field is in the v -~z plane
where B, 3> By. In the case of shear, By 1is a function of x. The
inhomogenelty exists only in the x direction with a constant ¢ (= - n'/n).
Two cases, one with shear anq the other without, have been studied using the
code. The results agree very well in every aspect of the instability with
those obtained from the code which uses exact dynamics for the 1ons and

guiding center approximation for the electrons.b

Case 1

This 1s a shearless case. 1lsing the grid size A as a basic unit, the

simulation parameters are

[
X

o
1}

2
64A x A2A, n = 16/A°, mi/me = 1837 ,
T/T, =9, w /w =10, A /A = 1.5, particle size/A = 1.5 |,
e ce pe De
By/Bz = 0.0053, pi/A = 2.14, kpy = 0.15,

kypi = 0.428m, m*/mpe = 0.00315m, where m = 0, + 1, + 2, e.s
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The simulation has been carried out with wpeAt = 80 using the gyrokinetic
code. The time evolution of e(I>/Te for the most unstable m = 1 mode measured
at the middle of the plasma in x and the corresponding frequency spectra are
shown 1in Fig. 1.16  simulation results from the previous codeb with wpeAt = 15
are shown in Fig. 2. The agreement between the two is excellent in terms of
the 1linear frequency  and growth rate, the saturation amplitude and the
nonlinear frequency shift. The higher saturation amplitude in the gyrokinetic
code 1s probahly caused by the absence of nonlinear @2 terms. As we can see,
the simulation plasma 1s much quieter in the gyrokinetic code because of the
elimination of the ion gyromotion. Thus, we can afford to use fewer particles
and milder density gradient in the simulation. It should also be mentioned
here that the observed linear properties of the instability agree with the

12

theory. The nonlinear saturation and the frequency shift are mainly the

result of the mode coupling processes.17 The effect of niq in Eg. (37) on the

instability is insignificant in this case.

Case 7

In this case, shear is included and the magnetic field is described hy
B =Bz +yx/L) ,

where L, {s the shear scale length. The rational surface x = 0 is located at
the left-hand boundary of the system. Therefore, we only allow odd modes in
the simulation. The other parameters are

_ 2
Lx x Ly = 64A x 32A, n, = 1.6/A", mi/me = 100,
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Te/Ti = 1, wce/wpe = 10, xDe/A = 2.5, partiéle size/A = 1.5 ,
p /b = 2.5, xp, = p, /L = 0.175, L /L =56,

ky py = 0.5m, w*/wpe = 0.00875m, where m = 0, + 1, + 2, ...

&he time step in the gyrokinetic code is wpe At = 40, and the term associlated
with n®9 in Eq. (57) is also included. Figure 3 shows the results for the
most unstable m = 1 mode where the time evolution of eéb/Te at x/A = 25 and the
mode structure for w/w* = 0.7 are given. The corresponding results from the
previous code with wpeAt = 4 are shown in Fig. 4. In both cases a band-~pass
filter with the width of w* hds bheen applied to eliminate the numerical noise
in em/Te. The mode structures are ohtained through the use of the two-point-
spatial correlation function.l3 Again, the two results are very similar. The
nature of the instability, which 1{s not a bomna fide eigenmode, has bheen
discussed in Ref.13. When the term involving niq 1s not included in the
gyrokinetic simulation, somewhat different results have been ohtained. In
this case, the frequency 1s lower, w/w* = 0.5, and the saturation amplitude is
also lower, e@/i; = 4%. Apparently, the ambipolar potentiél arising from niq
has played a part in the instability.

From the two cases studied here, one can conclude that the gyrokinetic
code can indeed reproduce all the relevant physics in drift instabilities with
considerable saving in computing resources. The time-~steps used in these two
codes show a gain of a factor of 5 ~ 10. Compared with the conventional codes
where exact dynamics is preserved for both electrons and ions and the time-
step 1is limited hy mpe < 0.2, the pain can he as high ‘as 2 ~ 3 orders of

magnitude. Moreover, the simulation plasma 1s much quieter which makes the

interpretation and the understanding of the results much easier.



Conclusions

We have presented 1n this paper a new scheme for particle simulation
based on the gyrokinetic approach. A 2-1/2-dimensional electrostatic code in
the slab geometry utilizing the scheme has given satisfactory results. There
are numerous advantages in using this code for studying microinstabilities -
long time-step being one of them. In conjunction with the multiple-scale
model,14 the code can be used to study the phenomena associated with steady
state drift turbulence such as anomaloug particle and energy diffusion. Its
extension to a fully 3-dimensional code similar to those in Ref. 7 should be
straightforward. The procedures given in Sec. III also serve as a gulde for
.the development of comparable schemes for simulating electrostatic
and low-B plasmas 1in the toroidal geometry. The assumption, that the
distribution function is Maxwellian in vl leading to Egqs. (30) and (33), can
probably be removed by performing the, second gyrophase—-averaging
numerically. Such a scheme has yet to be devised. Better still, 1f one could
obtain an efficient particle simulation scheme based on Egs. (11) or (12)
alone without the prior gyrophase—aQeraging processes, arbitrary values

of kipi could then be preserved In the nonlinear dynamics.
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Flgure Captions

Fig. 1. Time evaluation of em/Té for the m = 1 mode and the corresponding

frequency spectrum (measured at the middle of the system in x) using the

gyrokinetic code.

Fig. 2. Time evolution of eﬁ/Té for m = 1 mode and the corresponding

frequency spectrum (measured at the middle of the system 1in x) using
previous code.
Fig. 3. Time evolution of eéfTé for the m = 1 mode at x/A = 25 and

corresponding mode structure for w/w* = 0.7 using the gyrokinetic code.

Fig. 4. Time evolution of eﬁ/Té for m = 1 mode at x/A = 25 and

corresponding mode structure for w/w* = 0.7 using the previous code.
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