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Abstract

Neoclassical, transport in high § large aspect ratio tokamaks is calculated. The
variational method introduced by Rosenbluth, et al., [Phys. Fluids, 15, 116(1972)] is
used to calculate the full Onsager matrix in the banana regime. These results are part
of a continuing study of the high 3 large aspect ratio equilibria introduced in Cowley, et
al., [Phys. Fluids B, 3, 2069(1991)]. All the neoclassical coefficients are reduced from
their nominal low 4 values by a factor (¢/¢28)7. This factor is the ratio of plasma volume
in the boundary layer to the volume in the core. The fraction of trapped particles on a
given flux surface (f;) is also reduced by this factor so that (f;) ~ €/2 (e/qzﬂ)%. Special
attention is given to the current equation, since this is thought to be relevant at low 3
and therefore may also be relevant at high 5. The bootstrap current term is found to
exceed the actual current by a factor of the square root of the aspect ratio.




I. Introduction

This paper is the third in a series of papers investigating high § tokamaks. We are,
of course, concerned with the attractiveness of high § tokamaks as fusion devices. In the
first paper,! which is refered to here as C K3, we constructed the equilibrium of high 8
large aspect ratio tokamaks. In the second paper,? local MHD stability at high 8, i.e.,
stability to interchange and ballooning modes was demonstrated. In the present paper,
the particle orbits and the collisional transport, the so-called neoclassical transport, of
a high 8 tokamak are calculated. One would be extremely gratified but surprised if
high (8 tokamaks are governed by neoclassical crossfield transport of particles and heat.
Surprised, because low 8 tokamaks have anomalously large crossfield transport which is
thought to be caused by turbulence. On the other hand experiments indicate that the
neoclassical parallel current equation, involving bootstrap current and ohmic electric field
current drive, is describing correctly the current evolution at low 8. There is, therefore,
some hope that at high # the neoclassical parallel current equation is relevant. The
orbit quantities derived in this paper are useful for future studies of the kinetic stability
properties.

As we shall show, neoclassical transport coefficients at high 3 are reduced from those
at low (. This reduction is due (in the banana regime) to the reduction in the fraction of
trapped particles on a flux surface, (f;). Both the neoclassical transport coefficients and
(f:) are reduced by the factor (¢/ q’ﬂ)% which is small at high 8. This reduction is easily
understood from the equilibrium properties. The equilibrium consists of a core region
and a boundary layer (see Fig. 2). In the core region the flux surfaces are straight and
functions of the major radius alone. Thus, |B| is constant on the flux surface in the core.
The boundary layer follows the boundary and |B| varies over a flux surface by a factor ¢
(where € = a/ Ry is the inverse aspect ratio, see Fig. 1). The fraction of volume occupied
by the boundary layer is (¢/q> ﬂ)%. There are no trapped particles in the core and trapped
particles are a fraction €!/2 of the particles in the boundary layer. Thus, the fraction of
the particles on a given surface that are trapped, (f;), is given by (f,) ~ €i(e/q*8)3.
Passing particles spend a fraction (e/ q’ﬂ)% of their time in the boundary layer. Since

they do not drift relaxtive to the flux surface in the core their transport is also weighted
by the factor (e/¢8)z. '

Since the bootstrap current exceeds the actual current by a factor ¢~1/2, the electric
field primarily balances the bootstrap current. Accordingly the electric field is the op-
posite direction to the parallel current. At the magnetic axis, the bootstrap current is
zero and the electric field balances the actual current. The resistive evolution is therefore
towards a hollow q profile, with q rising on axis and falling off axis. The solution of the
flux diffusion equation is not attempted here.

In Sec. II we review the equilibrium calculation which is given in detail in CK3. Alsoin
this section, we calculate |B| since it is important for neoclassical theory. Orbit properties




are discussed in Sec. III along with a heuristic derivation of banana transport at high 3.
In Sec. IV, we state the results of the formal neoclassical theory. The derivation follows
the low 8 large aspect ratio calculation given in Hinton and Hazeltine'’s review article®-
we, therefore, omit the derivation. The only detail of the derivation needing clarification
is the calculation of the pitch angle and flux surface integrals - these details are given in
the Appendix.

II. Summary of the Equilibrium

In this section we summarize the relevant features of the equilibrium solution given
in CK3. We shall not give the details of the derivation here. The magnetic field is given
by the usual form,

1 F
= EV‘(& X ey + -ﬁe¢, (1)

where e, is a unit vector in the toroidal direction and R is the distance from the symmetry
axis, see Fig. 1. The safety factor, g(¢), is given by

qw)= £ )

T 2r f{ R|Vy |
where dl, is a poloidal line element. The integration is performed along poloidal projec-
tions of surfaces of constant %. The equilibrium is taken to be bounded by a conducting
wall of arbitrary shape but large aspect ratio, i.e., R > a. The geometry is given in
Fig.1. Note that noncircular boundaries are considered in Sec. VI of CK? as a simple
generalization of the circular case. We shall use the same normalizations as C K. These
normalizations are chosen to reflect the ordering # ~ O(1) and ¢ ~ O(1), where or-
der refers to order in the inverse aspect ratio expansion. Thus we choose the following
notation:

Z=1z/a, R= Ro(1 + €z), € = a/ Ry, “Z = Y [tmaz, d—lp = dlp/ay

where ¥az is thé value of ¢_a.t the magnetic a._xis_ and we choose 3 = 0 at the boundary.
The scaled flux functions p(%), pressure, and F(3) are defined by

a? poat
F, p . 3
Robma’” Pz ? 3

Henceforth, all equations in this paper will be expressed in scaled variables except where
explicitly stated. We will omit the bars for convenience. In the asymptotic limit ¢ — 0,
with p, g ~ O(1), the solution of the Grad-Shafranov equation for ¥(z, z) splits into two
regions. These are the Core Region where ¥ = 9(z) (i.e., ¥ is independent of z), and the
Boundary Layer Region (with width of order ¢!/?) adjacent to the conducting wall where
V4 is O(e*/?) and normal to the wall. Typ1ca.1 flux surfaces (for dp/dy > 0) are shown
in Fig. 2.
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When p’ > 0 the core solution, z/)(a:) is given implicitly by®

Yo 1/)0) z
27 dpo = | 2)dz, 4
/ r—————~2(0 T ) (4)

where £(z) is the vertical height of the vacuum vessel at z, see Fig. 1. The constant C is
given, again implicitly, by

/ 9(do) B 1o = Ao, (5)

V —p( 1/)0

where Ag is the area of the poloidal cross section of the vacuum vessel. We will assume
that B is small enough that a solution to Eq. (5) exists.! When a solution to Eq. (5) does
not exist we have a new kind of solution that we termed “hole” solutions. These solutions
are described in CK®. The core solution puts the magnetic axis at = ~ 1 — O(€!/?)
for p > 0. When p’ < 0 the Shafranov shift is negative and the magnetic axis is at
z ~ =14 0(/?)2

The boundary layer solution yields!

Sy -2 [ 'ff,,(,) ' (X() - )2 2 (6)

where s is the perpendicular distance from the conducting wall. The function Xo(%') in
Eq. (6) is the z position of the 1’ surface in the core and %cr.(z) is the core solution
[i.e., a solution of Eq. (4)]. The boundary layer solution matches the core solution when
s(p'/€)/?* > 1. The equilibrium solution is valid when ¢ < 1 and when the boundary
layer is narrow compared to the minor radius; that is when 8> ¢/¢®. One can integrate
Eq. (6) to obtain s = s(¢, z).! This is not, however, necessary for the following analysis:
from Eqs. (6) and (3) we find the poloidal field, By, in the boundary layer to be of order
+/€p. The ratio of poloidal field strength in the boundary layer to poloidal field strength

in the core is roughly (¢/q28)%.

The magnetic field strength is important for our transport calculations. A simple
calculation yields,

F*(0 F*(0 <
= g — 2w = s o [ dp(a) (D)
where p(z) = (z/)co,.,(a:)) is the pressure profile in the core (in unnormalized units) and

F(0)= RoV¥mazV2C C /a? is the toroidal flux function at the wall. There are two important
features of B2. First, B? is a constant on the flux surface in the core. Second, the
variation of B? on a surface is O(€) but the variation across the surfaces is O(8). Thus
surfaces of constant B? are closed for 8 >> ¢ and they almost coincide with flux surfaces.
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III. Guiding Center Motion and Heuristic Estimates of Neoclassical ri‘ransport

In this section, we consider guiding center motion in high 3 large aspect ratio equi-
librium. We shall not consider strongly rotating tokamaks - therefore, the equilibrium
electric fields are weak. The guiding center motion in the poloidal plane can be de-
duced from three approximately conserved quantities, E = (1/2)mv? the kinetic energy,
u = (1/2)mv? / B the magnetic moment and, ps = (e/c)y —muyyR the gyrophase averaged
toroidal canonical angular momentum. The notation v, ,v) means respectively the veloc-
ity perpendicular to the magnetic field and the velocity parallel to the magnetic field. We
drop species labels in this heuristic discussion because electrons and ions behave similarly.

Clearly,
/2
v = ;(E - ,uB) (8)

Substituting this value of v into the equation py = constant yields an equation describing
the projection of the guiding center motion on the poloidal plane. These trajectories are
parameterized by the values of the three constants, fs, # and E. In tokamaks of interest
6, = emyR/(e) < 1. In this limit the particles stay close to a given flux surface. The
variation of B = |B| on a surface is a factor of order ¢ [see Eq. (7)]. Note that B does not
vary on the straight surfaces in the core region. On a given surface B takes its maximum
value in the core region. Trapped particle turning points are located at E = uB(1, z;);
clearly since B is constant on the surface in the core region there are no turning points
and no trapped particles in the core region. Let us define B, = B(¢, X(¢)), i.e., B. is
the value of B in the core region, and let B = B/B.. It is convenient to define A so that
AB = uB/E; clearly) is conserved in the guiding center motion. Thus,

%:a( 2(1—AB)), (9)

where o takes the values plus or minus one.

Our definition of ) is slightly different from the conventional definition.? At a specific
position on a flux surface, A takes the values 1 < A < l/B for trapped particles and
0 < A < 1 for passing particles. Thus a typical trapped particle has vy /v ~ O(€'/?), like
the low 3 case. The fraction of trapped particles at a specific point on the flux surface,
f, is (to lowest order in 6,) f; = (1 — B)!/2 ~ O(e!/?). We have assumed (correctly) that
the distribution function is isotropic (i.e., independent of A) to lowest order in §,. Note
that in the core B = 1 and as we have previously stated f; = 0. Let us find the fraction
of trapped particles, (f;) in the volume between the surfaces ¥ and ¢ + dyp. We shall
further assume (again correctly) that to lowest order in §, the distribution function is
independent of the position on the flux surface. Thus,

() = %(I—B)%':O(e% ({E)l) (10)
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Since there are no trapped particles in the core, the total fraction of trapped particles
on a flux surface is reduced from the low 8 result (O(e%)) by the fraction of the volume,

approximately (e/q’ﬂ)%, that is in the boundary layer. Another way of understanding
this result is to consider the field line starting at the outermost (largest X) point on
the flux surface and going once around the torus in the poloidal direction back to the
outermost point. In Fig. (3), we plot Ev"- versus £ the distance along the field line for
various A. The poloidal field in the boundary layer is large and the distance along the
field line from the outermost point to the core, {p, is short, typically {g~7a/\/ef. The
distance along the field line through the core region is 2r Rq. Thus, a fraction (¢/¢23)?
of the field line length 1s in the boundary layer. In the boundary layer, the trapped
particles are a fraction € of the particles a.nd in the core there are no trapped particles.
Thus, the trapped particles are a fraction et (¢/q*B )2 of the total number of particles on a
given field line. It is also clear that a passing particle spends roughly a fraction (e/ qzﬂ)
of its time in the boundary layer. We have belabored the preceding point because it is
the reduction of the trapped particle fraction (and the time a passing particle spends in
the boundary layer) that gives rise to the high 3 neocla.ssmal transport coefficients being
reduced from their (nominal) low 3 values.

Let us now consider the banana widths of trapped particles. The banana width is
defined at the outermost point on the flux surface. Let Ay be the change in ¢ across the
banana width. From p4 conservation we obtain

2cmv||m,,R

Ay = = mez, | | (11)

where v|jmqz is the v at the outermost point on the flux surface. Note that the number
of flux surfaces in a banana width is independent of the spacing of the flux surfaces. The
actual banana width, Apg, is

v
An = [|maz ~O (ﬁ_) , 12
B Veh pP ﬁ ( )

where p, is the poloidal larmor radius at the outermost point and p; is the toroidal larmor
radius. The estimate in Eq. (12) is obtained by taking vjjmaz ~ ¢*/?v and B, ~ /€p- The
banana width, Ap, is reduced from its low 8 value because of the increased poloidal field
in the boundary layer. Note (again) that the number of banana widths in the boundary
layer width is independent of the pressure. It is convenient to label flux surfaces by their
x position in the core X (). The poloidal field in the core is Bp, (¢) = Ld—"' and the
core poloidal larmor radius is p,, = 3’-;"%’- Thus, the banana width in X, AX B, 1s

AXp = ABPe | o (e%&i) . (13)

Ve @ a

Let us now consider time scales for the particle motion. First we consider the bounce




frequency, wp, of a trapped pa.rticle

wlB o f B ~O (\}3 tfh) (1)

where we have given the typical size of wg. Sirnila.rly, the transit frequency, wr, of a
passing particle is
S ey

~ O (quR) oy ~ Vi

Vth

~ O (M) v~ E"Ugh. (15)

Uth€2

The first estimate of wr is for for deeply passing particles and the second for barely passing
particles. We note that for ¢*8 ~ O(1),wp ~ O (wr) for deeply passing particles. We
may distinguish four collisionality regimes. First the collisionless “banana” regime:

v 62 Uth
Veff = << SrqR’ (16)
where v is the collision rate and v.;s is the effective collision rate for pitch angle scat-
tering of a particle from the trapped to the passing regions of velocity space. We shall
concentrate on this regime because it is appropriate for hot reactor like plasmas. The
second regime, an intermediate collisionality regime where the barely passing particles
are collisional is defined by,

1

Vth v €2Vth
> - .
2rqR 7 € > 2rqR

(17)

In this regime, both the banana particles and the deeply passing particles are colli-
sionless, and barely passing particles are collisional. This regime is peculiar to high
tokamaks. The third regime is the plateau regime where,

Uth th
gk~ " 2rqR’ (18)
In this regime the trapped and barely passing particles are collisional and the deeply
passing particles are collisionless. The third regime is the fully collisional regime, where
all particles are collisional and :

Uth
v> gl (19)
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Neoclassical transport (as distinguished from classical transport) arises from the guiding
center drifts off the 1 surfaces. Particles drift relative to the flux surface in the boundary
layer but not in the core. Hence, neoclassical transport essentially takes place in the
boundary layer. This does not mean that the core has no role; in fact, collisions on passing
particles in the core relax distortions of the (passing) distribution function (including the
resistive relaxation of the parallel current).

Let us estimate a typical banana regime perpendicular transport coefficient. To avoid
complications of momentum conservation we consider the thermal diffusivity x. This
diffusivity is expressed in X space. The transport is a random walk of trapped particles
with step length AXp and frequency v.ss (the effective collision rate). The thermal
diffusivity is weighted by the fraction of trapped particles on the flux surface. Thus,

) ‘2 € % 1 pgo
X ~ (FJvess (AX5)? ~ O (q—g) ). (20)

a2

The reduction of x from the low 3 result by a factor (¢/¢*8 )% is due to the reduction in the
trapped particle fraction. We note that the barely passing particle’s contribution to x is
similar to Eq. (20). For barely passing particles their contribution to the diffusivity must
be weighted by the fraction of time they spend in the boundary layer (approximately
(e/q2,5)1/ ? _ since only in the boundary layer do they drift off the 1 surface. Quantita-
tive calculations in the next section confirm the form of the estimate, Eq. (20), for the
thermal diffusivity. The bootstrap current is also reduced from its low 3 value by the
factor (e/q*B )1/ ? because it is driven by the deviations from the flux surface (in the usual
manner’®) in the boundary layer and damped by friction in the core. In all collisionality

regimes, the neoclassical coefficients will be reduced by the factor (e/qzﬁ)%, the ratio
of the boundary layer volume to the core volume. We note that the classical transport

coefficients are enhanced by a factor (¢23/ e)%, but they are still negligible compared to
the neoclassical coefficients in the banana regime.

We shall give the banana regime neoclassical coefficients in the next section. The
other regimes of collisionality are not hard to calculate but they are not thought to be
relevant.

IV. Formal Neoclassical Theory of the Banana Regime

The general formalism of neoclassical theory is well developed and we shall not try to
describe it here. We shall follow the notation of Hinton and Hazeltine’s review article.3
The approach we adopt was first used by Rosenbluth, Hazeltine and Hinton* to obtain
the transport coefficients (the Onsager Matrix) in a large-aspect ratio low S tokamak.
When the variation of |B| over a surface is small, the fraction of trapped particles (at any
point) is small and well localized in pitch angle. In this case, pitch angle scattering of
trapped and barely passing particles dominates the collisions. Rosenbluth, et al., used a

R



variational principle for the transport coefficients in the banana regime. This variational
principle is directly applicable to the high 3 case; the only difference is the evaluation
of the flux surface average of the pitch angle integrals. Glasser and Thompson® have
stressed the validity of the Rosenbluth, Hazeltine and Hinton variational principle in
shaped tokamaks with a small trapped particle fraction. As in the previous section, we
use the flux surface position X(%) in the core to label the surfaces and we normalize |B|
to its core value, i.e., B = B/B.. Let us define the electron collision time, 7., the ion
collision time 7; and the parallel conductivity, oy, as:®

dl

The coulomb logarithm, ¢nA,

~
~~

L 3
mg Te2

1 [nc Z;e“lnA}

e

is typically 17-20. We shall also use the notation

&t
_i54

sk
BP

(4)

The electron particle lux through the X surface, T, is,

2
_ g Melher(Ldpe T dp 12 dT: .
Fe= -l Tea [(pe dX ' ZT.p;dX  Z.T.dX (035 +0.18/ Z‘,)
1 dTe n.c (E”B)
T T (0:5+02/Z )| = In 5. W(OJS +0.49/2;),
where pep, = 3‘:32%. I, is
A\ &
A\ b 2(1-B)*
Iy = ((1-B)’ e Gl

(fe)

1 € b _1
0(62 (;2-5) Ine 2)

(see Appendix A for the reduction from Ij; given in Hinton and Hazeltine) where (f;) =
A\ 1
((1 - B) *) is the fraction of trapped particles on the surface [see Eq. (10)]. The electron
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heat ﬂtix, Qe 1S

g _ n,pfpo_ 1 dp. T; dp, 1.2 dT; 0.2/Z:
5=~ (pedX *Tpax ~ zmax) 2T 0%
1 dT. n.c (E"B)
: 25
TdX +IlB B )(09/) (25)
The ion heat flux, ¢;, is
_q_ —_ niptpo __1__‘_1_1_18
7 =033 [ T aX (26)
where pip, = 22‘.1;*};"—},'5 Finally (perhaps the only relevant equation) the “flux of flux”
equation, 1.e., the current equation, is
. n.T.c;, 1 dp. T; dp; 1.2 dT. 0.9dT.
(NiB) = —Inp [p,dX t I TmdX 7T dX T x|
(EyB)
+[1—-(0.75+4+0.27/Z;) I . 27
[1-( /Zi) Iu] o) (B?) (27)
This equation determines (E”B) since, from Ampere’s law,
» cF(X) d [ ]
(NiB) = adrl(X)dX f{ it B (28)

The first term on the right hand side of Eq. (27) is the bootstrap current. It is common
to replace (EB) using

%\ _ Be(X)c(EyB) _ A
(6t)¢_ FX) (B ~ cRo(E)y B). (29)

As we have predicted all the neoclassical coefficients in Eqgs. (23), (25), (26) and (27)
are reduced by the factor (e/ qzﬂ)%. The neoclassical correction to the conductivity is
negligible.

Let us estimate the size of the bootstrap current, Ji,, and the actual current, Jj.
From the equilibrium equations, Egs. (4), (6), and (28) we find Jj; ~ ¢,/ép/a and from
Egs. (25) and (27) we find J,, ~ ¢,/p/a. Thus,

Ji

Tb: ~ 62 (30)

The electric field must, therefore, balance the bootstrap current term, not the current
itself. In this case, the sign of the electric field is opposite to the current. Recall that at
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low B the electric field is in the direction of the current. Thus, we have “Ohmic Cooling”
in high 8 plasmas - i.e., the plasma gives energy to the transformer. The magnitude
of the ohmic cooling is small, in fact it is a factor ¢(e/ ¢*B)? smaller than the electron
neoclassical thermal conduction (which is itself usually dwarfed by anomalous transport).
At the magnetic axis the bootstrap current is zero (since the pressure gradient vanishes
on axis) and the actual current balances the electric field. Thus, on axis the poloidal
flux is dropping and off axis it is rising. The q profile therefore evolves towards a hollow
profile. The evolution of the current is complicated - it involves a boundary layer near
the magnetic axis where Jj ~ Jj, and the equation is part of a messy integrodifferential
system. Let us therefore leave its solution for further study! We note that the claim in
CK 3 that the loop voltage scales as T~% was incorrect and in fact it scales as 7! - an
unfortunate proof reading error made in haste.

V. Conclusion

In this paper, we have considered neoclassical transport in high § large aspect ratio
tokamaks. The |B| surfaces are closed and they coincide with the flux surfaces in the core.
In the boundary layer |B| varies by a factor ¢ (the inverse aspect ratio) on a flux surface.
Equilibrium properties are summarized in Sec. II. Trapped particles are confined to the
boundary layer and they are a fraction ¢? of the particles in the boundary layer. However,
the boundary layer is only a fraction (e/ qzﬂ)% of the total volume. Thus, the fraction
of all particles that are trapped, (f:), is roughly e%(e/ qzﬂ)%. Guiding center motion and
the fraction of trapped particles are discussed in Sec. III. Formal neoclassical theory (in
Sec. IV) shows that all neoclassical coeficients are reduced from their low 3 values by
the factor (¢/q?8)%. The transport coefficients are given in Egs. (23), (25), (26) and (27).
The evolution of the poloidal flux, Eq. (27), is dominated by the bootstrap current. The
bootstrap current is a factor i bigger than the actual parallel currrent (except at the
magnetic axis). Sustaining a steady state high 8 tokamak may be problematic because
current must be driven on axis and suppressed off axis. This issue is beyond the scope
of this paper and it is probably not amenable to analytical analysis.

Further studies of high § large aspect ratio equilibria are in progress. Many issues
remain to be investigated and it is difficult to predict which issues are the most critical.
Clearly, kink mode stability is an issue since the current gradient in the boundary layer
is large. High § will only be attractive if anomalous transport improves at high 5.
Unfortunately, we don’t really understand transport at low 8. Thus, predicting transport
at high B is at best speculative. However, the favorable properties that ensure the
ballooning stability (large local shear and short connection length in the bad curvature
region) may also be beneficial for transport. These issues are being pursued.

Acknowledgments. I wish to thank Russell Kulsrud and Ernie Valeo for useful discus-
sions. This work was supported by the United States Department of Energy Contract
No. DE-AC02-76-CHO-3073.
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Appendix: Evaluation of the Flux Surface and Pitch Angle Integrals

The variational treatment of banana regime transport in a large aspect ratio toka-
mak, first introduced by Rosenbluth, Hazeltine and Hinton,* is easily generalized to all
axisymmetric equilibria with a small fraction of trapped particles at every point on the
surface.® We follow the notation of Hinton and Hazeltine® (Sec. VI.B). The transport
coeflicients are given in terms of the following integrals:

/B dAA 1 1 1
CRIVAS e TR e e e v G
/B dANB? 1 B? (B?)
VA e R e ) VA
and
YB  dMB* (B*)
o= (] Toageth 4 [(1—AB>1/2 <<1—Aé>1/2>]>‘ (3

The angle brackets are defined in Eq. (22). In labeling orders we shall treat ¢/(¢%3) ~
O(e). Let us consider first I;;. We may rewrite I;; as

(&L _ ! dAAf(A)
Iy = <3(B2 1)> +/0 L= 7+ NI = 7 (34)
where '
F) = (1 = ABY/2 = (1= A1), (35)

Note that B = 1 except in the boundary layer where B,/ By, ~ O(¢). Thus, (B~2—1) ~

O(€3/?). We shall ignore O(€*/2) terms since our final answer is O(¢). When (1 =) ~ O(e),
then f(A) ~ O(e) and when (1— ) > O(¢), then f(A) ~ O(e%/?). Therefore, (1~ )2 >
f(A) ezeept where (1 — A) ~ O(€?). If (1 — A) ~ O(€?), then f(A) = f(1) + 0(63/2). And
we note from Egs. (10) and (35) that f(1) = (f;). thus in the integral in the second term
on the right hand side of Eq. (34) we may set [(1 ~ )2 + f(A)] ~ [(1 = N2 + (f)].

Thus,
dA) (1-1B)/? R
</ [(1 =X + (fi)] ( T 1)> +OEM). (36)
The ) integral can be done asymptotically to O(¢). We obtain, ,
I = <(1 - B)/2 [ln (&—(}t—?tﬁ) - 1]> + O(/3). (37)

It is trivial to show that Ij3 ~ I;; + O(¢¥/?) and that Is3 ~ I; + O(€%/?). The logarithmic
enhancement comes from the collisions on the barely passing particles.
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Figures

FIG. 1. Geometry of the equilibriﬁm for an unusual boundary shape.

FIG. 2. Equilibrium flux surface illustrating the core region and the boundary layer
region.

FIG. 3. The parallel velocity divided by the total velocity, v/v, as a function of the
length along the field line, . The contours are different values of A.
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