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Abstract

The control matrix approach to stellarator design yields a description of the
combinations of ‘control knobs’Zj which can be adjusted to provide independent
control of physics figures of meritPi (e.g., ripple levels or kink growth rates), as
well as those combinations which affect none of thesePi. This can be used both in
finding superior design points, as well as in using a configuration’s control knobs
to have good operational flexibility about those design points. We have set up the
machinery needed to perform this analysis, and here present initial results of its
application to some candidate Quasi-Axisymmetric (QA) configurations. In the
process of the analysis, a first exploration of the topography of the configuration
spaceZ in the vicinity of these candidate systems has been performed, whose
character is discussed.
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1. Introduction

In developing candidate configurations for an attractive QA stellarator (QAS)[1],
the NCSX group has relied heavily on an automated optimizer, which conducts a
search in a parameter spaceZ = {Zj}(j = 1, ..Nz) describing the stellarator
boundary, using an objective functionF (P ) which is a function of figures of merit
P = {Pi(Z)}(i = 1, ..Mp) characterizing the physics properties (e.g., transport,
kink stability, etc.) of the configuration. While a powerful tool, the optimizer is
searching a space whose topography has been essentially unknown, and we have
rather limited understanding of why the optimizer arrives at the design pointsZ0

it does. Deeper insight into this would enhance the our ability to locate attractive
design points,e.g., by reducing the dimensionality of theZ-space, or by recogniz-
ing systematic ways in which the topography can lead the optimizer to local but
inferior optima ofF .

The control matrix project discussed here is intended to provide this insight,
through increased understanding of the topography, and through applying mathe-
matical techniques such as SVD methods to gain a clear grasp of how thePi(x)
can be changed to achieve superior base configurations and operational flexibility.

2. Formulation

As required by the VMEC code we employ to compute our equilibria, for the
studies discussed here we specify a single stellarator configurationZ by the set
Z = (Rmn1 , Zmn1, Rmn2 , ...ZmnN/2

) of Fourier amplitudes which describe the
plasma boundary[R(θ, ζ), Z(θ, ζ)]. For C10, the first base configuration of our
study, one hasN ≡ Nz = 2 × 39 = 78 amplitudes. Using the same codes as
employed by the optimizer, we computeM ≡ Mp = 5 figures of meritP =
(χ2

1, χ
2
2, W1, W2, λ), whereP1−4 are 4 measures of the ripple strength, and hence

the level of nonaxisymmetric transport one may expect, andP5 ≡ λ = ω2 is
the kink eigenvalue from TERPSICHORE, negative for unstable modes. More
specifically,χ2

1,2 ≡ χ2(s1,2), with χ2(s) ≡ ∑
m,n6=0 B

2
mn/B

2
00, W1,2 ≡ W (s1,2)

is the ‘water function’[2] measuring the average ripple–well depth, ands1,2 =
1/2, 1/

√
2, with s ≡ ψ/ψa the toroidal flux, normalized to unity at the plasma

edge. Other figures of merit might be usefully added to this set, such as ballooning
growth rate, or surface quality, and the same formal machinery employed to study
any such set.

ExpandingP(Z = Z0 + z) = P(Z0) + p aboutZ = Z0, one has (writing in
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component-form, with summation over repeated indices assumed)

pi(Z0 + z) = Gij(Z0)zj +
1
2
Hijk(Z0)zjzk + (h.o.), (1)

with h.o.≡ higher–order terms. For small enoughz, one has the matrix equation

p = G0 · z, (2)

with G0 ≡ G(Z0) theM × N ‘control matrix’ at design pointZ0. This may be
inverted, using the SVD theorem[3]

GM×N = UM×N ·WN×N ·VT
N×N ,

with U,V unitary matrices, andW a diagonal matrix. This theorem permits one
to invert the nonsquare matrixG, and provides bases spanning the its range and
nullspace.

Taking the particular basis setπi=1,M in the targetP-space to be the set of unit
vectors with 1 in theith position and 0 elsewhere, one has the corresponding setξi

of displacements inZ-space
ξi ≡ G−1

0 · πi,

physically representing displacements which change a single physics parameterPi

by unity, leaving the others unchanged. These span the range ofG. The(N −M)
vectors spanning the nullspace ofG (change the configuration without modifying
any of thePi) are also important. Here, we shall focus mostly on theξi.

Figs. 1 show contour and surface plots ofξ1 andξ5 over in the(θ, ζ̃)-plane
from this SVD analysis. (Here,̃ζ ≡ Nfpζ.) For compactness, we show a plot
of the single functionξi(θ, ζ̃) ≡ ξi

R + ξi
Z , the sum of theR andZ components

of ξi ≡ R̂ξi
R + Ẑξi

Z . The contours of these separately are similar, but have even
and odd symmetry, respectively, about(θ, ζ̃) = (0, 0). Interestingly, though the
eigenvalueswi of matrix W show these are not nearly collinear, the contours of
the ξi for the other 3 transport figures of merit resemble those ofξ1, and these
are rather different from that for the kink (ξ5), which is somewhat more elongated
toroidally.

The effect of these on the unperturbed C10 boundary forζ̃ = 0 andπ is shown
in Fig. 2. One notes in particular thatξ5 for diminishing the kink produces an
indentation of the outboard side at the half–periodζ̃ = π, enhancing the (negative)
triangularity which that cross-section possesses. This is consistent with the earlier
empirical observation[1] that kink stability can be helped by providing such an
indentation.

3



3. Topography ofZ-space

The validity of Eqs. (1) or (2) depends on the typical scales of variation in
Z-space of thePi, which up to now have been essentially unknown. We have
assessed this variation for all 78Zj for thePi presently being used, in the vicinity
of the C10–C82 family of configurations.

Some typical results are shown in Fig. 3, showing the variation ofP1 = χ2
1 and

P5 = λwith deformation amplitude (in meters), for changeszj ≡ δZj of the given
Rmn (left) andZmn (right). Two harmonics(ñ ≡ n/Nfp, m) are shown. The top
pair is for (ñ, m) = (−3, 1), to whichP1 is sensitive, and the bottom pair is for
(ñ, m) = (1, 5), to which the kink is relatively sensitive. The size of the domain
shown (zj ∼ .02 m) is appreciable, large enough to encompass C82 as well as C10.

Probably because of the symmetrizing action of the optimizer in creating C10,
most directionsZj resemble the top pair: the fractional variationP/P0 of P1(Zj)
is much larger than that forP5 (reflecting the near-optimal value of the unperturbed
P10 in the denominator), andP1 is a parabolic curve, with vertex often nearzj = 0.
For allZj, the variation of bothPi is smooth and rather unstructured, approximable
by the quadratic expansion (1).

In Fig. 4 are shown histograms of the fractional sensitivity over the(ñ, m)–
plane (hence for allZj), for a fixed valuedZ of eachzj comparable to the maxi-
mum shown in the plots of Fig. 3. As for theξi discussed above, the dominant
(ñ, m) are similar fori = 1− 4, and different from those fori = 5.

Also because of the action of the optimizer, the linear approximation Eq.(2)
is valid only for very small displacementsz (fractions of a millimeter) for some
Zj, much smaller than the values (∼ 1 cm) used to computeG. Thus, the SVD
displacementsξi shown earlier are not quantitatively correct.

However, as noted, the quadratic form (1) appears agoodapproximation for
perturbationsz on the order of a few centimeters. The simpleZ-space topography
in the vicinity of C10 suggests that we can obtain a highly tractable model for study
in this sizeable region.E.g., from Eq.(1) one can compute the control matrix for
anyZ in this region, via

Gij(Z) ≡ ∂pi(Z)/∂zj = Gij(Z0) +Hijkzk, (3)

and from this, find the correctξi at anyZ, along with the extrema of thePi, etc..
Accordingly, we are in the process of computing bothGij andHijk around

the C10 design point. Since the number of required pointsZ to do this is large ('
2N 2

z ), reducing the dimensionality of theZ-space as much as possible is important,
an issue addressed further below.
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4. Other QAS Design Points

C10 was arrived at along an involved path of human interaction with the op-
timizer, and it is unclear that other regions ofZ-space, which would have been
reached from different starting points, might not yield superior configurations.
Thus, we are starting to study other proposed QAS configurations[4, 5] with the
same methods, and to consider the variation of thePi as one moves from one such
pointZ0 to another.

4.1. The path from C10 to C82

We begin by considering thePi along a straight-line trajectoryZ = ZC10 +
α(ZC82 − ZC10) connecting C10 with C82, asα runs from 0 to 1. These two
configurations are fairly close inZ-space. We may quantify this by introducing the
simple norm: |Z| ≡ (

∑
j Z

2
j )1/2. With this definition,|ZC82−ZC10| ' .041 m, in

comparison with the much larger ‘distance’ to PG1 (see below),|ZPG1 −ZC10| '
.228 m

C82 was obtained from C10 in an effort to stabilize the kink. The level of QA-
ness was slightly degraded in compensation. This is borne out by thePi’s along the
straight-line path inZ-space, shown in Fig. 5. While the kink growth rate falls off
to an acceptably low value (λC82/λC10 ' .05), P1 actually moves to a somewhat
lower value (better quasisymmetry) about midway along the trajectory, and then
rises at C82 to a value slightly larger than for C10.

4.2. The path from C10 to PG1

Configuration PG1 is characterized by[5] much better kink stability (λ > 0)
than C10 or C82, but substantially worse quasisymmetry, mainly due to a large
mirror fieldBm=0,ñ=1 present to assure ballooning stability. As indicated above,
its separation from C10 inZ-space is far greater than that of C82, and is generally
considered to be in a quite different region ofZ. Nevertheless, as one sees in
the early results in Figs. 6 and 7, even over this relatively large distance thePi

do not fluctuate wildly, but instead vary smoothly, and almost monotonically, in a
manner consistent with the qualitative description of the physics differences given
just above between the 2 stellarators.

Applying the same tools to PG1 as described above for C10, one finds sensitiv-
ity histograms for theξi which resemble those for C10. Again, those fori = 1− 4
are similar to each other (and to those for C10), and differ from that fori = 5. ξ5,
which reduces the kink growth rate, is found to enhance thepositivetriangularity
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which PG1 possesses in the half–periodζ̃ = π, consistent with tokamak-based in-
tuition on kink stabilization, an effect opposite that found for C10, which as noted
earlier has negative triangularity atζ̃ = π.

5. Reducing the dimensionality ofZ:

Currently, the dimensionalityNz of the search space andNz −Mp of its null
subspace are large ( 78 and 73, resp.). The smaller we can make these, the better,
for the both numerical requirements and for fostering understanding. We expect to
be able to reduceNz appreciably, by several means.

First, we expect to reduceNz by about a factor of 2 due to a redundancy in
the present representation. In the calculations presented so far, eachRmn and
Zmn harmonic is independently varied. However, these variations are not, in fact,
independent since the poloidal angle variable is not uniquely defined. In calculating
the Control and Hessian matrices [Eq.(1)] one should use theN ∗

z < Nz linear
combinations of theRmn, Zmn that define normaldisplacements to the plasma
boundary.

There are various ways of defining nonredundant normal perturbations to the
plasma boundary. One way is to use the ‘quasipolar’ representation of Hirshman
and Breslau[6] which is adopted by the VMEC optimization code. For the C10
configuration, this leads to a reduction in the number of independent variables
fromNz = 78 toN ∗

z = 32.
Such redundancy in the representation contributes extra nonphysical dimen-

sions to the null space. Additionally, we should be able to further reduceN ∗
z by

making use of our understanding of the topography ofZ-space. For example, the
sensitivity diagrams illustrated by Fig. 4, along with the knowledge that thePi(Z)
vary only slowly, may allow us to get adequate physics performance from using
only a subset of theZi presently kept.

6. Summary

We have now set up most of the machinery needed to do the control–matrix
analysis of NCSX, and have presented some initial findings here, mostly for the
C10–C82 family of stellarators our optimizer has led the NCSX group to. For
the 1st time, we are getting a picture of the topography of the configuration space
Z in which the optimizer has been searching for good stellarators. The control-
matrix method would be applicable and useful even in aZ-space which was highly
involuted, but instead it appears that the space is rather smooth and unstructured.
In an appreciable neighborhood of C10, it appears thePi may be modeled by a
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quadratic function ofz = Z − Z0, and vary with little structure even over a scale
comparable to the distance from C10 to PG1. We now plan to use this knowledge
to provide a quantitatively correct control matrixG(Z) andξi. That the quadratic
approximation (1) is valid should considerably facilitate our efforts to obtain an
understanding of where the optima lie, and why. We have also begun studying
other base configurations such as PG1, to be able to see which characteristics are
generic and which reflect important differences in stellarator concepts.

The 4 different transport figures of merit (i = 1 − 4) produce boundary dis-
placementsξi(θ, ζ) similar in appearance, and these differ from that for the kink
(i = 5). However, theG-matrix eigenvalueswi show thatξi=1,5 are linearly in-
dependent and not nearly collinear. Correspondingly, for both C10 and PG1, the
sensitivity histograms fori = 1−4 also resemble one another, and differ from that
for i = 5.

For C10,ξ5 provides the outboard indentation previously observed to stabilize
the kink, enhancing C10’s negative triangularity atNfpζ = π, while for PG1,
ξ5 enhances its positive triangularity, consistent with tokamak intuition on kink
stabilization.

The dimensionalityNz of the search space andNz −Mp of its null subspace
have been large. We expect to be able to considerably reduce these by removing the
redundancy which exists in the current(Rmn, Zmn) boundary representation, and
by making use of our enhanced understanding of the topographic features (scales
of variation and sensitivities) of thePi(Z). From this reduction we should be able
to express the physics characteristics of these stellarators in terms of a relatively
modest set of parameters, which should aid in both our understanding, and in fo-
cussing the optimizer.

Finally, the work reported here takes as its free ‘control knobs’Zj displace-
ments of the plasma boundary. However, exactly the same method may be used
to study how a given set of coil currents (with perturbationsδI) could produce a
range of physics behaviorp for experimental flexibility. One still has relation (2)
between the boundary shape and the physics parameters, and using free-boundary
equilibrium runs, one may additionally relate theδI to z:

z = C · δI.

Combining these, one has
p = G2 · δI,

with G2 ≡ G ·C, of the same form as Eq.(2), and so amenable to the same SVD-
based analysis.
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Figures

Fig. 1. Contour and surface plots ofξ1 andξ5 for C10, showing the character of
the perturbation which changes ripple parameterP1 = χ2

1 without modifying
kink stability (i = 1) and that which changes the kink growth rateP5 = λ

without modifying the ripple (i = 5).

Fig. 2. Poloidal cross–sections of unperturbed (solid curve) and perturbed bound-
aries of C10, at̃ζ = 0 (top) andπ (bottom).

Fig. 3. Variation ofP1 = χ2
1 andP5 = λ with deformation amplitude (in meters),

for changes of the givenRmn (left) andZmn (right), and for(ñ, m) = (−3, 1)
(top) and (1,5) (bottom).

Fig. 4. Histograms of the fractional variationPi/Pi0 over the full(ñ, m)–plane for
C10, for variationsdRmn = .025 m (left), anddZmn = .04 m (right), and for
P1 (top) andP5 (bottom).

Fig. 5. Plot of the fractional variationPi/Pi0 for i = 1 − 5 along a straight-line
path inZ-space from C10 (α = 0) to C82 (α = 1). These have aZ-space
distance between them of.041 m.

Fig. 6. Plot of the fractional variationPi/Pi0 for i = 1 − 5 along a straight-line
path inZ-space from C10 (α = 0) to PG1 (α = 1). These have aZ-space
distance between them of.228 m.

Fig. 7. Blowup of Fig. 6, to show more clearly the variation inP5.
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