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Abstract

A three-field model to study drift-resistive, low-frequency waves in low-β,

non-axisymmetric plasmas [J.L.V. Lewandowski, Phys. Plasmas, 4(11) 4023

(1997)] is used to analyze the effect of the inhomogeneities in the stellarator

magnetic field on the fastest (linear) growth rate, γ. Extensive numerical

calculations for a toroidal heliac show that not all Fourier components in the

representation of the equilibrium configuration are important as far as γ is

concerned.
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The presence of slow, short-scale instabilities, often called microinstabilities, in

magnetically-confined plasmas is a major concern because of the large (‘anomalous’) perpen-

dicular (cross-field) transport. Substantial efforts have been made to understand microin-

stability dynamics and the associated transport in tokamak geometry (See, for example, Ref

[1]). However very little work has been done on microinstabilities in stellarator geometry.

In the dense, cold edge plasmas of tokamaks and stellarators, one can use a fluid model2

to study drift waves in the electrostatic regime. For sake of simplicity, we assume that the

ions are cold and consider the three-field model described in a previous paper3. Stellara-

tor equilibria have, in general, complicated structure. For example, a typical equilibrium

of the three-field-period heliac H1-NF4 requires the specification of more than 800 Fourier

components for each equilibrium quantity, and for each magnetic surface. Therefore most

full-geometry drift wave numerical calculations become prohibitive. In this paper, we study

the effect of the magnetic field inhomogeneities (or higher-order equilibrium Fourier compo-

nents) on the fastest linear growth rate of fluid, electrostatic drift waves. It is shown that

not all Fourier components in the representation of the equilibrium configuration are equally

important. Although the study has been carried out for one field line, numerical simulations

reported here suggest that reduced stellarator equilibria for large-scale (e.g. different field

lines and different magnetic surfaces) numerical calculations can be used in specific drift

wave problems.

We consider low-frequency, drift-type modes (ω/ωci � 1 , k⊥ρi � 1) in low-β, non-

axisymmetric plasmas. The magnetic field is written as B = ∇α×∇ψ, where α ≡ ζ − qθ
is the field line label, and 2πψ is the enclosed poloidal flux. For simplicity ions are cold

and the parallel velocity of the ions is neglected
(
vph = ω/k|| � vthi

)
. The model equations

describe the time evolution of the normalized fluctuating potential, density, and electron

temperature (Φ̃ ≡ eΦ/Te0, ñ ≡ δn/n0 and T̃e ≡ δTe/Te0, respectively). Each fluctuating
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field F̃ ≡ δF/F0 � 1 is written in the eikonal representation as F̃ = F̂
(
ζ, t

)
exp (iNtα),

where Nt � 1 is the toroidal truncation number, F̂ is a slowly-varying amplitude and ζ

is the extended toroidal angle (which labels the position along the field line). Neglecting

corrections of order O
[
(δF/F0)

2
]

and higher, the model equations read3

∂n̂

∂t
= i (S⊥ − S?) Φ̂ ,

∂Φ̂

∂t
= L

[
iS⊥

(
n̂+ T̂e

)
− ξc

(
L2

n∇2
||F̂ − LnQ||∇||F̂

)]
, (1)

∂T̂e

∂t
= ξc

(
L2

n∇2
||Ĝ−Q||Ln∇||Ĝ

)
+ i Φ̂

(
2

3
S⊥ − ηeS?

)
+ i n̂

(
2

3
S? − 2

3
S⊥

)
+ i T̂e

(
2

3
S? − 7

3
S⊥

)
,

where t ← ω?et is the normalized time (ω?e is the electron diamagnetic drift frequency),

F̂ ≡ 2(1+µ1)T̂e+2ĥ where ĥ = n̂−Φ̂ is the non-adiabatic response of the electrons (µ1 = 0.71

is a thermoelectric coefficient), Ĝ ≡ 2
[
2 (1 + µ1)

2 + µ2

]
T̂e/3 + 4 (1 + µ1) ĥ/3, µ2 = 3.2 is a

thermoelectric coefficient in the electron parallel heat conductivity, Ln ≡ ā (dn0/ds/n0)
−1

is the radial density scalelength (a is the minor radius of the last closed magnetic surface),

ξc ≡ (ωce0τe) / (kθLn) � 1 is called the collisional parameter, ωce0 is the electron cyclotron

frequency evaluated at the magnetic axis, τe is the electron collision time and kθ ≡ Ntq/ā.

We have also defined S? ≡ ā
√
gssê⊥·

(
ê||×n̂

)
/B?, where gss is a metric element, n̂ ≡

∇s/ (∇s·∇s)1/2 is a unit vector normal to the magnetic surface and pointing outwards, ê||

is a unit vector along B, ê⊥ ≡ k⊥/kθ ≡ Nt∇α/kθ and B?

(
ζ
)
≡ B

(
ζ
)
/B0 = O(1) is the

magnetic field strength normalized to its value at the magnetic axis. As shown in Ref [3], S?

is constant along the magnetic field line. Geometrical effects are contained in the parallel

gradient operator, ∇|| = (B−1B·∇)α,s, the curvature drift term

S⊥
(
ζ
)
≡ 2

B?

(
ê||×ê⊥

)
·Q , (2)

where Q ≡ Ln∇B/B is related to the magnetic field inhomogeneity; and the polarization

drift term (∝ 1/k⊥·k⊥)

L(ζ) ≡ 1

b

[
B?(ζ)

ξ⊥(ζ)

]2

, (3)
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where ξ⊥ ≡ (ê⊥·ê⊥)1/2, b = (kθρs0)
2, ρs0 is ρs = cs/ωci evaluated at the magnetic axis.

Finally in equation (1), terms proportional to Q|| = B·Q/B arise because of the compress-

ibility of the unit vector ê||. Although Q|| can be neglected for a large-aspect-ratio tokamak

with circular magnetic surfaces, this quantity displays a rapid variation along the field line

in the stellarator case (see, e.g, Fig.4 in Ref [3]) and must be retained in the model equations

(1). Equations (1) have been solved as an initial-value problem along the field line using

a semi-implicit scheme; therefore, the fastest linear growth rate can be obtained without

ambiguity. To calculate the stable part of the spectrum, the standard normal mode analysis

is more convenient. For each fluctuating quantity F̃ , a dynamical growth rate can calculated

as γF (t) =
〈∣∣∣F̂ ∣∣∣〉−1

∂
〈∣∣∣F̂ ∣∣∣〉 /∂t where

∣∣∣F̂ ∣∣∣ =
(
F̂ F̂ ?

)1/2
and, for any G(ζ), 〈G〉 denotes an

average over the extended toroidal angle

〈G〉 ≡ 1

2ζm

∫ ζ0+ζm

ζ0−ζm

G (ζ ′) dζ ′ (4)

where ζ0 is a toroidal angle of reference and ζm is an adjustable parameter. As shown in

Ref [3], γn/γΦ 7→ 1 and γTe/γΦ 7→ 1 as t 7→ ∞. For t � 1, we denote the final growth rate

as γ. The geometrical terms must be calculated in curvilinear coordinates, which involves

metric elements of the form gµλ = ∇µ·∇λ, for (µ, λ) = {s, θ, ζ}. The equilibrium has been

computed for the three-field-period toroidal heliac H1-NF4 using the VMEC code5,6 with

fixed boundary conditions, zero net toroidal current and a volume-averaged β of 0.36% for

a set of 100 magnetic surfaces; the relevant equilibrium quantities are then mapped from

VMEC coordinates to Boozer coordinates. The position vector on a given magnetic surface,

s = const, can be written in cylindrical coordinates r = R cosφ x̂ +R sin φ ŷ + Z ẑ where

R =
Mmax∑
m=0

+Nmax∑
n=−Nmax

Rmn cos (µmn)

Z =
Mmax∑
m=0

+Nmax∑
n=−Nmax

Zmn sin (µmn) (5)

φ = ζ − 2π

Np

Mmax∑
m=0

+Nmax∑
n=−Nmax

φ̃mn sin (µmn)

where µmn ≡ mθ+Npnζ, Np = 3 is the number of field periods and Mmax = 13, Nmax = 27.
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Therefore, the calculation of the cylindrical radius R alone requires the calculation of Ntot

cosine terms, where Ntot = (Mmax+1)(2Nmax+1) = 812 is the number of equilibrium Fourier

components (for one magnetic surface). Numerical calculations can be become rapidly pro-

hibitive. Consider, for example, the contravariant basis vector ∇s, which can be written

as ∇s = J −1eθ×eζ, where eθ = ∂r/∂θ and eζ = ∂r/∂ζ are covariant basis vectors, and

J = [∇s· (∇θ×∇ζ)]
−1

= es· (eθ×eζ) is the Jacobian of the transformation. To calculate eθ

and eζ we use the expression for the position vector r in cylindrical coordinates; this yields

eµ = [cos φ (∂R/∂µ)− R sin φ (∂φ/∂µ)] x̂+[sin φ (∂R/∂µ) +R cosφ (∂φ/∂µ)] ŷ+∂Z/∂µẑ,

for µ = {s, θ, ζ}. Thus the numerical calculation of ∇s along the field line involves the

evaluation of 3 × 3 × Ntot ∼ 7 × 104 sine or cosine terms. To reduce the CPU time on

computing the geometrical terms in the model equations (1), one possible approach consists

in Fourier transforming the curvature term S⊥

S⊥
(
ζ
)

= S
[S]
⊥

(
ζ
)

+
∑
p

S⊥p cos
(
pζ

)
, (6)

where, as before, ζ is the extended toroidal angle, and S
[S]
⊥ is the secular part of S⊥. We

have assumed that the reference ζ = 0 corresponds to a symmetry point, so that for any

equilibrium quantity G, one has G
(
+ζ

)
= G

(
−ζ

)
. However the presence of a secular part

in S⊥ requires the storage of S
[S]
⊥ at each grid point.

Alternatively, we can truncate the Fourier series (5) with M ≤ Mmax and N ≤ Nmax.

As a consequence the linear growth rate will depend on how many Fourier components

are retained; so we write γ = γ(M,N), the ‘exact’ (full equilibrium) growth rate being

γ0 ≡ γ (Mmax, Nmax). As in Ref [3], we choose the field line passing at the outside of the

torus, with θ0 = ζ0 = 0. The magnetic surface is s0 = 0.9, where the global magnetic shear

is slightly negative. Other parameters are kθρs0 = 0.8, Te0 = 25 eV, Ln = 3.0 cm, ηe = 1.5,

n0 = 5 × 1012 cm−3. The (normalized) time step is ∆t = 10−3 (an explicit scheme would

require ∆t < 10−5). The growth rate calculated with the full equilibrium is γ0 = 1.323.

Figure 1 shows the linear growth γ as a function of the equilibrium poloidal truncation
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number M (with N = Nmax) for the cases ηe = 1.5 (squares) and ηe = 0 (diamonds). As

can be expected γ reaches γ0 as M 7→ Mmax. However, in the case ηe = 1.5, the convergence

is slow. Figure 2 shows γ as a function of the equilibrium toroidal truncation number N

(with M = Mmax) for the cases ηe = 1.5 (squares) and ηe = 0 (diamonds). Interestingly,

in both cases, the linear growth rate reaches its asymptotic value for small values of N .

For instance, the calculations with M = Mmax and N = 6 yield approximately the correct

growth rate γ0. In this case, the number of elements in each of the matrices RM×N , ZM×N

and φ̃M×N is Ntot = 182 which roughly corresponds to 1/5 of the full equilibrium. We note

that the small ηe case is far less sensitive than the large ηe case. The variation of γ(M,N)

in the M − N plane (for ηe = 1.5) is shown in Fig. 3. Clearly not all Fourier components

in specifying the equilibrium are equally important. Although the dependence of γ (M,N)

should be mode dependent, the geometrical terms, such as the curvature term S⊥
(
ζ
)

and

the polarization term L
(
ζ
)
, enter the model equations in a similar way, at least in the linear

formalism. For a particular fluid model and for a specific field line, it has been shown that

the fastest linear growth rate γ is rather insensitive to the equilibrium toroidal truncation

number N , but varies (slowly) with the equilibrium poloidal truncation number M . It is

possible to compare the magnitude of the Fourier coefficients of the curvature term, S⊥
(
ζ
)
,

and the polarization term, L
(
ζ
)
; however, this term-by-term comparison cannot be done

for the ∇|| and ∇2
|| operators. Consider, for instance, the parallel gradient operator

∇|| =
S||

(
ζ
)

R̄

∂

∂ζ
. (7)

For a tokamak with concentric, circular magnetic surfaces, we have ζ 7→ qθ, R̄ 7→ R0,

S||(θ) = 1, so that the usual expression ∇|| = (qR0)
−1 ∂/∂θ is recovered. In a stellarator, the

modulation S|| along the field line cannot be neglected. Therefore, this yields a ‘scrambling’

of equilibrium Fourier components in the parallel direction.

Although our model uses fluid equations, a reduced equilibrium can perhaps also be useful

for gyro-kinetic particle codes.
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Fig.1 Fastest linear growth rate γ as a function of the equilibrium Fourier poloidal trunca-

tion numberM for ηe = 1.5 (squares) and ηe = 0 (diamonds). The equilibrium Fourier

toroidal truncation number is N = Nmax = 27.

Fig.2 Fastest linear growth rate γ as a function of the equilibrium Fourier toroidal trunca-

tion number N for ηe = 1.5 (squares) and ηe = 0 (diamonds). The equilibrium Fourier

poloidal truncation number is M = Mmax = 13.

Fig.3 Fastest linear growth rate in the M −N plane for the case ηe = 1.5.
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FIG.1 Lewandowski
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FIG.2 Lewandowski
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FIG.3 Lewandowski
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