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ABSTRACT

The prevailing theory for the origin of cosmic magnetic fields is that they
have been amplified to their present values by the turbulent dynamo inductive
action in the protogalactic and galactic medium. Up to now, in calculation of
the turbulent dynamo, it has been customary to assume that there is no back
reaction of the magnetic field on the turbulence, as long as the magnetic energy
is less than the turbulent kinetic energy. This assumption leads to the kinematic
dynamo theory. However, the applicability of this theory to protogalaxies is
rather limited. The reason is that in protogalaxies the temperature is very high,
and the viscosity is dominated by magnetized ions. As the magnetic field strength
grows in time, the ion cyclotron time becomes shorter than the ion collision time,
and the plasma becomes strongly magnetized. As a result, the ion viscosity
becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets
in much earlier, at field strengths much lower than those which correspond to
field-turbulence energy equipartition, and the turbulent dynamo becomes what
we call the magnetized turbulent dynamo. In this paper we lay the theoretical
groundwork for the magnetized turbulent dynamo. In particular, we predict that
the magnetic energy growth rate in the magnetized dynamo theory is up to ten
time larger than that in the kinematic dynamo theory. We also briefly discuss
how the Braginskii viscosity can aid the development of the inverse cascade of
magnetic energy after the energy equipartition is reached.

Subject headings: galaxies: magnetic fields — MHD — turbulence — methods:
analytical
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1. Introduction

One of the most important and challenging questions in astrophysics is the origin of
strong and large-scale magnetic fields in galaxies and protogalaxies. It is now widely accepted
that the strong cosmic magnetic fields were produced by the turbulent dynamo inductive
action driven by the fluid motions in a galactic and/or protogalactic medium (Vainshtein
& Zel'dovich 1972; Zweibel & Heiles 1997; Kulsrud 2000). Yet full understanding of all
stages of this production has not been achieved. There are two alternative theories on how
and when the magnetic fields have been produced. The first theory, the galactic dynamo
theory, also known as the a—{) dynamo theory, states that the fields have been primarily
amplified in differentially rotating galactic disks after the galaxies had been formed (Parker
1971; Vainshtein & Ruzmaikin 1972; Beck et al. 1996). The galactic dynamo involves several
crucial unsolved problems (Rosner & Deluca 1989; Zweibel & Heiles 1997, Kulsrud 1999).
The main problem is that in the a—) theory it seems to be extremely difficult to expel
a fraction of the magnetic flux from a galactic disk in order to produce the net magnetic
flux (Rafikov & Kulsrud 2000). In addition, observations indicate the presence of microgauss
magnetic fields in galaxy clusters and in early galaxies at high redshifts (Perry 1994; Kronberg
1994). It is hard to explain such strong fields by the galactic dynamo theory (Zweibel & Heiles
1997). In this paper we accept the second theory for the origin of cosmic magnetic fields, the
primordial dynamo theory, which states that the galactic and extragalactic magnetic fields
have primarily been produced in protogalaxies, i. e. before the galaxies were formed (Pudritz
& Silk 1989; Kulsrud & Anderson 1992; Kulsrud et al. 1997; Kulsrud 2000). Of course,
these fields were subsequently modified in the rotating galactic disks after the galaxies were
formed.

In order to understand how the magnetic fields can be built up in protogalaxies, let
us briefly discuss the physical conditions that were present there '. Let us assume the
following typical values for the total mass M of a protogalaxy, the total to baryon mass
ratio £, and the protogalaxy size L: M ~ 102 Mg, & ~ 10, and L ~ 0.2Mpc. Then, the
number density of the gas in the protogalaxy is n ~ "ML m;" ~ 5 x 107*em™ o
§'ML™® (m, is the proton mass, for convenience, in this paragraph we give the scaling
of physical parameters with the three “basic” parameters £, M and L). Assuming the
energy virial equilibrium in the protogalaxy, we easily estimate the gas temperature, T ~
kg'Gm,ML™' ~ 2 x 10°K oc ML™! (G and kp are the gravitational and the Boltzmann

constants). This temperature is very high, while the density is very low. As a result,

!The numerical quantities given below refer to common values at the time (redshift) when the proto-
galaxies form.
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the gas is fully ionized, and the viscosity is dominated by ions, not by neutrals. The ion
collision time is #; ~ 20T%?n"*A tsec ~ 3 x 102sec oc EMY/2L3/? (in this formula the
temperature is in degrees K, the density is in cm ™3, and A, ~ 30 is the Coulomb logarithm
assumed to be independent of £, M and L, Braginskii 1965). The virial thermal speed
is Vi ~ (2kgT/m,)Y? ~ 2 x 107cm/s oc MY2L=1/2. The ion kinematic viscosity can be
estimated as v = 0.96 kgTt;/m, ~ 5 x 10% cm?/s oc EM3/?LY/? (Braginskii 1965). The
Spitzer resistivity is 7, = 6.53 x 102732\, cm?/s ~ 8 x 10*cm?/s oc M~3/2L3/? (in this
formula the temperature is in degrees K, and the Coulomb logarithm is assumed to be
constant, A, ~ 30, Spitzer 1962). Now we estimate the Reynolds and the Prandtl numbers,
R~ Vi/kov ~ 10* o £ 1M ! (kg = 27/L is the minimal wave number in the protogalaxy)
and Pr ~ v/ng ~ 1022 oc EM3L™1, they are very large. The viscous cutoff scale of the
turbulence can be estimated as 27k, ~ R™3/*L ~ 1073L oc £¥/*M3/* L, the resistive cutoff
scale for the magnetic field as 27k, " ~ Pr=12R=3/*L ~ 107"L o £Y/4*M—3/*L3/? and the
ion mean free path as \; ~ R"'L ~ 107*L o« éML. Thus, there is a hierarchy of scales
in the protogalaxy, L > 2mk;! > X\ > 27k, !, Therefore, we can use the single-fluid
magnetohydrodynamic (MHD) equations for the description of plasma, and can consider the
plasma to be nonresistive and incompressible on scales L > 27k™! 2 );. 2

It is very important that in a protogalaxy the ion cyclotron period in the magnetic field,
1

w;t = mye/eB ~ 107*B71 G - sec, is shorter than the ion collision time, #; ~ 3 x 10 sec,
provided that the field strength is larger than ~ 107'7-107! G. On the other hand, the
magnetic energy becomes comparable to the kinetic energy of the smallest turbulent eddies
(which are on the viscous cutoff scale) if the field strength exceeds ~ (4dmm,nV2iR™Y/%)1/2 ~
10-7 G. Thus, there is a very broad range of magnetic field strengths, at which the magnetic
pressure and tension are still negligible, while the presence of the field is already important.
This is because the plasma is strongly magnetized, w; " < t;, and the magnetic field controls
the microscopic motions of ions, so that the viscous forces are given by the Braginskii viscous
stress [Braginskii 1965; see also eq. (1)] and are different from the viscous forces in a field-free

plasma.

2Note that the Debye length (kpT/27ne?)'/? ~ 6 x 10° cm o £1/2L is extremely small in protogalaxies.
Also we can consider the plasma to be incompressible on scales < L because the plasma velocities at the
largest scales, ~ L, are of the order of the sound speed, and all velocities at smaller scales are smaller. For
estimation purposes, we can use the MHD equations even for scales 27k~ < );, if we reduce the molecular
viscosity by factor (kX;)™! < 1.
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Fig. 1.— There are five major stages of the production of galactic and extragalactic magnetic
fields, as the field strength grows up from zero to < 107°gauss. In this paper we consider
the magnetized turbulent dynamo stage in protogalaxies, shaded in the plot.
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We believe that there are five major stages of the production of the strong cosmic mag-
netic fields, see Figure 1. During the first stage, in a protogalaxy undergoing gravitational
collapse, the Biermann battery builds a seed magnetic field linearly in time, on a time scale
approximately equal to the free-fall time, ~ 1 billion years. The resulting seed field is of the
order of ~ 1078 G on the viscous scale (Pudritz & Silk 1989; Kulsrud et al. 1997; Davies &
Widrow 2000).

During the second stage, when the plasma is unmagnetized, w; ' >> t;, the seed field is
exponentially amplified by the kinematic turbulent dynamo inductive action. The kinematic
dynamo builds the field up to approximately 107 G, when the plasma becomes magnetized,
w; ! « t;. The time scale of the kinematic dynamo is very short, it is of the order of the
smallest eddy turnover time (Kulsrud et al. 1997), ~ 10 million years, which is much
smaller than the gravitational collapse time of the protogalaxy, several billion years. The
main assumption of the kinematic dynamo theory and, basically, the strict definition of it,
are that the growing magnetic field stays so weak, that it does not affect the fluid motions,
i. e. that there is no the back reaction of the field on the turbulence. The results we obtain
in this paper reduce to those of the kinematic dynamo theory in the limit of very weak field
strengths (i. e. when the plasma is unmagnetized, and there is no the back reaction).

The third stage starts when the field grows above ~ 107!% G, the ion cyclotron time
in the magnetic field becomes shorter than the ion collision time, and the plasma becomes
strongly magnetized. During this stage the magnetic field strongly affects the dynamics
of the turbulent motions on the viscous scales 3, by completely changing the viscosity (see
Section 2), despite the fact that the magnetic energy is still very small compared to the
kinetic energy of the turbulence! We call this stage as the magnetized turbulent dynamo.
In previous theories this stage has not been recognized. The main goal of this paper is to
construct a theoretical model for it. The time scale of the magnetized dynamo is about the
same as the kinematic dynamo time scale, ~ 10 million years.

So far the field scale is of the order of the viscous scale or less, and the magnetic field is
incoherent in space. The fourth stage starts when the magnetic field strength grows above
~ 1077 G. The field energy becomes comparable to the kinetic energy of the smallest tur-
bulent eddies, and the Lorentz forces become dynamically important in the plasma. During
this stage the turbulent motions are dissipated by the growing field, the turbulent energy
spectrum becomes truncated at larger and larger scales, and the turbulent energy is even-

3The turbulent motions on the viscous scales are the most important in the dynamo theory. This is
because the magnetic field is primarily amplified by the turbulent eddies on these scales. These eddies are
the smallest ones, they have the shortest turnover times and produce the largest velocity shearing.
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tually transferred into a large-scale strong magnetic field with its energy comparable to the
kinetic energy of the fluid motions on the largest scales in the protogalaxy (which is ap-
proximately the same as the thermal energy). This process (which is still under debate) is
called the inverse cascade (Vainshtein 1982; Kulsrud & Anderson 1992; Beck et al. 1996;
Kulsrud 2000). We discuss it qualitatively in Section 5. The time scale available for the
inverse cascade process is of the order of the largest eddy turnover time, ~ 1 billion years.

The turbulent dynamos and the inverse cascade may not have time to amplify the field
up to microgauss values, which are observed in galaxies. A crucial question is how far they
go? This paper addresses this question and is concerned with the rate of the magnetic field
built up by the magnetized turbulent dynamo.

Finally, the fifth stage is the galactic dynamo, which happens in the differentially rotat-
ing galactic disc after the galaxy is formed. This process modifies the strong field that was
initially built up in the protogalaxy, on a time scale of the order of the rotation time of the
galaxy, ~ 300 million years. The galactic dynamo theory is not discussed in this paper.

In Section 2 we formulate the basic equations of the magnetized dynamo theory. In
Section 3 we calculate the statistical correlation functions for turbulent velocities, V, in a
strongly magnetized plasma by making use of the quasilinear expansion in time of the MHD
equations for both the velocities and the magnetic field, similar to the expansion used by
Kulsrud and Anderson (1992). We find that, contrary to the Kolmogorov velocities, the
turbulent velocities in the magnetized plasma are strongly anisotropic on the viscous scale,
as one might expect, because the magnetic field sets “a preferred axis in space”. In our
calculations we make two working hypotheses. First, we assume that for the purpose of
magnetic energy calculation, the tensor b,z = l;alA)g, where b is the field unit vector, can
be taken to be constant in space in the beginning of the expansion in time. This is our
first hypothesis, which basically relies on our assumption that in the magnetized turbulent
dynamo case the magnetic field has a folding structure similar to the one that exists in
the kinematic turbulent dynamo case (see Figure 2; Maron & Cowley 2001; Schekochihin
et al. 2002). Second, we find that there are velocity modes which are not damped by the
Braginskii viscous forces and, therefore, are divergent unless we incorporate the MHD non-
linear inertial terms into our quasilinear expansion. We assume that these non-linear terms,
which limit the divergent velocity modes by coupling them to other modes, may be included
into our theory by allowing for rotation of velocity vectors relative to the magnetic field unit
vectors *. This is our second hypothesis. In Section 4 we use the correlation functions for

4This rotation is essentially due to Coriolis forces that make the velocity rotate differently than the field
direction.
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the turbulent velocities found in Section 3 to calculate the evolution of the magnetic energy
in the magnetized turbulent plasma. We start with calculations of the total magnetic energy
growth rate in Subsection 4.1. In Subsection 4.2 we derive the integro-differential mode
coupling equation for the magnetic energy spectrum. Our mode coupling equation is a more
general version of the corresponding equation of Kulsrud and Anderson (1992), obtained
for the kinematic dynamo. In Subsection 4.3 we consider the magnetic energy spectrum on
small subviscous scales. On these scales the mode coupling equation greatly simplifies and
becomes a homogeneous differential equation. Finally, in Section 5 we give our conclusions.
We also discuss the peculiarities of the inverse cascade in a strongly magnetized turbulent
plasma.

2. Basic Magnetized Dynamo Equations

Hereafter we consider the magnetized turbulent dynamo stage, the shaded region in
Figure 1. During this stage the plasma is strongly magnetized, w;t; > 1, but the magnetic
energy is still small compared to the turbulent kinetic energy, and therefore, the magnetic
Lorentz forces can be neglected. The viscous forces acting on turbulent velocities V in a
strongly magnetized incompressible fully ionized plasma are determined by the Braginskii
viscosity stress tensor (Braginskii 1965),

Mo = _V(3Ba[;ﬂ - 5oe,3)i’ugvvua'/ ’ (1)

where b = B/B is the unit vector along the magnetic field. Note, that this stress tensor
depends on the field unit vector, but is independent of the magnetic strength (as long as
the plasma is strongly magnetized, and w;t; > 1). Thus, during the magnetized turbulent
dynamo stage the magnetic field strongly affects the turbulent motions on the viscous scales
by changing the viscous forces, even though the Lorentz forces are negligible.

The MHD equations for the turbulent velocities V in an incompressible strongly mag-
netized plasma, neglecting the Lorentz forces, are (Landau & Lifshitz 1984)

OVa = _P,Ia + fo — Tapp — (Vavﬂ),ﬂ
- P,I(; + foat+ 3’/(?7(18,56#81/‘/#,1/),6 - (Vavﬂ),ﬂ ) (2)
VOL (87 = 07 (3)

)

where f is the force driving the turbulence, and P’ is the hydrodynamic pressure. Here and

below we always assume summation over repeated indices. In order to shorten notations, we

use 0, dof 0/0t, and spatial derivatives are assumed to be taken with respect to all indices
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that are listed after “,” signs 5. To obtain the second line of equation (2), we use formula (1)
for the viscous stress and incorporate the isotropic part of the stress into the pressure P".

It is difficult to solve equations (2) and (3) directly because they are very complicated.
We also do not know the exact expression of the driving force f, but its statistics is the
same as for an unmagnetized plasma. Therefore, let us proceed as follows. We represent f
by introducing subsidiary incompressible turbulent velocities U which, by definition, satisfy
equations

OUa = —Po+ fo+ (1/5)vAUs — (UaUp) s (4)
Ua,a = 07 (5)

where AU, = U, gp. (U will be essentially the Kolmogorov turbulent velocities.)

Let us analyze and compare equations (2) and (4). First, if for the moment we formally
average the Braginskii viscosity term 3v(babsb,b,V,.,) s in equation (2) over all directions of
an isotropic magnetic field, then it reduces to (1/5)vAV,, which coincides with the isotropic
viscosity term in equation (4). Therefore, vor = (1/5)v could be considered as an effective
reduced viscosity for an incompressible fully ionized plasma in the presence of a magnetic
field that is isotropically tangled on subviscous scales. In other words, the Braginskii viscous
forces “are doing worse” at dissipating the turbulent motions, as compared with the standard
isotropic viscous forces in a field-free plasma. Second, note that equations (2) and (4) have
the same driving force f. By taking the driving force to be the same, we assume that this
force comes from larger turbulent eddies. These larger eddies are on scales larger than the
viscous scales, and therefore, these eddies “do not know” whether the viscous forces are of
the Braginskii type or of the standard isotropic type.

Now, note that equation (4) is a familiar hydrodynamic equation with a standard
isotropic viscosity term. However, is has a reduced molecular viscosity, (1/5)v instead of
v. Therefore, we assume that the solution of equations (4) and (5) is the incompressible,
homogeneous, isotropic and stationary Kolmogorov turbulence with the effective reduced
viscosity

Vet = (1/5). (6)

As a result, the statistics of the Fourier coefficients of the turbulent velocities U,

. - 1 [L/2 .
O (0 Oea(®) € dt,  Tralt) = — / Un (1, 1) e=* oy (7)

\/ 27 / L? ~LJ2

SFor example, (V,Vg) o = V3(0V4/0xy) + Va(0V3/02.,), and V, 5, = 8*V, /0x50. .



is given by the following formulas :

) <~Uka(w)> =0 ) (8)
Uka(@)Uip(W")) = (Uia(~w)Uip(w")) = Juk 035 0,1 (W' + w), 9)
0k Gup — kaks, (10)
Jow = Jo (1+7%0%) 7, (11)
(k) = T(0) (k/ko)™* = (1/koU0) (k/ko) ™", (12)
S~ { (Us/6ko) (k/ko) ™%, ko < k <k = (5o ko) ko, (13,

0, k<ko=2r/L, k>k,

Here and below (...) means ensemble average over all realizations of the turbulence,
d(w'+w) is the Dirac é-function, d,p and i _x are the one- and three-dimensional Kronecker
symbols respectively, k = k/k is the unit vector along k, Uy ~ Vr is the largest eddy velocity,
ko = 2m/L is the smallest wave number of the turbulence, and k, ~ (U/koves)® *ko =
. In equation (9) we
keep only the normal part of the turbulence and drop the helical part, since the latter is
negligible on the scales of the smallest turbulent eddies, which are the principal drivers of
the field evolution (Kulsrud & Anderson 1992). To obtain equation (11), we assume that
the time correlation function of the turbulent velocities has an exponential profile 8,

Tok

(Uka ) Uis(t)) = 2Te*'”‘” 05 O, ks (14)

(5Uy/kov)?/*ky is the viscous cutoff wave number of the turbulence

where 7 is the eddy decorrelation time given by equation (12) for the Kolmogorov turbulence.
Note that the averaged total kinetic energy of the fluid motions, per unit mass, is

(U0 = 00N =33 = [ Iwa=gi 09

where the Kolmogorov energy spectrum is I(k) = 4wk?(L/27)3Jor /7 = (2/3)(UZ/ko) (k[ ko) ~*/3
if k € [ko, k,], as it should be (Kulsrud et al. 1997).

6Note that these formulas are similar to those of Kulsrud et al. 1997, but differ by numerical coefficients
from those of Kulsrud & Anderson 1992.

"k, is determined by the balance between the inertial and the viscous terms of eq. (4), 1/7(k,) ~ vegk>.

8Using a Gaussian time correlation profile, (U(t)U(#)) o e~ *#~)*/27* would be more appropriate. In
this case equation (11) would become J,;, = JOke_T%Q/ 2. However, we prefer the exponential profile because
it is easier to deal with (e.g., for Gaussian integrals it is not possible to close integration contours at infinity

in the complex plane).
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def

Now let us subtract equations (4) and (5) from equations (2) and (3) to eliminate the
v = V-U We

unknown driving force f, and let us introduce the back-reaction velocity
have

OVa = — Po+30(bapuVup + bapuUup) s — (1/5)vAU, — (VaUs + UaUp + UaUg) 5, (16)
Uga = 0, (17)

where the pressure P = P” — P". Here and below we use the following symmetric tensors:

def 7 7 7 7 def 7 7 7 def 7 7
bagrs = babgbybs,  bapy = babgby,  bag = babg . (18)
Velocity v, which satisfies equations (16) and (17), can be considered as the correction to the
Kolmogorov velocity U. This correction is non-zero only on the viscous scales, and results
from the strong back reaction of the field on the turbulence via the Braginskii viscosity
tensor (1).

Finally, the MHD equation for the magnetic field B is (Landau & Lifshitz 1984)
0By, = VapBsg—VsBag, (19)

where the plasma velocities V = U + ¥ are incompressible, and we neglect resistivity.
Consequently, the equations for the magnetic field squared, B2, and for the magnetic field
unit vector, b, are

0,B®> = 2V,3B,Bs—V3(B? 3, (20)

Orby = Va,,BZA’ﬂ - Vﬂ,vbaﬂv - Vﬂéa,ﬂ . (21)

3. Statistics of Turbulent Velocities in Strongly Magnetized Plasmas

In order to find the evolution of the magnetic field B, we must derive the correlation
functions for the total velocities V, resulting from the Braginskii viscosity. We calculate
these velocity correlation functions in this section.

Let us assume that we know the magnetic field at zero time, B|,_, = °B(r) and b| g =
b(r), and that the back-reaction velocity v is initially zero, V|,_, = °v(r) = 0. Then we
advance the magnetic field and the back-reaction velocity to some future time, ¢ > 0, by the

9 A nonzero initial back-reaction velocity would lead to transients, which would be dissipated anyway.
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nonlinear terms, i. e. by integrating equations (16), (19) and (21) twice in time. This quasi-
linear expansion procedure is similar to the calculations of Kulsrud and Anderson (1992).
Considering ¢ as the expansion parameter °, up to the second order, we have

B(t,r) = 0B(r) + lB(t, r)+ 2B(t, r), (22)
b(t,r) °b(r) + 'b(t,r) + 2b(t, ), (23)
v(t,r) lou(t,r) +2v(t, 1), (24)
V(t,r) = V() +2V(tr) = [Ultr) +v(t,r)] + 20, ). (25)

Here, V = U + v is the total fluid velocity, and the Kolmogorov turbulent velocities U are
considered to be given and to be of the first order (Vainshtein 1970, Kulsrud & Anderson
1992).

Now, we substitute the above expansion formulas into equations (16)—(21). We find
that the zero order equations are

9,°B, =0, 8,°%,=0, ‘v,=0, V,=0, (26)

the first order equations are

0;'Ba = 'Vag'Bs—"Vs'Bas, (27)
0t = Waphs— V5, b0sy — V5 bas , (28)
0 e = — IP,a + 3V(Obab’uvlvu,1/),ﬂ + 3V(Obaﬂuqu,V),/3 — (1/5)vAU, , (29)
Wea = 0, (30)
Vo = Us+'0a, (31)

and the second order equations are
0,°By = Vas'Bs+2Vas'Bs— V5 Bap—2VsBas, (
0 %ba = Vas'bs +°Vas®hs = Vs bagy = Vs bagy = 'Vi'bas —*Vi'hayg , (
O 2Ua = - 2P,a + 3V[Obaﬁuv2vu,v + lbaﬂul/(lvu,v + Uu,v)],ﬂ - [lvaUﬁ + Ualvﬁ + 1Ualv,3],/3” (
"Vaa = 0, (
Vo = " (

Here, of course, the pressure is also expanded, P = 'P + ?P.

10T be more formal, we need to introduce a dimensionless variable £ = t/At, and to consider U, gAt and
Va,3At, which are dimensionless, as the expansion parameters.
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First, let us solve the first order equations (29) and (30). We Fourier transform these
equations in space and in time, r — k and ¢t — w, by making use of the discrete and the
continuous Fourier transformations respectively [see eq. (7)]. We have

(—iw + Q) Oua(w) = —iko'Pu+ 3viks ik} ['Owy + Uiy “birapu + (1/5)vk*Uxa, (37)

K/
k' =k-k

ko' Uka(w) = 0, (38)

where 10y (w), 'Py(w), Uy (w) and byap,, are the Fourier coefficients. In the left-hand-side
of equation (37) we add a damping term, .40y, in order to account for the rotation of
velocity vectors relative to the magnetic field unit vectors, see the discussion on page 16. We
estimate the effective rotational damping rate €24 on page 18, and show it is a constant. In
general, it may be a function of k = |k| and of (b - k)2. 1!

Now, we multiply equation (37) on the left by tensor (5% = 0ya — ];',yl;'a to eliminate the
pressure term by making use of the incompressibility condition (38). Interchanging indices,
and using the symmetry of tensor by, with respect to its spatial indices, we obtain

Miaxs' Ok = Fra, (39)
Muaps = (—iw +Qa)dicwdas + 3063 kuk, brorup , k' =k —K, (40)
Fra = [~"Muiaws + (=iw + D + vk /5) diciedap] Uwp (41)

where we use convenient matrix notation, so that summation is implicitly assumed over
repeated spatial indices and wave numbers. The matrix operator "My, ws(w) is of the zero
order, while “the driving force” Fy,(w) is of the first order. If there exist inverse matrix
OM;;,k,ﬁ, then, using equations (31), (39) and (41), we obtain the Fourier coefficient of the
first order total velocity 1V,

Via(@) = Uka+ "Oxa = (—iw + Qua + vk /5) Migy 05 Ui (@) - (42)

1Tt depends on the square of b - k because the Braginskii viscosity is invariant under reflection b— —b
(gyrating ions “do not care” about the exact direction of b).
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\Reglon I,
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Folded field lines, k, > ky ~ky

Fig. 2.— The folding structure of magnetic fields (for simplicity shown in two dimensions).
The field is nearly straight and strong in Region I. The field is very curved but weak in
Region II.
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Now, let us consider an important case for which we can invert matrix "My, 15, given
by equation (40). Let (°B-V)?B = 0, i. e. let at zero time the magnetic field vary only in the
direction perpendicular to itself. This is equivalent to the magnetic field lines being initially
straight (no curvature), and %,5 = %,%s = const. This model of straight magnetic field
lines is not as artificial as it seems at first glance, because of the following arguments. First, it
is known that in the kinematic turbulent dynamo case the magnetic field lines have a folding
pattern, shown in Figure 2, (Schekochihin et al. 2002; Maron & Cowley 2001). This folding
pattern implies that in the bulk of the volume the field is strong and has small curvature,
ki > ky ~ k, (k) and k. are the wave numbers parallel and perpendicular to the field
lines), while in a small fraction of the volume the field is weak and curved, k; ~ kj > k,.
The regions of weak and curved field, Region II in Figure 2, can be disregarded as long
as we consider the volume averaged magnetic field energy and are not interested in the
field curvature. As for the regions of strong magnetic field with small curvature, Region I
in Figure 2, the field lines in these regions can be well approximated by the straight field
lines on scales k which satisfy £ Z k| ~ k,. Now, we make assumption that even for the
magnetized turbulent dynamo case the magnetic field has a folding structure similar to
that for the kinematic turbulent dynamo case. This assumption will be our first working
hypothesis. It is based on the simulations of Maron and Cowley (2001), who found good
indications for the magnetic field folding pattern in their numerical simulations of MHD
turbulence with the Braginskii viscosity. Unfortunately, our calculational methods are not
adequate to theoretically justify our first working hypothesis because of complications of the
field curvature calculations. However, there exist a simple reductio ad absurdum theoretical
argument, supporting the hypothesis, which is as follows. If the magnetic field were not
folded, i. e. if k, ~ k| 2 k, everywhere in space, then the field would be isotropically tangled
on viscous and subviscous scales. In this case the Braginskii viscosity could be averaged over
the field direction, and it should quickly reduce to the isotropic effective viscosity veg = v/5
[see eq. (6)]. As aresult, in this case the magnetized dynamo should possess the properties of
the kinematic dynamo with this effective viscosity, and would develop the folding structure
of the magnetic field lines.

Note that at a given fixed spatial point of the Eulerian system of coordinates the field
curvature changes in time. Thus, even if the field is initially straight at this point, it may
not remain straight in the future. In other words, as time goes on, sometimes the spatial
point belongs to a region I and sometimes to a region II (this reflects the time intermittency
and spatial convection of the curvature). However, we are not interested in the magnetic
energy evolution at each point of space, but instead, we are interested in the evolution of the
total (spatially averaged) magnetic energy. Therefore, at any arbitrary moment of time we
consider only those points of space that belong to all regions I at this time moment. These
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points give the dominant contribution to the total magnetic energy, and at these points the
field lines can be considered to be straight. We apply our mathematical model of straight
field lines to these points, and we find the change (the time derivative) of the total magnetic
energy at the time moment we consider (see Section 4). Because the moment of time is
arbitrary, our final results give the correct evolution of the total magnetic energy in time.

Thus, from our first working hypothesis °b,5 = const, we have OZN)kuw,,g = (51(::,0057013“013,,0135,
and can easily invert matrix (40),

oM—l _ & B 3l/k2u2(1 - ,u2) (55;7013706[3 (43)
ka,k'p —iw + Qg T T Qg + 30k2p2(1—p?) 1—p2 |
p 0%k (44)
We substitute this formula into equation (42) and obtain

Via@) = WiaW) +Vie@) , (45)

Lo —iw + Qug + O 0o by bg | -
_ L O () 46
Vka(w) —iw + Qrd B 1— /1/2 kﬂ(w) ( )

- —iw + Qg + Q0L b, by -

Wialw) = —o T L 2 0P fw) (47)

—iw—i—Qrd—i—ZQ 1—/,62
where, we introduce the following notations for the viscous damping frequencies
QY 150k = vgk®, Q% (3/2wk* (1 — 12) = (15/2)Qu(1 — 1) (48)

The frequency €2 depends on u? because of the anisotropy of the Braginskii viscous stress
tensor. The frequency € is equal to 2 averaged over u, and represents the averaged rate of
the Braginskii viscous dissipation [see eq. (6)].

Next, we calculate (!Vyq(t)) and (!Viq(t)'Vies(t')), which are the ensemble averages of
the 1V’s over all possible realizations of the turbulent motions. First, using formulas (8), (9)
and (45)—(47), we find

(Wia(w)) = 0, ) (49)
(WVia(@) V(@) = (Vi (@) Vigg (@) + (Viea (@) Vs ("))

= ka 5k’,7k 6((4), + w)

- 51 54 0%, %,
Hp(w; Q4 Qrq, ra) (f%g - 71’3_—/;)

2

+ ﬁF(w;Q+Qrd;2Q+Qrd) 1 —MQ

oo 557057051 (50)

2 2

~ def W+ Q7
Hp(w; = . o1
F( >Q1aQ2) wg +q% ( )
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Note that (1V;a(w)11~/ﬁ,ﬁ(w’)> = 0, this implies that 1\7;( and 1\7;: are perpendicular on
average. Second, we apply the inverse Fourier transformations in time, w,w’ — £, t', to
equations (49), (50). We have for the required correlation functions of the total turbulent
velocities

("Wa(t)) = 0, (52)

(Wia®)Vies(®)) = ((Via®)'V s (#)) = (Via®) ' Vigs (@) + (Viea () Vi 5(2))

- 5L 64 05 o),
= 51{'7_1{ [HF(t - t’; Q+ Qg Qrd) ((S(i‘ﬂ — ‘MT—'Y)

1— p?
_ 5L 6L 0p %,
+ Hp(t — t';Q 4+ Qa, 2Q + Quq) ﬁ ; (53)
where the function
1 [ - (bt Jok [ w?+ g cos|w(t—1t)]
Hp(t —t; =— [ JuHp(w; ! :i’“/ ; dw (54
F( aQIaQQ) 271_/_'00 k F(W’qu?)e w or - w2+q§ 1+ 722 w ( )

is the inverse Fourier transform of function J,, Hp (w; q1,¢2), and depends only on the abso-
lute value of the time difference ¢ — ¢'. In equation (54) we use formulas (11) and (51).

The main unknown quantity is the effective rotational damping coefficient €24, which
we introduced in equation (37) as the Q.4 0y term. Let us consider it in more detail. We
start with the calculation of the ensemble average of 1V squared '2. We have

(V) = (Valt,n)Va(t,1) = 3 (Via() Viea(t)) @*H" =3 (M Vi?) - (55)

KK/ K
[see eq. (53)]. Using equations (53) and (54), we obtain

(*Vi|®) = Hp(0;Q4 Qa, Qua) + Hp(0;Q + Qug, 29 + Q)

Jor | Jok (+ Qa)® = Oy N Joe (2 + Qa)® — (22 + Qra)” (56)
T 2 Qrd(]- + TQrd) 2 (2Q + Qrd)[l + T(2Q —+ Qrd)] '

According to equations (55) and (56), we see that if we set the rotational damping rate Q.4
to zero, then the ensemble average of the first order velocity squared would become infinite,
(1V2> — o0 as {2,q = 0! Let us try to understand this divergence problem, and see how we
can avoid it.

12Note that (1 V) = 0 because there is no preferred direction. Of course, there is a preferred axis in space,
which is along the magnetic field unit vector, see also the footnote 11 on page 12.
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First, following the derivation of formula (56) from equation (53), it is easy to see that
the divergence of (1V2) occurs only due to the divergence of the If/i{a modes. In other
words, (|*Vi[2) — oo as Qq — 0, while (|V|2) stays finite 3. Second, let us refer to
equations (46) and (47). On one hand, we have l;:off/;m =0 and l%alffﬁa = 0, as it should be
because plasma velocities are incompressible. On the other hand, we have OIA)alIN/;m =0 and
Oéalf/’;a # 0. Thus, the divergent velocity modes, 1\7;{, are pefll),endicular to both vectors k
and °b. At the same time, the other, non-divergent modes, 'V, have nonzero components
along op. Third, let us calculate the ensemble averaged Braginskii viscous dissipation into
heat (Braginskii 1965). We have

(Qus) = (TapVas) = = 30("Vas' Vo) bagrr = 30 Y bk (Vi Vies) "bapyr €T
k,k’
= — 3V2k2u2 05a<1vﬁa1‘71k7>067 = — QZQHF(O7Q+QTd72Q+Qrd); (57)
k k

where we keep only the first order velocities, and make use of formulas %b,s,, = const,
~ ~ ~ Il

%94V, = 0, and of equations (1), (44), (48), (53). We see that only the 'V, velocity

modes are dissipated by the Braginskii viscous forces, and the dissipation is proportional to

2Q = 3vk? P2 (1 — p?).

As a result, we conclude that the divergence of the first order velocities happens because
the 1\7; velocity modes, which are perpendicular to 05, are not damped by the Braginskii
viscous dissipation. On the other hand, it is clear that the 1\7; modes can not be infinite.
What are the physical mechanisms which limit them? To answer this question, let us note
that velocity modes are non-linearly coupled with each other via the inertial term, (V - V)V,
of the MHD equation (2). This non-linear coupling transforms the divergent 1\7; velocity
modes into other modes, which are then viscously dissipated. This transformation can be
viewed as a continuous rotation of velocity vectors relative to the magnetic field unit vector
b. Indeed, at a given point of space we can go to a reference frame that rotates together
with b. In this rotating frame there exist Coriolis forces, which act on velocity vectors
and force them to rotate relative to the non-rotating field vector. These Coriolis forces are
caused by the non-linear coupling of velocity modes via the inertial term. As a result, a
divergent velocity mode, perpendicular to b and not viscously damped, eventually rotates
out of its initial direction and is transformed into a damped mode. We call this process the
“effective rotational damping”. Of course, it operates only on the viscous scales, on which
the Braginskii viscous dissipation is significant. On larger scales the viscous dissipation is
small and the rotation of velocities does not make any difference.

130f course, in the degenerate cases, when k L b (i. e. u2 = 0) or k || °b (i. e. 1 — p2 = 0), both 1V,
and 1V, modes become infinite as Qg — 0.
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We could regard €24 as a parameter to be determined by numerical simulations. Nev-
ertheless, it is of interest to attempt to estimate it from a physical argument First, the
square of the angular velocity of the rotation can be estimated as w2, ~ (1/3)7,2, where
7, is the velocity decorrelation time on the viscous scale. The factor 1/3 in this equation
comes from the fact that only one of the three angular velocity components contributes to
the deviation of a divergent velocity mode from its original direction perpendicular to the
field unit vector b 4. Second, the typical Braginskii viscous damping rate is clearly about
1/7, ~ vegk?, and is larger than the angular velocity of the rotation. Let assume it is much
larger, w2,72 ~ 1/3 < 1. Then we can suppose that after the divergent velocity mode, in
a time interval At, rotates by an angle A¢ relative to its original direction perpendicular to
b only the projection of the velocity mode on the plane perpendicular to b survives, and all
other velocity components are immediately viscously dissipated. As a result, the effective
rotational damping rate, (2,4, can be estimated as follows.

av AV V(cosA¢p —1) Vv 9 V o At
_— ~ ~ ~N — — A ~N —_—— rot Tv N
dt At At AL 20 ong W)
~ = (1/6)1, 'V ~ (1/6)vegk2V ~ (1/30)0k2V = — Q.4V, (58)
Qa = (1/6)vegk? = (1/30)vEk2. (59)

To obtain the last result in the first line of equation (58), we use the random-walk approxi-

mation for the estimate of Ag?. '

Let us summarize our discussion of the effective rotational damping. As we said, this
physical damping is associated with the non-linear coupling of velocity modes, which leads
to the rotation of velocities relative to the magnetic field vectors. The effective rotational
damping is very important because it limits the velocity modes which are perpendicular to
the magnetic field vectors, and therefore, are undamped by the Braginskii viscous forces.
The non-linear coupling of the velocity modes is hard to deal with directly. In particular,
the MHD non-linear inertial terms do not appear in our first-order equation (37). As a
result, to avoid the divergence problem for the undamped velocity modes, we incorporate
the non-linear mode coupling and the associated rotational damping into our equations in a
simple way, as the .40, damping term in the left-hand-side of equation (37). This is our
second working hypothesis. Note, that the .41V term is isotropic, and therefore, it damps
not only the divergent velocity modes, perpendicular to the field vector, but all velocity

14This is the component along the vector product b x V.

15We again assume that wZ,72 ~ 1/3 <« 1. Next we choose such time interval At > 7,, that
A¢ ~ wrotAt < 1. Then we can simultaneously expand the cos A¢ in eq. (58) and use the random-walk
approximation to estimate A¢2.
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modes. This is not a serious problem though, because the rotational damping is smaller
than the Braginskii damping by a factor ~ 1/6 [see eq. (59)], and our results should be
valid within a factor of order unity. Also note that on scales larger than the viscous scale
the rotational damping does not operate. However, on those large scales the turbulence is
Kolmogorov, V = U, and the back reaction velocities ¥ are zero anyway .

So far we have considered only the first order velocity, 1V, and have found its statistics,
given by equations (52)—(54) and (59). In order to find the second order velocity, 2V, we
need to solve the complicated second order equations (34)-(36). Fortunately, we will need
only the ensemble average of the second order velocity, (2\7k). It turns out that in our case
of a straight initial field, °b,5 = const, which we consider here, this average is zero,

Via(t)) = 0, (60)

(Malyshkin 2001). The reason for this simple result is that %, is constant in space, and the
Kolmogorov turbulence, U, is statistically homogeneous. Therefore, the ensemble averages
of the terms in the brackets [...] in equation (34) are constant in space, and their spatial
derivatives are zero. As a result, the ensemble averaged velocity (*Via) = (*Uka) is also
Z€ero.

To conclude this section, let us integrate equation (54) in time, and obtain the formulas

t ' 00 12
/ dtl/ HF(t, . t”)dt” _ &/ w? + q% sin (wt/2) dw _ ﬂ [t _ T(l _ e_t/T)]
0 0

7)o@ 1+7202 w2 2

T a2 — g2 t— 14 e 20t Jor ¢}
PN [QZ T Pt R ()

2 1- 7242 a4 2

t t t t' 2
/ dt’ / Hp(t' —t")dt" = 2 / dt’ / HF(t'—t")dt"%JOk%t, (62)
0 0 0 0

2

which we will use below. Here, the integrals over w can be done by closing the integration
contours in the complex plane and by evaluating the residues. The final answers in these
formulas, written after the right arrows “—7, give the results in the limit ¢ > 7, ¢; '.

4. Energy Spectrum of Random Magnetic Fields

In this section we use equations (52), (53) and (60), which give the statistics of the tur-
bulent velocities, to derive the evolution of the magnetic energy in the magnetized turbulent
dynamo theory.

16Tn particular, note that the driving force (41), which is o k?, becomes small on large scales.
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4.1. The Growth of the Total Magnetic Energy

The volume averaged and ensemble averaged magnetic energy per unit mass is

1 [ (BY) 1~
£ = dr = —(Bheo ) 63
L3 ] 8mp r grp\ <=/ (63)

where p is the plasma density, and §2k:0 is the k = 0 Fourier coefficient of the magnetic

field strength squared, B?. To find £(t), it is convenient to introduce a symmetric tensor

By &

BoBs = B%b,p. The differential equation for B,s follows from equation (19),
01Bap = Ba0;Bp + Bp0iBa = Vo, By + Vo Boay = Vo Bagyy - (64)

Now, we simultaneously solve this equation and equation (20) by making use of the quasi-
linear expansion procedure, described in Section 3. First, we write

B*(t) ="B* + 'BX(t) + "BX(t),  Bag(t) = "Bap + Bas(t). (65)

Second, we substitute these expansion formulas into equations (20) and (64). We find that
the first order equations are

B> = 2'V,5°Bas — VB4, (66)
6tlBa/3 = lvanoB/J’v + IV/J’NOBOW - (IVWOBa/J’),v ) (67)

and the second order equation for *B2(t) is
0/B? = 2'Vo5'Bas+2VasBas — (V5B 5~ (2V5'BY) . (68)

Third, we integrate equation (66) in time (with the zero initial conditions) and ensemble
average the result. Using equation (52), we obviously obtain ('B2(t)) = 0. Fourth, we
integrate equation (67) in time, and then Fourier transform the result in space, r — k. We
have

t \
"Brap(t) = i |k} (6ar"bsy + 65 bay) — kTObaﬂ] /0 Z Wier () By dt'. (69)
k”:kl’c—k’
Here, we use B, = B*b,p and %b,p = const. (This last formula is our first working hypoth-
esis). Fifth, we integrate the second order equation (68) in time. Then we ensemble average

the result and Fourier transform it in space, setting k to zero. Using equations (53), (60)
and (69), we obtain

<2§2k:0(t)> — 9 /0 tzkﬂ <1I7ka(t') 1B_kaﬂ(t')>dt/
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__ t ¢ - - __
= 2B / 4 / Z PP Vi)'V ot dt" = 2°B%y Z pk’
0 (R ”

t v
X / dt’/ [HF(tl — t”; Q + Qrda Qrd) + HF(tl — t”; Q + Qrd; 2Q + Qrd)] dt”
0 0

= 2’}/t O_EEk:O , (70)
where
L 3 poo A 1 , B 0 L
N = W(§> / k* Jor dk/ 1 (14 Q/Qa)” [T+ (142Q/Qa) " ] dus, (71)
0 -1
Q/Qq = 6K* /K2, 2Q /g = 90 (K2/K2) p®(1 — 1) . (72)

Here, we also use equation (61) in the limit ¢ > 7, replace the summation over k by
integration, making use of d®k = 27k? dk du, and use equations (48), (59).

Now, we derive the differential equation for the averaged magnetic energy £. Following
Kulsrud and Anderson (1992), we choose ¢ small enough for the quasi-linear expansion to
be valid, but large enough for the limit ¢ > 7 to be satisfied. This is very similar to
an assumption that the turbulent velocities are d-correlated in time (Kazantsev 1968), the
assumption generally used in the dynamo theories (see the discussion in the end of this
section). As a result, using equations (65) and (70), we obtain

oy 1/ = 1 )1 2755 1 /o 055
O <B2k:0> i <BQk:0(t) - ng:0(0)> =7 < B?—o + sz:0> i < 2k:0> = 27 B?k= ,(73)
and using equation (63), we finally obtain

OE |9t = 2E. (74)

According to this last equation, the magnetic energy grows exponentially in time, the
same way as it does in the kinematic dynamo theory (Kulsrud & Anderson 1992). However,
the growth rate ~, given by equation (71) in the magnetized turbulent dynamo case, is
different from the growth rate <, in the kinematic dynamo case. The latter can easily
by obtained by taking the limit 4 — oo in equation (71) and by changing the viscous
cutoff wave number in equation (13) to the standard ome, k, = (Up/kov)**ko. In this
limit, the back-reaction velocities are zero (because they are totally damped), the turbulence
is Kolmogorov, and equation (71) reduces to the corresponding formula of Kulsrud and
Anderson (1992), as one might expect.

The integrals in equation (71) can be carried out numerically (Malyshkin 2001). The
result is

v 8.5 (UgL/v)* (Uy/L), v ' = 10%yrs (£/10)7* (L/0.2Mpc)*?,  (75)
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1/2

’thollapse ~ ’Y(L/UO) ~ 103 (5/10)_1/2 (M/1012 M@)_ ) (76)
/% = 10. (77)

Here, tconapse 1s the protogalaxy collapse time, ¢ is the ratio of the total mass M to the baryon
mass, L is the protogalaxy size, and the temperature is assumed to be virial. Equation (77)
predicts that the magnetic energy growth rate in the magnetized dynamo theory is up to ten
time larger than that in the kinematic dynamo theory. Two different effects contribute to
this difference. First, the effective viscosity in the magnetized dynamo case is smaller than
the molecular viscosity, vegr = /5. This effect makes the growth rate larger by a factor of
V5 (this factor was included in Kulsrud et al. 1997). The rest of the contribution comes
from the local anisotropy of the turbulent velocities in a strongly magnetized plasma.

Note that according to equations (12) and (75), the magnetic field growth time, v~ =
0.12(UoL/v)~Y2(L/Uy), is approximately 40% smaller than the eddy turnover time on the
viscous scale, 7(k,) ~ 0.18(UyL/v)~Y2(L/Uy). 7 Thus, the quasi-linear expansion of the
MHD equations in time may not be fully compatible with the assumption of the J-time
correlation of the turbulent velocities. On the other hand, the effects of the finite velocity
correlation time should decrease the magnetic energy growth rate by a factor of order two
(this reduction was found in the kinematic turbulent dynamo theory by Schekochihin &
Kulsrud, 2001). As a result of this reduction, the expansion should become better justified.
Thus, including the finite time correlation effects into our theory would be important but not

vital, since our calculation predicts a very large energy growth rate anyway [see eqs. (75)—
(77)].

4.2. The Mode Coupling Equation for the Magnetic Energy Spectrum

The ensemble averaged magnetic energy spectrum is

M(t, k) 1(£Ji/ﬁqﬁwmﬁmm, (78)

:Ep

where the integration is carried out over all directions of k = k/k, and By is the Fourier
coefficient of the magnetic field, B. The total magnetic energy, given by equation (63), is
obviously

5:%AWM@@M. (79)

"Tn the kinematic dynamo theory 7(k,) ~ (1/3)y~" (Kulsrud & Anderson 1992).
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To find the evolution of M(t, k), we use the quasi-linear expansion formula (22) for B. We
write the ensemble averaged square of the magnetic field Fourier coefficient, up to the second
order,

(Bx®)?) = "Bu(®) + [(Bra(t) Ba(t) + c.c] + ("Bi(®)*) + [(*Bua(t)) Bya(t) + c.c]
= [*Bi(®)]” + (I"Bi() ") + [(Bra(t)) Bya (t) + c.c.]. (80)
Here, c.c. is the complex conjugate, and we use the fact that the ensemble averaged first

order magnetic field is zero, (*By) = 0, [this follows from egs. (27) and (52)]. We calculate
the two last terms in the right-hand-side of equation (80) separately.

We start with calculation of the (|'By(¢)[2) term. First, we integrate equation (27) in
time, and then Fourier transform the result in space, r — k. We have

t
Buy (t) = k(630075 — 61a0ys) / > Wwna(t) Busdt', (81)
0 o
K'=k-k

where we use the divergence free conditions k;OBk:a = 0 and kglvkua = 0. Using this
equation and its complex conjugate, we obtain

("Br(t)?) = Eykr(yabys — 0ya0ys) (03507 — 6r50ym)
t t
x / / 33 BB Viera(t') Vie s (£)) dt'dt”
oJo &

KM
k'=k—k' kiv—k_k/!

= k2 kyky (6030150 — Oan08r0vs — Oar03507y + Oarpr0sy)

t t
x 3 /0 /0 Oy "B (Wi () Vg (1)) di'dt”. (82)
K/

K/ =k—K

Here, we use (1‘~/kua1f/;ivﬂ) o¢ O giv, See equation (53), and therefore, k' = k” and k" = k.

We also assume that %b,5 = const (our first working hypothesis), and therefore, OBkIJOBkI,,] =

Now, according to formula (78), we need to integrate equation (82) over all directions
of the unit vector k. We carry out this integration in Appendix A, the result is

/ k2 (|*B(t)]?) d*k =t / dik' K(k, k) / k" |°By |2 d?K', (83)
0

LY (" o - k2 + 2k(k — k' cos ) cos?
K(k; k,) - k4 (2—> / do sin3 0 Jokll / dgp (1 + Q”/Q;’d)2 { + ( k_,,QCOS ) Cos™ @
0 0

™
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k% (k' — kcosf)? + (k* — k"?)sin?@sin® o

— 84

k"2 (k" — k cos 0)2 + k2 sin® § sin? cos"ip 0, (84)

' = (k* + K% — 2kK cos 0)/?, (85)
k" k% (k' — kcos 0)? + k% sin® fsin” o

Qi = 677 20"/, = 90 5 e

— 1= (1420"/Q")7"

sin® 0 cos® ¢, (86)

where function Jy is given by equation (13).

Next, we calculate the (*Biq(t))°By, + c.c. term of equation (80). First, we integrate
equation (32) in time, and then Fourier transform the result in space, r — k. We have

t
“Buen () = ikr (npGrx — S760m ) / S [V () Buext) + 2Vaera(t) By d,  (87)
0
k”:kkfk’
where we use again the divergence free conditions, k, Bka =0, ko Bka =0, kq, f/ka =0 and
ko?Via = 0. Second, we ensemble average his equation. The second term in the brackets [ ]

averages out because of equation (60). Third, we multiply the averaged equation by Bkn,
add the complex conjugate, and use formula (81) for 'By,. We have

<2§kn>03:m +c.c. = ik (6yp07x — Orpdyy) i(Oxadys — Gyadxs)

tl
X Z Z k,/dt/ dt” Vk“’a ) Vku/g( )) Bk Bk1115+CC

K/
K= k Kk kiv— /!

= —k (5ar577ﬁ 576 - 5047757/5575 + 55n57a576) OB;nOBkJ

t/
XZ k —k” /dt/ dt” V_ ”a ) Vkﬂg( )>+CC

kII
t’
o hoks |0Bk|22/dt/ 0" (7 (") Wrens(#))
kII
+ 2k (6arOns — Oandrp) “byy B> > K. / dt / dt" (*V g (t") 2V 5 (1))
kll

tl
= —2k2°B |2< )/ d3k”/ dt/ A" oo (V _xra (") Wieng (') ) o5 (88)

Here, we use (*Viive'Viwg) o Oyiv i, see equation (53), and therefore, k¥ = —k" and
k" = k. We use the field divergence free condition, k,°Bia = 0, this is why there are only
three terms in the third line of equation (88). On the fourth line of equation (88) we use
k' = k — kK" to change the summation over k' to the summation over k”. To obtain the fifth
and sixth lines of equation (88), we use ko®Biy = 0, kglff,kua =0 and OBknoéid = Obn5|OBk|2
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(because %b,; = const). The two terms in the sixth line of equation (88) cancel each other
because of the symmetry of tensor (!V _yn, 'Vyng) with respect to the exchange o <> 8 [see
eq. (53)]. We change the summation over k” to the integration over k” in the last line of
equation (88).

Note that k is perpendicular to °H because the field is divergence free, ko By, = 0.
Therefore, to carry out the integration over k" in equation (88), we use a spherical system of
coordinates, d3k” = k"2dk" sin 0 df dp. Here 6 is the angle between k” and k, so that k” -k =
cosf, and ¢ is the angle between °H and the projection of k” on the plane perpendicular to
k, so that ;" = k" - b = sinf cos ¢. ¥ Using equation (53), and equation (61) in the limit
t > 7, we obtain

t t'
/ it / 4" TV ra () TViars () s
0 0

1 ~ 9 . 9 cos? f cos® ¢
— = Joert (14 Q") sin20 41 — [1 — (14 20"/Q" ] (89
o 70k (1+9"/02)"sin { (1+ /) cos? 0 cos? p + sin? ¢ (89)

Now, we substitute this equation and formula d*k” = k"?dk" sin § df dy into equation (88),
and integrate the result over all directions of the unit vector k. We have

- ~ % R - . L 3 proo 7r
/k2 [<ZBkn)°Bkn+c.c.] d*k = —th/k2|°Bk|2d2k <%) / k" Jopr dk"/ sin3 0 d

0 0

o ~ 20 cos?
do (1+Q"/9")? 41— [1— 1+ 20" /Q" ‘2] cos (90
< [ (e ety {1 [1- 0] et o

Here, ", Q" and Q; depend on k" and on p? = sin  cos ¢, see equations (48) and (59).

Finally, we substitute equations (80), (83) and (90) into equation (78) for the magnetic
energy spectrum M (¢, k). We choose t small enough for the quasi-linear expansion to be
valid, so that 0,(M(t,k)) = [M(t, k) — M(0,k)]/t. As a result, we obtain the mode coupling
equation for the magnetic energy spectrum,

aM * ! ! ! Nr 2
— = K M —2—=—k°M 1
o / (k, K)M (1, ') dk' — 277 KM (8, k), (91)

where the mode coupling kernel K (k, k') is given by equations (84)—(86), and the turbulent
diffusion constant

3 poo s 2w
Nr 1(L / "2 " / -3 / AN 1 2
47 2 <27r> 0 Ok 0 S 0 14 ( + a7/ rd)

18Note that these angles # and ¢ have no any relation to the angles in equation (84).
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_ cos? 6 cos? ¢
x 11— [1 — (1 420" /)2 : 92
{ ( /ha) cos? f cos? p + sin? (92)
k//lQ "2
noom

v v

Q" = 6 sin?f cos® ¢ (1 —sin®fcos® ).  (93)
The function Jy is given by equation (13). Here, we use equations (48) and (59). To
obtain equation (86) we use equations (A8). To obtain equation (93), we use formula p'? =
sin 6 cos . In the last three equations for the turbulent diffusion constant we replace k" by
k" in order to distinguish it from &” in the equations (84) for the coupling kernel. Note,
that according to the mode coupling equation (91), the &” modes of the turbulence interact

with the &' modes of the magnetic field to change the energy in the £ modes of the magnetic
field.

In the kinematic turbulent dynamo case, we take the limit 2,4 — oo. In this limit,
as one might expect, after integrating over ¢, equation (84) reduces to the mode coupling
equation of Kulsrud and Anderson (1992). Equation (92) for the turbulent diffusion constant,
after integrating over both € and ¢, reduces to the corresponding equation of Kulsrud and
Anderson (1992) [see also Kraichnan and Nagarajan (1967), who obtained the same equation
in a different form]|.

4.3. The Magnetic Energy Spectrum on Subviscous Scales

Equation (91), which gives the evolution of the magnetic energy spectrum in the magne-
tized turbulent dynamo theory, is the principal result of this paper. However, this equation is
rather complicated for easy interpretation. In this section we limit ourselves to the evolution
of the magnetic energy spectrum on small subviscous scales, which is of great interest during
the magnetized dynamo stage in a protogalaxy '°. In this limit, ¥ > k,, and the integro-
differential equation (91) for the magnetic spectrum simplifies to an ordinary differential
equation.

Let us refer to equation (84) for the mode coupling kernel K (k, k). Function Jy» cuts
off at the viscous wave number k, [see eq. (13)]. Therefore, in the large-£ limit, k£ > k,, we
have k" ~ |k — k'| < k, k', and can expand the kernel K (k,k'). However, the simplest way
of calculations is to introduce an arbitrary function of k, F'(k), which varies slowly in the
region k > k,, and vanishes outside of this region (Kulsrud & Anderson 1992). To derive

19The time evolution of the magnetic energy on large scales is slow because it is set by the turnover time
of large turbulent eddies. As a result, the large-scale field is not of significant interest until the small-scale
field saturates, the magnetized dynamo stage ends and the inverse cascade stage begins.
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the mode coupling equation on small (subviscous) scales, we calculate the following integral

/0 F(k)aa_z\fdk_ﬁ(;)/w a<|§f|>d3k:ﬁp(2i>3/ <|Bk(>|>;|1§k(0)|2d3k
L (i) H o EBr @ [~ F0) B (0) B, + o] ¢k

- 47'(',0 21 t —o0 —00
r [« ?M oM
== F 2 A — k= .
5/0 (k) [k Sz~ (M= Db+ A ]dk (94)

Here, to obtain the first line, we use equation (78) and replace the time derivative by the
time finite difference, assuming that ¢ is small, and our quasi-linear expansion is valid. To
obtain the second line, we use equation (80). The derivation of the final result [the 3rd line]
is given in Appendix B. The constants I', A; and A, are

5 L 3 o0 A m .3 9
I =-|— k*Jor dk df sin® 6 cos” 6
2\ 2m 0 0

X /% de (1+ Q/Qrd)Q{l — [1— (1 +2Q/Qa)"] (95)

cos? f cos? ¢
cos? 0 cos? ¢ +sin® ¢ |’

L 3 0o s 2 B 1
A = —3+§<—) / k4J0kdk/ do sin30/ dy (1+Q/Qrd)2 {2c08200082¢+§sin20
0 0 0

'\ 27
1 sin? @
—[1-(1+29/94)77] (2+= 20 cos? 96
[1— (1+29/Qa) ]( +200s200052ap+sin2<p> cos” fcos“ p ¢, (96)
5(LY [ 4 .2 2 L.,
Ay = 2—|—F o k*Jor dk dH sin® @ dgp 1+Q/Qrd) 2 sin” 6 cos (p—§s1n 0
n 0

in? f cos® 0
1— (1+29/0%a) %] (cos?6 — sin?f + = ———— 2 97
+ [ (14 20/) 7] <COS sin + 2 cos?f cos? ¢ + sin® s (97)

_ k? k. .
Qg =675, 20/ = 9075 sin® feos’ o (1 —sin 0 cos” ), (98)

and function Jy is given by equation (13).

Equation (94) is valid for an arbitrary function F. As a result, the integrands in the left-
and right-hand-side of this equation should be equal, and we finally obtain the mode-coupling
equation for the magnetic energy spectrum M (¢, k) on small (subviscous) scales

oM T 0?M oM

— = — |k? — (A —Dk——+AM|.

o 5 [P M D T (99)
The constant I and the constant dimensionless numbers Ay and A; can easily be calculated

numerically. The result is (Malyshkin 2001)

T~ 11 (UL/v)Y? (Uy/L), Am~2 — Ay=5, (100)
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and therefore,

oM UL\ Uy [ ,0°M M
— =22 — — —k—— M. 101
ot 22(1/) L[k oz o 0 (101)

(It is easy to see that A; =2 and Ay = 5 correspond to the limit Q4 < vk?2.)

If for the moment we consider the kinematic turbulent dynamo, then we take the limit
Qg — o0 in equations (95)—(97). After integrating over ¢ and 6, we have I' = ~,, where
Yo is the Kulsrud-Anderson (1992) magnetic energy growth rate, Ay = 3 and Ag = 6. In
this case equation (99) coincides with the corresponding equation of Kulsrud and Anderson
(1992) and with the corresponding equation of Kazantsev (1968), as one might expect (note
that Kazantsev’s equation is given in the Fourier space).

Now, assume that M (¢, k) is known as a function of time at some reference wave
number k = kyef. Then the solution of (99) is

t
M(t, k) = / MY, baet)G (b bvet, £ — 1) dF, (102)
where the Green’s function G(k,t) is

5 kMPZInk (rsyno—A2/an  —5in k/art b Kk  arssy ,—sm?k/are
G(k,t) = \ 4r T2 (/A om /Mt e /ot = 47 T1/2¢3/2 e /1 (103)

[This Green function can be obtained by applying the Laplace transformation in time, t — s,
to equation (99), see Kulsrud & Anderson 1992; Malyshkin 2001]. To obtain the final result
in equation (103), we use equations (100) for A; and A,.

According to equations (102) and (103), we see that a “signal” M (¢, k), at zero time,

(/5 and will extend down to the scale kpea &2 e/I ko,

will increase exponentially as e
where kpeax is the peak of function kG(k,t), (of course, the field scale can not become less
than the resistivity scale). As a result, in the magnetized dynamo theory the magnetic energy
tends to quickly propagate to very small subviscous scales, the same way as it does in the
kinematic dynamo theory (Kulsrud & Anderson 1992; Schekochihin, Boldyrev, & Kulsrud
2002). However, the tail of the magnetic energy spectrum on ket S & S Kpeax scales increases
with the wave number as o< k*/? = k instead of o k%2 in the kinematic theory (Kulsrud
and Anderson 1992). Note, that according to equations (75) and (100), the growth rate of
the Green’s function, (4/5)T", is approximately equal to a half of the growth rate of the total

magnetic energy (the latter one is 27).
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5. Discussion and Conclusions

In this paper we have developed a theoretical basis for the magnetized turbulent dynamo,
which operates in protogalaxies, where the plasma is fully ionized, and the viscosity is the
Braginskii tensor viscosity. The results of the kinematic dynamo theory, already seem to
support the primordial (protogalactic) dynamo origin of cosmic magnetic fields (Kulsrud
et al. 1997). The results that we have obtained for the magnetized dynamo, further support
this primordial origin theory. This is because the number of the magnetic energy e-foldings
during the magnetized turbulent dynamo stage in a protogalaxy, given by equation (76), is
up to ten time larger than that in the kinematic dynamo theory. This number of e-foldings is
more than large enough for the magnetic field in the protogalaxy to grow from its seed value,
provided by the Biermann battery, up to the field-turbulence energy equipartition value. The
number of e-foldings of the magnetic energy on the viscous scale, which is determined by the
growth rate (4/5)T" of the Green’s function (103), is less by one half, but it is still sufficiently
large %0.

Another our prediction is that the tail of the magnetic energy spectrum on small subvis-
cous scales increases with the wave number as o k [see the Green’s function (103)], instead

1

of o k%2 in the kinematic theory 2!. Therefore, in the magnetized dynamo the magnetic

energy is slightly shifted to larger scales as compared to the kinematic dynamo case.

The Green’s function solution (103) indicates that in the magnetized dynamo theory
the magnetic energy tends to quickly propagate to very small subviscous scales, similar to
the kinematic dynamo case. On the other hand, the observed cosmic fields have rather large
correlation lengths. Therefore, the magnetic field lines must be unwrapped on small scales
by the Lorentz tension forces, while the field energy is transferred and amplified on larger
scales during the inverse cascade stage. This most important and most interesting stage
happens when the magnetic field energy is comparable to the turbulent kinetic energy. In
the final part of this paper let us discuss the significance of the Braginskii viscosity for the
inverse cascade in more details.

First, note that the theory of the inverse cascade in a plasma with the regular isotropic
(non-Braginskii) viscosity has a difficulty of unwrapping of the small-scale magnetic field

200f course, our results (71)—(77) for the magnetic energy growth rate are sensitive to the value of the
physical parameter {,q, which is estimated in equation (59). We also left out the finite time correlation
effects. Therefore, our result for the number of magnetic energy e-foldings should be viewed as an estimate,
valid within a factor of order two. However, it is important that the number of e-foldings, which we found,
is a very large number.

21 This our prediction is not sensitive to the value of .4, as long as Q,q < vk2.
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lines. This difficulty can be understood as follows 22. The equation for the turbulent velocities

V in the plasma with the isotropic viscosity, including the Lorentz forces, is (Landau &
Lifshitz 1984)

Ve = —Po+ fatvAVy+ (1/47p)(B-V)Bs— (V-V)V, (104)

[compare with eq. (4)]. We can estimate the unwrapping velocity, Vinwrap, by Fourier trans-
forming equation (104) in space, r — k, and then balancing the viscous and the inertial
forces against the magnetic tension force. The isotropic viscosity dominates on small scales,
and we have

VE*Vanweap ~ (1/47p) kB, Vanwrap ~ (kij/k) (ko /k) (V& /vk,) < Va, (105)

where V) is the Alfven speed. At the time of the field-turbulence energy equipartition on the
viscous scale, the Alfven speed is V ~ vk,, and before this equipartition Vy < vk,. Since
in the kinematic dynamo theory the field lines have a folding pattern, k& > kj ~ k, (see
Fig. 2), the unwrapping velocity (105) is small compared to the Alfven speed, even at the
equipartition time. In other words, since V), ~ V' at the energy equipartition, then kyVy ~ v
(here 2y is the magnetic energy growth rate), and the unwrapping rate, k| Vinwrap, is much
smaller than . This means that the field continues to grow on the viscous and subviscous
scales even beyond the energy equipartition.

However, in the case of the magnetized turbulent dynamo the viscosity term in equa-
tion (104) is modified, and the anti-unwrapping argument does not apply. Indeed, the field
unwrapping velocity is parallel and varies in the direction perpendicular to the magnetic
field lines. The large velocity gradient perpendicular to the field lines, which leads to a
large perpendicular stress in the isotropic viscosity case, is suppressed in the case of the
Braginskii viscous forces (because the transfer of the ion momentum in the perpendicular
direction is inhibited). Therefore, in the magnetized dynamo theory &jVinwrap ~ kjVa ~ v
at the equipartition, and the magnetic field strength saturates on the viscous and subviscous
scales. As a result, the Braginskii viscosity makes the inverse cascade of the magnetic energy
more likely, because the larger turbulent eddies do not need to deliver their energy to the
field on the viscous and subviscous scales (Kulsrud 2000).

We are very grateful to Eric Blackman, Fausto Cattaneo, Steven Cowley, Bruce Draine,
Jeremy Goodman, Robert Rosner, Alexander Schekochihin, David Spergel and Samuel Vain-
shtein for very useful and stimulating discussions and for a number of important comments.

22Cowley, Kulsrud, & Schekochihin 2001, private communications.
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A. Details of the derivation of the mode coupling equation

Equation (82) has four terms in the right-hand-side. Therefore, we have
/k‘2 <|1]§k(t)|2> d2R = T -7 — 7-!/+7-m, (Al)

where there are also four terms,

(27r> / dk_/kJZ OB ‘ d2k’/ 2d2 // Vk” Vk” ( I)>dtldt”, (A2)
( ) / dk / k2 |°By [2d*k! / 1 d’k / / b (*Vira(t') Vi s (t")) kg dt'dt"(A3)

T'=T"= (A4)

TIII k4<27r> / dk/kl2 OB ‘ d2k'/d2k// Vk” Vkll/g( ”)>k dt dt” (A5)

Here, k" =k — k', u = (k- °b) [see eq. (44)], and we replace the summation over k’ by the
double integration over £’ and K. Next, refer to Figure 3A. Vector k' is perpendicular to oh
because the field is divergence free, k;OBkza = 0. The following useful equations are valid
(Malyshkin 2001),

k-kK'=cos, k-kK'=(k—FkcosO)/k", k' =(k*+k?—2kK cosh)/?, (A6)

p=k % =sinf cosp, d*k = sin 6 db dop, (A7)
: k' — kcos0)? + k% sin” f sin® ¢

o sinf cos ¢, 1— "= ( ) i

Using these formulas, equation (53) and equation (62) in the limit ¢ >> 7, it is straightforward

to calculate the double time integral terms in equations (A2)—(A5),

,U” — OB_R// _

(A8)

[ [P aley Ve atar = ot (14 20000)" [1+ 0202 7], (a9

A on N\ 2 :
1+Q/Qd> K (k kcos@)sm&cosga,(Alo)

t
// 0ba<lvk”a(tl)lvkuﬂ(t”)>kﬂ dt’dt” = JOk"t (1 + 2Q///§;Irld k2

/ / (Vo) Vi (8")hg dt'dt" = Joprt (149" /Q1) k" sin” 6
’ ' (k' — Kk cos )2 + k2sin® fsin’

s (k' — kcos )2 cos?
x[sin2¢+(1+2sz"/sz;'d) 2 "‘:,2) oos “’}. (A11)
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Here, ", Q" and Q! depend on k” and on p [see eqs. (48), (59)]. In turn, k" and u”
are functions of k, &', 6 and ¢ [see egs. (A6), (A8). Now, we substitute formulas (A7)
and (A9)—(A1ll) into equations (A2)—(A5). The factors, which we obtain in these equations
after integration over d?k = sin 6 df dy, depend only on k and k', so they can be exchanged
with the integrations over d2k’. Combining the results together in equation (A1), we finally
obtain equations (83)—(86).
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kll

o 0

N N

Fig. 3.— Relative position of vectors °b, k’, k” and k = k' + k" in space. Note, that k' is
perpendicular to °b because the magnetic field is divergence free. The plot on the left (A)

plane perpendicular to k' plane perpendicular to k'

refers to Appendix A, the plot on the right (B) refers to Appendix B.
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B. The derivation of equation (94)

First, we use formula d3k = dk d?k, equations (A1)-(A5) and equation (88) to obtain
the term in the brackets {...} in equation (94),

()= /0 R (k) di / K2 (M By(t)[2) d2k + /0 P k) di / B [(Bia 0By, + ] Pk

AN (BL)
(5) | }

/ / L2R2P (k) B 2 K Pk / / () T e (1)) dt "
= / By |*d°K’ / 1"k F (k) d°K" / / (Vo) Vigra (")) dt'dt”, (B2)

7o = / / pkF (k) |’Bw|? d°k'd’k / / Oba( Vo (t') Vi s (")) g dt'dt”
- / By 2K / KR (k) K" / / O (1 sera(#)1V g (E1)) Ky ", (B3)

A
I

T, =T, (B4)
7;/// — / / F(/C OB \zd?’k'd?’k// k‘ Vk” Vk”,B( ”))k‘ dt dt”
— / °Bye |2d®K’ / F(k)d°k" / / k;(1Vk,,a(t’)117;§,,/,(t”))kgdt’dt”, (B5)
—0 —0 0J0

00 0o t t
TV = —2 / F(k) |'Bx[” d°k / d*Kk" / dt’ / dt" ko ('V o) 'Viers(t')) ks

S / ) B2 dk / pa / / OV ralt) Vi (E) kg di'de”.  (B6)

Here, to obtain the final results in equations (B2)—(B5), we change the integration over k in
these equations to integration over k”, using k = k' + k”. We use k”'Vyq, and therefore,
ko' Viera = kLW ing. We also use pk =%b -k = %b - k" = £"(°b - k) = 4"k = k" sin 6 cos ¢
(see Fig. 3B). To obtain the final result in equation (B6), we use equations (53) and (62).
Next, we calculate T, 7] and T.)" separately, up to the second order in k" < k, k’. Refer to
Figure 3B.

First, following Kulsrud and Anderson (1992), in equations (B2)—(B5) we expand F'(k)
in k" < k at point &' up to the second order. We have, see Figure 3B,

k = K +k"cos+ (k" /2k')sin’ 0, (B7)

dF 1 dF 1d2F
F(k) = F(K)+ 7ok cosf+ ook sin” 0 + dek”? cos? 6, (BS)
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(Kulsrud & Anderson 1992; Malyshkin 2001).

"n2 k”2

Second, we calculate 75, given by equation (B2). Because is of the second order

in k", we need to keep only the zero order term in expansion (B8) for F'(k). Thus, we have

7; — / F(k") |Oka|2 d3k1/ ”2/€"2 d3ku// < Vk" Vk"a( //)) dt dt”

= t/ F(K) dk'/k'2 \OBk:\Qde'/ k" Jogr dk"/ df sin® 0
0 0 0
2w
x /0 dip cos®p (1+ ' /%)* |1+ (1 + 20 /2) ) (BY)

where we use d°k” = k"2dk" sin 6 df dip, " = sin 6 cos ¢ and equation (A9). Here and below,
functions ", Q" and Q; depend on k" and u'? = sin? f cos® o, see equations (48) and (59).

Third, we calculate 7., given by equation (B3). Because p"k" is of the first order in £”,
we need to keep only the zero and the first order terms in expansion (B8) for F'(k). We have

7;/ — / F(k')|OBkI|2d3k'/ //k//dSk//// Ob Vk” Vk”ﬂ( //)>k,3 dt d'[}”

-0

CdF
+ / ziikl OB |2d3 / ”k”2 COS 9 d3kll// Ob Vk” Vk”ﬂ( ”)>k[3 dt dt”

= —¢ / k9 i / k" |°By [ A’k / k" Ty dE" / df sin® f cos® 6
0 dk’ 0 0
2w
X / dep cos® ¢ (1 + Q"/Qi’df (1420Q"/Q")72. (B10)
0

Here, we use equations (53), (62), k%, = 0, k" = k"2dk" sin 0 df dp, p"" = sin 6 cos . The
first term in the first line of equation (B10) vanishes after the integration over 6 because the
integrand is an odd function of cos 6.

Fourth, we calculate 7", given by equation (B5), keeping all terms in expansion (B8)
for F(k),

7;/// — / OB 2d3k1/ d3k// // k/ Vk” Vk”B( ”))kﬁ dt dt”
*dF 0 31,/ " 31,11 ! 1y7* " Poggl gt
+ dk/ B | d k k COS 0 d k k Vk” ( ) Vk”ﬂ(t ))kﬁ dt dt

* 1 dF ! 17 17 ' ¥ 17 ! I/
+ / 2]€'d/€'|0 K| dSk/ k" sin® 6 d°k // k( Vk" (t )lvkuﬂ(t ))kﬁdtdt

00 2 _ ~ ~ %
n / %ka By \Qd?’k'/ E" cos? B d3k"// k&(lvk”a(t’)lvk”ﬂ(t"))k'ﬂ dt'dt"
oo —o0 0Jo
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= —7—0—iv

t o0 dF - . o0 ™
+ - / K = dk / k2 By [2d2K! / k" Jon dk" / df sin® 0

2 _ - 20 cos? ¢
x | de (L+ Q) 41— [1— @+ 207 an) 7 — 2
/0 o (1+9Q"/) { [ (1+207/() ] cos? 0 cos? p + sin®

t [ee) dQF ~ . [e’s} ™
+ = / k' — dk' / k”? |°By *d*k’' / k" Jopn dK" / df sin® 6 cos? 6
2 J, dk 0 0

2 - - 20 cos? @
do (1+Q"/0" )2 41— [1=(1+20"/Q") 2 cos B11
o R R R R e e R

Here, the first term in the first line is equal to minus 7Y, given by equation (B6). To calculate
the other three terms (on the 2nd, 3rd and 4th lines), we again use equations (53), (62),
k%, = 0, @®k" = K"dk"sinfdfdp, i’ = sinfcose. The term in the second line of
equation (B11) vanishes after the integration over 6 because the integrand is an odd function
of cos#.

Next, we substitute equations (B4), (B9), (B10) and (B11) into equation (B1). The — 7"
term of equation (B11) cancels the 7Y term in equation (B1). Then, we substitute the result,
obtained in equation (B1), into the second line of equation (94) and, using equation (78),
we find

o0 oM L\ > dF 2F
F o — — F ! P 12 M ! ! B12
/0 (k) 5 dk (27?) /0 [)\0 (k") + Mk 7 + Aok dk’2} (0, k") dE', ( )

o] T 2
Ao = / E"™ Jogn di"” / df sin® 0 / d cos? o (1+ Q" /) [1 + (1 + 29"/9;'(1)*2} (B13)
0 0 0

00 T 27 _ 1
A = / k"™ Jogn d/-c"/ df sin® 9/ do (1 + Q"/Qi'd)2 {2 cos® 0 cos® ¢ + 3 sin” §
0 0 0

— [1 -1+ ZQ”/Q"d)_2] 2+ 1 sin” 0 cos®fcos® ¢ ¢, (B14)
i 2 cos? f cos? ¢ + sin?

1 [e.e] ™
= = / k™ Jopr dE" / df sin® 0 cos? 6
2Jo 0

2T
<) e (4@ Qi'd)2{1 1=+ 209
0

cos? 6 cos? ¢

. (B15
cos? f cos? o + sin? } (B15)
Now, we integrate the right-hand-side of equation (B12) by parts over some extent in k&’ and
choose F'(k'), so that it and its derivative dF'/dk’ vanish at the end points. We finally obtain
the third line of equation (94), by dropping the double primes, ”, in equations (B13)-(B15),
and introducing the new constants I', A; and A, given by equations (95)—(97).
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