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Abstract

The destabilization of double kink modes by the circulating energetic ions

in tokamaks with the plasma current having an off-axis maximum is studied.

It is shown that the high-frequency fishbone instability [Energetic Particle

Mode (EPM)] and the low-frequency (diamagnetic) fishbones are possible

for such an equilibrium, their poloidal and toroidal mode numbers being

not necessarily equal to unity. A new kind of the EPM instability, “doublet

fishbones”, is predicted. This instability is characterized by two frequencies;

it can occur in a plasma with a non-monotonic radial profile of the energetic

ions when the particle orbit width is less than the width of the region where

the mode is localized. It is found that the diamagnetic fishbone branch

exists even when the orbit width exceeds the mode width; in this case,

however, the instability growth rate is relatively small.



I. INTRODUCTION

Fishbone instability was observed for the first time 20 years ago.1 It was characterized

by the dominant mode numbers (both, poloidal, m, and toroidal, n) equal unity and

resulted in strong loss of the injected ions. This instability was interpreted as an m =

n = 1 rigid kink displacement of the plasma core with r ≤ rs, where rs is the radius of

the m/n surface. The calculated frequency was equal either to the precessional frequency

of the energetic ions, ωD [in which case the observations were explained by an Energetic

Particle Mode (EPM) instability] or to the bulk-ion diamagnetic frequency, ωdi.
2,3 The

mentioned instability was driven by the trapped energetic ions. Later a similar instability

caused by the circulating ions was observed, and a theory of the destabilization of the

m = n = 1 rigid kink by circulating ions was suggested.4–6 Recently, experiments on

the National Spherical Torus Experiment (NSTX) and a theoretical consideration have

shown that fishbone activity can have m 6= 1, n 6= 1 dominant mode numbers.7 On the

other hand, theory predicts that when β is so high that the magnetic valley (a minimum

of the equilibrium magnetic field) arises in the vicinity of the magnetic axis, the fishbone

instabilities tend to be stabilized.8–10

The instabilities described above were relevant to plasmas with the monotonic profile of

the safety factor, q(r). On the the hand, it is known that regimes with non-monotonic q(r)

are characterized by improved plasma confinement and attract a considerable attention.

Therefore, it is of interest to consider fishbone instabilities in plasmas with q(r) having

an off-axis minimum. A step in this direction was done in Ref.11, where it was shown that

trapped energetic ions can destabilize a double kink mode. The considered instability is

localized in the region rs1 < r < rs2, where rs1 and rs2 are the q = m/n ≡ qs radii; it is

characterized by a “top-hat” radial plasma displacement, ξr(r).
12 The destabilization of

the double kink by the circulating ions is not studied yet. This issue is addressed in the

present work.

As in Refs.12,11, we assume that q(r) has a single off-axis minimum, qmin, and the mode

width, ∆m, is small as compared to rmin, where rmin is determined by q(rmin) = qmin.
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The fishbone mode induced by the circulating particles exists due to energetic-ions

finite orbit width, which provides a considerable energy exchange between the circulating

particles and a kink perturbation.5,6 Therefore, an important parameter is the ratio of

the orbit width, ∆rb, to the mode width, ∆m. In this work, we consider two limit cases,

∆m ¿ ∆rb and ∆rb ¿ ∆m. In the latter case there are two characteristic frequencies,

ω1 ∼ kinner
‖ v‖ and ω2 ∼ kouter

‖ v‖, where k‖1 and k‖2 are characteristic longitudinal wave

numbers near the inner edge and outer edge of the region where the mode is localized,

respectively, v‖ is the velocity of the energetic ions along the magnetic field. A possibility

of a “doublet” instability, i.e., the instability with ω ∼ ω1 and ω ∼ ω2 of a mode with

given m,n is considered in the work. The analysis is carried out in the assumption that

the energetic ions have “standard” orbits with ∆rb ¿ r.

The structure of the work is as follows. In the Sec. IIA the equations describing both

the high frequency fishbone branch and the low frequency branch in a plasma with the

non-monotonic profile of the safety factor are formulated. These equations are analyzed for

the cases of ∆m ¿ ∆rb and ∆m À ∆rb, in Sec. II B and Sec. II C, respectively. Section III

contains the summary of the obtained results and a discussion of a possible relevance of the

predicted “doublet” instability to experimental observations on the ASDEX-U tokamak.13

II. FISHBONE ANALYSIS

A. Generic equations

Let us assume first that ω À ωdi. Then a generic form of the dispersion relation

describing fishbone instabilities (and the influence of energetic ions on the ideal MHD

instabilities) is

δI + δWc + δWh = 0, (1)

where δWc is the MHD potential energy of the bulk plasma, δWh is the energy associated

with the response of the energetic ions, and δI is the sum of the kinetic and potential

energies in two inertial layers at rs1 and rs2 given by (cf.12)
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δI = −2π2 R0

m2
n0mi

∫

layers
r3

(
dξr

dr

)2 [
ω2 − k2

‖v
2
A

]
dr

= − iω

2vA

B2

|m|qs

(
r2
s1|s1|+ r2

s2|s2|
)
ξ2
0 . (2)

Here ω is the mode frequency (we assume ω > 0), vA is the Alfvén velocity, k‖ = (mq−1−
n)/R0 is the longitudinal wave number, R0 is the radius of the magnetic axis, ξ0 is

the amplitude of the radial component of the MHD displacement. The latter is taken

in the form: ~ξ = ~ξ0(r) exp[i(mθ − nφ − ωt)], with ~ξ0 = (ξ0r, ξ0θ), ξ0r(r) = ξ0H(r −
rmin + ∆m/2)H(rmin + ∆m/2 − r), H(x) =

∫ x
−∞ δ(t)dt, and ξ0θ is determined by the

incompressibility condition ∇ · ~ξ = 0.

It follows from Eqs. (1), (2) that the dispersion relation can be written in a form

similar to that in the case of the monotonic q(r):

i
ω

ωA

+ λc + λh = 0, (3)

where λc and λh are the normalized negatives of δWc and δWh, respectively, ωA is the

Alfvén frequency. The fast ion response, λh, consists of the fluid (adiabatic) part, and

the kinetic part: λh = λhf + λk.

The magnitudes in Eq. (3) can be written as follows (we put rs1 ≈ rs2 ≈ rmin, which

is justified due to the assumption ∆m ¿ rs):
11,12,14

ωA = |m|(|s1|+ |s2|) vA

qsR0

; (4)

λc = Lα2
(
1− nqmin

m

)1/2

− 8

15
(m2 − 1)

(
1− nqmin

m

)2

−8πrp′

B2
0

(1− q2
min)− λcomp , (5)

where α = −8πR0p
′q2/B2

0 , p′ ≡ dp/dr, p is the plasma pressure, L is a number that encap-

sulates the information regarding coupling to toroidally induced sideband displacements,12

λcomp is the stabilizing contribution associated with perpendicular compression;15

λhf = − π2mαqs

ξ2
0(|s1|+ |s2|)2r2

minB
2
0

∑
σ

∫
dPφ

∫
v5dv

∫ ∂Fα

∂Pφ

τb〈ξ2
0rr cos θ〉dΛ; (6)

4



λk =
2π2R0mαq2

s

ωcαr2
minξ

2
0B

2
0(|s1|+ |s2|)2

∑
σ

∫
v3dv

∫
dPφ

∫
dΛτb

∂Fα

∂E
ω − nω∗α
ω − k‖v‖

×
∣∣∣∣∣

〈(
v2
⊥
2

+ v2
‖

)
~ξ · ~κ exp[i(ω − k‖v‖)t]

〉∣∣∣∣∣
2

, (7)

where E = mαv2/2 is the particle energy, Λ ≡ µB0/E , Pφ = mαv‖R + (e/c)ψ is the

canonical angular momentum, ψ is the poloidal magnetic flux, R is the distance from

the major axis of the torus, ω∗α = (∂Fα/∂Pφ)(∂Fα/∂E)−1, τb is the particle transit time,

〈...〉 denotes the orbit averaging, ~κ = B−2∇⊥(B2/2 + 4πp) is the field line curvature,

σ ≡ v‖/|v‖|, v‖ and v⊥ are the particle velocity along and across the magnetic field,

respectively.

Taking into account that λc does not depend on ω and assuming ω = ω0 + iγ with

γ ¿ ω0, we can split Eq. (3) into two equations representing the real and imaginary parts

of Eq. (3) as follows (the subscript “0” is omitted):

γ

ωA

= (λc + Re λh)

(
1 + ωA

∂Imλh

∂ω

)−1

, (8)

−γωA

ω

∂Re λh

∂ω
= 1 +

ωAImλh

ω
. (9)

Equations (8), (9) impose certain restrictions on λh. In particular, Eq. (8) with γ ≥ 0

and ωA∂Imλh/∂ω > −1 is satisfied for a plasma on/below the ideal MHD stability limit

(λc ≤ 0) only when Re λh ≥ 0. The first term in the RHS of Eq. (9) describes the

continuum damping of the mode, whereas the second term drives the instability provided

that Imλh < 0. It follows from Eq. (9) that ∂Re λh/∂ω > 0 for the instability to occur,

which implies that the mode energy is negative, and thus Eq. (3) describes an EPM

instability.

The sign of ∂Imλh/∂ω depends on the sign of dpα/dr (with pα the fast ion pressure)

when the inhomogeneity term dominates in Eq. (7). Therefore, the physics of the desta-

bilization of a double kink mode by the energetic ions with a non-monotonic pα(r) and

|ωA∂Imλh/∂ω| ∼ 1 is more complicated than that in the case of a monotonic pα(r).

When ω ∼ ωdi, the diamagnetic effects should to be taken into account. A correspond-

ing dispersion relation for the monotonic q(r) has been obtained in Ref.3 One can see that
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it has a similar form for the non-monotonic q(r) when ωdi(rs1) = ωdi(rs2), which can be

justified in the considered case of ∆m ¿ rmin:

[−ω(ω − ωdi)]
1/2 = ωA[λc + λhf + λk(ω)], (10)

where λc +λhf +Reλk ≥ 0. The low-frequency (diamagnetic) fishbone branch is described

by Eq. (10) in the case of

ωA[λc + λh(ω = 0)] ¿ 0.5ωdi, (11)

i.e., when the kink/tearing instability is stabilized by the plasma diamagnetism. Then

Eq. (10) has the following fishbone solution obtained in the assumption |Imλh| ¿ (λc +

Re λh):

ω ≈ ωdi, γ = −2ωdi[λc + Re λh(ωdi)]Imλh(ωdi). (12)

It is clear that the energy associated with the energetic ions considerably depends on

the q(r) profile. When q(r) is non-monotonic, there are two cases with different physics,

∆m > ∆rb and ∆m < ∆rb, which will be considered below.

B. The case of large orbit width

Let us first carry out an analysis in the assumption of ∆m ¿ ∆rb. We consider

a plasma with a population of the energetic ions consisting only of the well-circulating

particles. Then the equilibrium distribution function Fα can be approximated as follows:

Fα =

√
2m3/2

α

πEα

pα(r̄)H(Eα − E)E−3/2δ(Λ), (13)

where pα(r̄) is the beam particle pressure [pα(r̄) =
∫

d3vEFα], r̄ is the orbit averaged

radial coordinate of the particle. In addition, in this case we can put v‖(t) = const,

v⊥(t) = const. This enables us to write ~ξ = ~ξ0 exp[−i(ω − k‖v‖)t]. Using this equation

and omitting terms odd in θ we have:

〈~ξ · ~κ exp[i(ω − k‖v‖)t]〉 = − 1

R0

〈ξ0r cos θ〉 =
ξ0

πR0

(sin θ∗2 − sin θ∗1), (14)
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where θ∗1,2 are the poloidal angles at which a particle intersects the mode (see Fig. 1a),

cos θ∗ = (r̄ − rmin ±∆m/2)/∆b, with ∆b = ∆rb/2 (we used r(θ) = r̄ −∆b cos θ). Due to

the small width of the mode we take into account only those particles, which intersect the

mode region twice. The radial coordinate of these particles varies from r > rs2 to r < rs1

during the orbital motion, therefore for them

(rmin − r̄)2 < (∆b − 0.5∆m)2. (15)

Then we can assume

|r − rmin|∆m ¿ ∆2
b − (r − rmin)2, (16)

which results in the following approximation of Eq. (14)

〈~ξ · ~κ exp[i(ω − k‖v‖)t]〉 ≈ ∆m

π∆b

cot θ̂, (17)

where θ̂ is defined by cos θ̂ = (r̄ − rmin)/∆b.

Putting Eqs. (17), (13) into Eq. (7), we obtain in the limit ω ¿ nω∗α:

λk = − m

2(|s1|+ |s2|)2

(
∆m

rmin

)2

ωcα

∫ 1

0

xdx

ω − σk‖(r̄)vαx

∫
cot2 θ̂(x, r̄)

dβα

dr̄
dr̄, (18)

where x = v/vα. The domain of two-dimensional integration in Eq. (18) is determined by

Eq. (15) and ∆m/(2∆bα) ≤ x with ∆α = ∆(v = vα), vα =
√

2Eα/mα [the latter condition

follows from ∆b(v) > ∆m].

The imaginary part of λk is associated with the resonance condition ω = k‖v‖. There-

fore, Imλk 6= 0 only when σk‖(r̄) > 0. One can see that k‖ > 0 in the region rs1 < r < rs2,

where it has a maximum (for m > 0), and k‖ < 0 outside this region: this conclusion

follows from the facts that k‖(rs1) = k‖(rs2) = 0, and dk‖/dr = 0, d2q/dr2 > 0 at r = rmin.

This implies that only the particles with r̄ located inside the mode region interact with

the mode when v‖ > 0. However, for these particles cos θ̂ ¿ 1 (because of the assumption

∆m ¿ ∆rb). We conclude from here that strong energy exchange between the particles

and the mode is possible only when v‖ < 0, in which case cos θ̂ ∼ 1 due to the particles

in the regions r < rs1, r > rs2.
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In order to calculate the integrals in Eq. (18) analytically, we have to make some

approximation for k‖. Taking into account that k‖(rs1) = k‖(rs2) = 0 and dk‖/dr = 0 at

r = rmin, we approximate k‖ as follows:

k‖ = k‖min
4(r − rmin + ∆m/2)(rmin + ∆m/2− r)

∆2
m

. (19)

Equation (19) is simplified in the region which mainly contributes to the integral:

k‖ ≈ −k‖min
4(r − rmin)2

∆2
m

. (20)

Using Eqs. (20), (18), (6), we obtain:

λk = − mH(−σ)

8(|s1|+ |s2|)2

(
∆m

rmin

)2 ωcα

k‖minvα

(
∆m

∆α

)2

∆bα
dβα

dr̄

∣∣∣∣∣
rmin

×
∫ 1

0
xdx

∫ x− ∆m
2∆α

∆m
2∆α

−x

u2du

(ω̃ − u2x)(x2 − u2)
≈ mH(−v‖)

24(|s1|+ |s2|)2

∆4
m

r2
min∆2

α

×
(

∆α

k‖ρα

dβα

dr̄

)∣∣∣∣∣
rmin

[
ln

1 +
√

ω̃

1−√ω̃
ln

1 +
√

ω̃√
ω̃ − 1

+ ln
4∆α

∆m

ln
(
1− 1

ω̃

)]
, (21)

λhf = − 2q2
s∆m

(|s1|+ |s2|)2

R

rmin

dβα

dr

∣∣∣∣∣
rmin

∫ 1

0
dx

∫ x− ∆m
∆rbα

∆m
∆rbα

−x

udu√
x2 − u2

= 0, (22)

where ω̃ ≡ (ω/k‖minvα)(∆m/∆rbα)2.

An EPM instability has the frequency ω <∼ k‖v‖, i.e., ω̃ <∼ 1. Therefore, we can

conclude from Eq. (21) that, when the radial profile of the energetic ions is monotonically

decreasing, Re λk < 0 (for all reasonable values of ∆rbα/∆m) and ∂Imλk/∂ω > 0. This

means that a necessary condition for the existence of the EPM mode, Re λh > 0 [see

Eq. (8)] is not satisfied and, thus, the EPM fishbone mode is absent.

When ω ∼ ωdi, Eq. (10) should be used. Its fishbone solution is given by Eq. (12).

After calculation of Imλk we obtain:

γ = − πmqs

12(|s1|+ |s2|)2
[λc + Reλk(ω = ωdi)]

(
1

k‖

dβα

dr

)

r̄=rmin

×ω2
A

ωdi

∆4
m

r2
min∆2

bα

ln
4∆bα

∆m

. (23)

This equation describes a low-frequency (diamagnetic) fishbone instability. The instability

growth rate is rather small being proportional to small parameters ∆2
m/r2

min and ∆2
m/∆2

b .
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C. The case of small orbit width

Now we assume that the energetic ion orbit width is small, ∆b ¿ ∆m, but not vanish-

ing: Finite magnitude of the orbit width plays an important role by providing the energy

exchange between the well-circulating particles and a periodic perturbation with a “top-

hat” ξ0(r); only particles crossing the region of the mode localization during their orbital

motion contribute to Imλk. Because of the assumption ∆b ¿ ∆m, the energetic ions

crossing rs1 do not reach rs2 and vice versa, see Fig. 1b. This implies that the energetic

ion response is actually the response calculated for the case of the m = n = 1 rigid kink

displacement in Ref.5, but with two rational surfaces. Therefore, we can easily generalize

the result of Ref.5. We have:

λk =
∑

i=1,2

λki =
∑

i=1,2

1

3

R0

rsi

q2
s

(|s1|+ |s2|)2

[
−∆rbα

|s|
dβα

dr

]

rsi

F
(

ω

ωsi

)
, (24)

where

F (x) ≡ 1

π

{
10x− 8x3/2

[
tan−1 1√

x
+ tanh−1 1√

x

]
+ (1 + 3x2) ln

1 + x

x− 1

}
, (25)

ωsi = |si|v2
‖α/(ωcR0rsi). Note that ωsi ∼ ωD, where ωD is the precessional frequency of

the well-trapped particles, when s ∼ q/2.

It follows from Eqs. (24), (25) that Re λk > 0 for x > 0 and the monotonically

decreasing profile of the energetic ions. Therefore, according to Eqs. (8), (9), in this case

the system can be on the margin of stability (γ = 0) only when a plasma is below the

ideal MHD limit (λc < 0). When λc > 0, Eq. (8) predicts γ > 0.

Below we carry out a more detailed stability analysis. We proceed from Eq. (3)

valid for the arbitrary ratio of γ/ω. Assuming s1 = s2, dβα/dr|rs1 = dβα/dr|rs2 , and

vA(rs1) = vA(rs2), we write this equation as follows:

0 = D(Ω) = −iΩ− λ̃c − παF (Ω), (26)

where λ̃c = λcωA/ωs1, Ω = ω/ωs1,

πα = −2

3

m(m/n)2

|s|3
vA

vα

R0
dβα

dr

∣∣∣∣∣
rs

. (27)
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The unstable solutions of the dispersion relation can be examined by a Nyquist analysis,

see, e.g.16 Consider a contour in the Ω plane encircling the upper half plane, as shown

in Fig. 2a. Its image under the map D(Ω) is presented in Fig. 2b. In this figure, when

πα exceeds a certain magnitude, D(Ω) encircles the coordinate origin, which corresponds

to an unstable solution. The frequencies and the growth rates can be calculated from

Eqs. (8) (9). The results presented in Fig. 3 shows that there are solutions with Ω <∼ 1

and, thus, an EPM instability is possible.

The found fishbone mode exists due to the resonance ω = k‖v‖, which leads to one

characteristic frequency [ωs ∼ k′‖(rs)∆bvα] when k′‖(rs1) = k′‖(rs2). The latter is justified

for k‖(r) symmetric with respect to rmin in the region rs1 < r < rs2. However, in general,

s(rs1) 6= s(rs2) for a double kink mode with the finite width. For this reason, there are two,

rather than one, characteristic frequencies. Therefore, one can expect that two fishbone

instabilities with the frequencies of the order ωs1 ≡ ωs(rs1) and ωs2 ≡ ωs(rs2) and the

same mode numbers (m, n) will exist simultaneously under some conditions. Below we

examine this possibility. We proceed from Eq. (3) written as

0 = D(Ω) = −iΩ− λ̃c − πα1F (Ω)− πα2F (|s1|Ω/|s2|), (28)

where

παi = −8

3

m(m/n)2

(|s1|+ |s2|)2

(
vA

vα

R0

s

dβα

dr

)

r=rsi

. (29)

The results of the Nyquist analysis for two particular cases are presented in Fig. 4. We

observe that in both cases the curves encircle the origin of coordinate twice. This means

that two instabilities co-exist, which we will refer to as a “doublet” instability. Their

growth rates and the frequencies calculated as a function of πα2 for |s1/s2| = 0.6 and

πα1 = −2.5 with the use of Eqs. (8), (9) are shown in Fig. 5. We observe that, first, there

is no threshold with respect to πα2 and, second, two instabilities with different frequencies

exist for πα2 in a certain interval (shaded region in Fig. 5). It is clear that one of the

instabilities (with a lower frequency) arises mainly due to particles crossing rs1 when πα2

is close to zero. Another instability, characterized by a higher frequency, arises when πα2

10



exceeds the threshold magnitude πcrit
α2 ≈ 2.4. When πα2 exceeds a certain magnitude, low

frequency instability disappears. However, a more rigorous analysis is required to find

the region where it disappears because the shown picture is based on the equations valid

for γ ¿ ω <∼ ωs. The Nyquist technique leads to 2.32 < πα2 < 2.45. Thus, the region is

rather narrow. On the other hand, calculations show that the region of the existence of

the “doublet” instability is larger when a plasma is above the ideal MHD stability limit

(λc > 0). For instance, we obtain 2.25 < πα2 < 2.47 for λc = 0.1 and the same other

parameters.

Let us proceed to the low frequency range, ω ∼ ωdi ¿ ωs. Using Eqs. (24), (12) we

obtain:

γ = −4

3

ω2
A

ωdi

(λc + λhf )
q2
s

(|s1|+ |s2|)|s1s2|
R0

rmin

∆bα
dβα

dr̄

∣∣∣∣∣
rmin

. (30)

Comparing Eq. (30) with Eq. (23) we conclude that the growth rate of the instability

caused by the energetic ions with the narrow orbit width considerably exceeds the one

associated with the wide-orbit-width particles.

III. SUMMARY AND CONCLUSIONS

In summary, we have developed a theory of the destabilization of the double kink

mode by the circulating energetic ions through the resonance ω = k‖v‖. It shows that

both the EPM instability and low frequency fishbone instability (ω ≈ ωdi) can be driven

by the circulating beam ions in plasmas with the non-monotonic safety factor. The

instability is localized between two rational surfaces, rs1 and rs2, with the same safety

factor, qs(rs1) = qs(rs2) = m/n. A key parameter, which affects the instability growth

rate, is the ratio of the orbit width of the energetic ions, ∆rb, to the mode width, ∆m.

The instabilities are most strong when ∆rb ¿ ∆m. In the contrary case, ∆rb À ∆m, the

EPM instability is absent in plasmas with the dβα/dr < 0.

A new kind of the instability, which we refer to as “doublet” fishbones, is predicted.

This instability is characterized by two frequencies and two growth rates, although it is
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relevant to the same double kink mode. The ratio of the frequencies is about the ratio of

the shears at two rational surfaces where the instability is localized. The instability can

occur when the radial profile of the energetic ions has an off-axis maximum inside the

region of the mode localization. The existence of the “double” fishbones is a consequence

of the fact that there are two, rather that one, characteristic frequencies in the case of

a non-monotonic q(r): ω1 = kinner
‖ v‖ and ω2 = kouter

‖ v‖, where kinner
‖ and kouter

‖ are the

characteristic longitudinal wave numbers relevant to the inner edge and outer edge of a

double kink mode.

It seems possible that the “doublet” instability was observed in an ASDEX-U experi-

ment reported in Ref.17: In the mentioned experiment an m = n = 1 mode with f1 ∼ 15

kHz and f2 ∼ 20 kHz (in the laboratory frame) was destabilized during tangential Neu-

tral Beam Injection (NBI); The NBI power was deposited at about a half the plasma

radius and, thus, βα(r) was non-monotonic; there were two q = 1 surfaces due to off-axis

NBI current drive. Note that the observed doublet frequencies were comparable with the

fishbone frequency during the radial injection,17 which is consistent with our theory as

ωs ∼ ωD. Moreover, observation of a continuous mode during tangential injection instead

of bursting fishbones during the radial injection can be explained by weak redistribution

of the circulating particles crossing rs1 and rs2 (in contrast to the resonant expulsion of

the trapped particles). Of course, a more detailed analysis is required for the reliable

interpretation of the experimental results.
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FIG. 1. A particle orbit crossing the region where a double kink mode is localized (shaded

region): a, the orbit width exceeds the mode width; b, the mode width exceeds the orbit width.

Notations: rs1 and rs2 are two rational surfaces with the same q(r), rmin is the radius where

q = qmin, OA and OB are the cosines of the angles θ∗1 and θ∗2 at which a particle crosses the

edges of the mode localization region.
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πα ∝ −dβα/dr
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EPM fishbone instability in a plasma with a monotonic βα(r) and λ̃c = −0.1.
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FIG. 5. The EPM fishbone instability in a plasma with a non-monotonic βα(r) for

s1/s2 = 0.6, πα1 = −2.5, and λ̃c = −0.01: a, γ/ωs1 versus πα(rs2); b, ω/ωs1 versus πα(rs2).

Hatched region corresponds to a “doublet” instability. Its right edge obtained from the condition

γ = ωs1 is tentative.

19



07/07/03

   External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute

for Physics, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Laboratory for Complex Energy Processes, Institute for Advanced Study,

Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences,

People’s Republic of China
Professor Yuping Huo, School of Physical Science and Technology, People’s Republic of China
Library, Academia Sinica, Institute of Plasma Physics, People’s Republic of China
Librarian, Institute of Physics, Chinese Academy of Sciences, People’s Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2,

Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California

at San Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov


