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The dependence of the maximum electron temperature on the discharge voltage is studied 

for two Hall thruster configurations, in which a collisionless plasma is bounded by 

channel walls made of materials with different secondary electron emission (SEE) 

properties. The linear growth of the temperature with the discharge voltage, observed in 

the channel with a low SEE yield, suggests that SEE is responsible for the electron 

temperature saturation in the thruster configuration with the channel walls having a 

higher SEE yield. The fact that the values of the electron temperature at saturation are 

rather high may indirectly support the recently predicted kinetic regime of the space 

charge saturation of the near-wall sheath in the thruster discharge. We also observed a 

correlation between the effects of the channel wall material on the electron temperature 

and the electron cross-field current.  
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Secondary electron emission (SEE) from the wall bounding a plasma reduces the 

sheath potential drop and, thereby, weakens thermal insulating properties of the sheath.1 

In a quasineutral plasma, the flux of secondary electrons into the plasma cannot increase 

above the value that corresponds to the space charge saturated (SCS) sheath. At this 

critical point the fluxes of secondary electrons from the wall and primary electrons from 

the plasma are approximately equal, and the wall acts as an extremely effective electron 

energy sink. The SCS sheath has been the subject of many studies due to its relevance to 

plasma applications such as, for example, fusion devices,2 emissive walls,3 dusty 

plasmas,4 and Hall thrusters5-11 (so-called stationary plasma thrusters or SPTs). 

In an SPT,12,13 the plasma discharge with magnetized electrons and unmagnetized 

ions is generated in the axial electric and radial magnetic fields applied in an annular 

ceramic channel. The discharge voltage controls the Joule heating of the electrons, which 

diffuse across the magnetic field. There is no consensus between the existing fluid and 

kinetic models on how strong the SEE effects on the thruster plasma are. The fluid 

models5,6 predict that SEE is strong enough to enhance electron energy losses at the walls 

and, thereby, to limit the maximum attainable electron temperature in the thruster 

channel. According to the kinetic simulations,7,14-16 the electron energy distribution 

function (EDF) in a collisionless thruster plasma is depleted at high energy due to 

electron-wall collisions. Under such conditions, the effects of SEE on the plasma can be 

substantially weaker.  

In recent papers,10 we showed experimentally that the maximum attainable 

electron temperature in the thruster channel is limited, but this limit greatly exceeds the 

theoretical value obtained for the SCS sheath regime under the assumption of the 
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Maxwellian electron energy distribution function (EDF). In this brief communication we 

demonstrate how the maximum electron temperature depends on SEE properties of the 

channel wall material. Although the effects of the wall material on the thruster discharge 

are well documented in the literature,5,9,17,18 this work presents new experimental results 

that show how SEE affects the electron temperature in the bulk plasma of the thruster 

discharge.  

The thruster, facility, and diagnostics used in these experiments are described 

elsewhere.10,19,20 The 2 kW laboratory Hall thruster10 was operated with two different 

channels. One channel was made entirely of boron nitride (grade HP), which is a ceramic 

material with high SEE yield.15 The other channel had its exit part (where the electron 

temperature usually has a local maximum 10, 21) made of carbon, while the rest of the 

channel was made of boron nitride. For a flat carbon, the SEE yield approaches unity at 

an order of magnitude higher energy of primary electrons than that for boron nitride.5 In 

the described experiments two segmented electrodes18,22 made of low-sputtering carbon 

velvet material20 were placed on the inner and outer channel walls. The lengths of the 

inner and outer electrodes are 4 mm and 6 mm, respectively. (Fig. 1). Field emission 

from carbon fibers of the segmented electrodes was shown to have a minor effect on the 

operation of the segmented thruster.20  

The experiments took place in a 28 m3 vacuum vessel equipped with cryogenic 

pumps. In each configuration, the thruster was operated at a constant xenon mass flow 

rate of about 2 mg/s. The background pressure did not exceed 6 µtorr. The magnetic field 

(Fig. 1) was held constant. During the operation of the segmented thruster, the electrodes 

were floating. The electron temperature was deduced from the hot (emissive) and cold 

 3



probe measurements as described in our recent papers.10,19 The total ion flux from the 

thruster was measured with a guarding sleeve planar probe. 10,22  

The detail analysis of the thruster V-I characteristics is given in Ref. 20. We 

found that the effect of the channel wall material on the discharge current is stronger than 

that on the ion flux from the thruster (Fig. 2). The current utilization, which is the ratio of 

the ion current to the discharge current, Iion/Id, characterizes how effectively the magnetic 

field impedes the electron cross-field transport.15 Fig. 2 shows that for the conventional 

thruster, as opposed to the segmented thruster, the impedance degrades with the discharge 

voltage. The shortening of the plasma electric field through the conductive wall is 

predicted to increase the discharge current in the segmented thruster, as compared with 

the conventional thruster.5,18 The fact that this effect is not so evident from our 

experiments is, probably, due to the relatively small surface area of the segmented 

electrodes18 There is a certain correlation between the effects of the wall material on the 

discharge current and on the maximum electron temperature (Fig. 3). Within the accuracy 

of our probe measurements, the wall material has almost no effect on the maximum 

electron temperature below the discharge voltage of 400 V. In keeping with our previous 

experimental observations,23 this result demonstrates a minor role of the wall material 

properties for the thruster operation at low to moderate discharge voltage. When the 

discharge voltage increases above 400 V, the maximum electron temperature saturates in 

the conventional thruster, but continues to grow in the segmented thruster. Because the 

key difference between the thruster configurations is in the SEE properties of the channel 

wall material, it is apparently the SEE that is responsible for the temperature saturation 
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and the electron conductivity enhancement, observed in the conventional thruster with the 

boron nitride channel walls.  

Barral et al.5 predicted a qualitatively similar correlation between the discharge 

current and the maximum electron temperature. According to the model,5 when the near-

wall sheaths become space charge saturated, SEE-enhanced electron-wall collisions lead 

to an increase of the electron energy loss at the walls and, also, contribute significantly to 

the electron cross-field transport (near-wall conductivity). However, there is a large 

quantitative disagreement between the predictions of the fluid models5,6 and the 

experimental results10 with respect to the occurrence of the SCS sheath regime in the 

thruster plasma. Without going into details of this disagreement,10 we refer to a recent 

kinetic study of Sydorenko et al.,7 which demonstrates the existence of the kinetic non-

stationary regime of the SCS sheath in the collisionless thruster plasma with non-

Maxwellian electrons. According to the PIC simulations,7 the electron EDF in the thruster 

discharge is not only depleted at high energy, but is also strongly anisotropic (Te⊥/T|| ~ 7). 

Thus, the electron temperature parallel to the magnetic field (normal to the walls) can be 

much smaller than the experimental value deduced from the averaged probe 

measurements. Moreover, secondary electrons emitted from the two opposite walls of the 

annular channel can form counter-streaming beams.7,8 When the beam electrons penetrate 

through the plasma bulk, they may gain enough energy (due to E×B motion) to induce 

SEE from the wall.7 In this case, the total flux of secondary electrons from the wall is 

ppbbsee ΓγΓγΓ += , where γb and γp are the partial SEE coefficients for the beam and 

bulk plasma electrons, and  Γb and Γ p are the corresponding electron fluxes onto the wall. 

The effective total SEE coefficient, )pb/(see ΓΓΓγ +≡  can be then expressed as7 
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Here, see/b ΓΓα ≡ < 1 characterizes penetration of the electron beam through the 

plasma bulk. Under such conditions the sheath becomes space charge saturated when the 

effective coefficient 〈γ〉 approaches unity. It means that i) if 〈γ〉 <1, the SEE coefficient 

due to the plasma bulk electrons, γp, is no longer restricted to be less than unity and ii) the 

average energy of the plasma bulk electrons can be larger than the critical value that 

corresponds to the SCS sheath regime in the plasma without the beams.7 Note that using a 

macroscopic model, Ahedo et al.8 obtained a similar conclusion with respect to γp>1. 

However, the model8 assumes Maxwellian plasma electrons and does not consider the 

SEE due to the beam electrons, i.e., in Ref. 8, γb = 0. According to Sydorenko et al.7, a 

contribution of the beam electrons to the SEE is critical to plasma-wall interaction in Hall 

thrusters. It is important to emphasize that although a strong temperature anisotropy and 

beams of secondary electrons might explain the measured temperature saturation by the 

kinetic SCS sheath regime, these predictions certainly need an experimental verification. 

Note that at even though the electron temperature in the segmented thruster grows 

with the discharge voltage, the total ion flux does not change much and remains almost 

equal to that in the conventional thruster configuration (see Figs. 2, 3). This is most likely 

due to the fact that ionization of neutrals at the interface of the ionization and acceleration 

regions is compensated by the ion wall losses.24 The growth of the electron temperature, 

which tends to enhance ionization, leads also (through quasineutrality) to the increase of 
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the ion wall losses. The fraction of multicharged xenon ions in the ion flux should not be 

large, because the residence time of Xe+1 ions in the acceleration region is much smaller 

than the time of ionization to higher charge states. For example, for the electron 

temperature Te ~ 100 eV and plasma density Ne ~ 5×1011 cm-3, the rate coefficient for 

single-electron impact ionization Xe+1 → Xe+2 is about k ~ 1.2×10-7 cm3/s.25 (When the 

electron temperature is increased from 50 eV to 100 eV, the ionization rate grows by 

about 30% only.)  The time of flight of an ion through the acceleration region with length 

L ~ 1.5 cm and voltage drop of about 400 V is τ ~ 1 µs, while the ionization time τ1,2 

~(Nek)-1 ~ 16 µs. Thus, in this regime, we expect the number of ionization events to scale 

linearly with the residence time. The difference in the fraction of multicharged ions in the 

conventional and segmented configurations is believed to be small.  

In summary, we demonstrated the effect of SEE properties of the channel wall 

material on the maximum electron temperature and the electron cross-field current. In the 

thruster with the segmented electrodes that have low SEE yield, the electron temperature 

increases almost linearly with the discharge voltage. In contrast with that, in the 

conventional thruster with the boron nitride ceramic channel the electron temperature 

saturates at high discharge voltage. The recently predicted kinetic regime7 of the SCS 

sheath may explain why the electron temperature is observed to saturate at the 

substantially larger values than those obtained theoretically for the Maxwellian electron 

EDF. Below the discharge voltage of 400 V, there are no significant differences in the 

plasma properties (electron temperature and discharge current) for the conventional and 

segmented thrusters. This result provides the evidence of a minor SEE role in the thruster 

operation below the temperature saturation. Finally, the plasma measurements in the 
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segmented thruster may be relevant to the anode layer Hall thrusters,26 whose interior 

plasma properties were predicted13,27 but, to the best of our knowledge, not measured.
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Figure 1. Schematic of the segmented Hall thruster channel with superimposed magnetic 

field lines. The magnetic field distribution was simulated for the experimental conditions.  

 
Figure 2. The current utilization, Iion/Id and the total ion current, Iion, from the thruster for 

xenon mass flow rate of about 2 mg/sec and a constant magnetic field. Measurements 

were done for the conventional thruster with high-SEE boron nitride channel walls and 

the segmented thruster with low-SEE floating segmented electrodes made of carbon 

velvet material.   

 

Figure 3. The dependence of the maximum electron temperature on the discharge voltage 

for the conventional thruster with high-SEE boron nitride channel walls and the 

segmented thruster with low-SEE floating segmented electrodes made of carbon velvet 

material. Reproducibility of measurements is shown by error bars. 
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Figure 1. Schematic of the segmented Hall thruster channel with superimposed magnetic 

field lines. The magnetic field distribution was simulated for the experimental conditions.  
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Figure 2. The current utilization, Iion/Id and the total ion current, Iion, from the thruster for 

xenon mass flow rate of about 2 mg/sec and a constant magnetic field. Measurements are 

for the conventional thruster with high SEE boron nitride channel walls and the 

segmented thruster with low SEE floating segmented electrodes made of carbon velvet 

material.   
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Figure 3. The dependence of the maximum electron temperature on the discharge voltage 

for the conventional thruster with high SEE boron nitride channel walls and the 

segmented thruster with low SEE floating segmented electrodes made of carbon velvet 

material. Reproducibility of measurements is shown by error bars. 
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