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Finite Element Implementation of Braginskii’s Gyroviscous Stress

with Application to the Gravitational Instability

N. M. Ferraro and S. C. Jardin

Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451

Abstract

We present a general, coordinate-independent expression for Braginskii’s form of the ion gyro-

viscosity in the two-dimensional potential field representation, and implement this force in a full

two-dimensional, two-fluid extended magnetohydrodynamic (MHD) numerical model. Our expres-

sion for the gyroviscous force requires no field to be differentiated more than twice, and thus is

appropriate for finite elements with first derivatives continuous across element boundaries (C1 fi-

nite elements). We derive from our model, including the full gyroviscous stress, linear dispersion

relations of a homogeneous equilibrium and of an inverted-density profile in the presence of gravity.

Our treatment of the gravitational instability substantially extends previous work on the subject

[1, 2]. Linear and nonlinear simulations of the gravitational instability are presented. Simulations

are shown to agree closely with these dispersion relations in the linear regime. The “gyroviscous

cancellation” effect is demonstrated, and some limitations of the ~v∗ approximation are discussed.
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I. INTRODUCTION

While MHD has been successful in describing many gross features of plasma equilibria,

it is widely recognized that it is necessary to go beyond the simple ideal- or resistive-MHD

models in order to calculate realistic equilibria, and to properly understand the normal

modes and stability properties of these equilibria. “Extended MHD” is the name given

to fluid plasma models which retain more terms than ideal- or resistive-MHD. Current

numerical treatments of such models include M3D [3] and NIMROD [4]. The method we

present here significantly extends the work of Jardin and Breslau [5, 6], who considered the

four-field model [7], by including compressibility, density evolution, pressure evolution of

both species, and Braginskii’s form of the ion gyroviscous stress in its entirety.

Although the gyroviscous stress is frequently small in magnetized plasmas, even terms

which are negligible throughout most of the domain can play an important role in determin-

ing global dynamics through their effect in localized boundary layers. Magnetic reconnection

in plasmas provides two important examples of this. First, the introduction of even a very

small resistivity permits global topological changes which are not possible in ideal MHD

(e.g. through the tearing mode) [8]. Second, the Hall effect, which typically plays a minor

role throughout the bulk of the plasma, may completely alter the large-scale steady-state

geometry of the reconnecting plasma via the introduction of dispersive waves near the “X-

point” [9]. It is worth noting that the gyroviscous stress also introduces dispersive waves,

and has been shown to play an important role near the X-point in kinetic simulations [10].

In general geometry, the gyroviscous stress is highly nonlinear, and involves high-order

derivatives of the magnetic field and velocity variables [11]. It is therefore nontrivial to insert

this term into numerical models. In section II we describe a general method for incorporating

Braginskii’s form of the gyroviscous stress into a model using the two-dimensional potential

field representations (defined by equations (1)), and employing C1 finite elements. The

operators derived in that section are explicitly calculated for the case of polynomial basis

functions in Appendix A.

In section III we describe in detail our extended-MHD model. In order to validate our

code, we derive the linear dispersion relation of our model for perturbations about a homoge-

neous equilibrium, and show that our simulations reproduce the predicted normal modes to

high accuracy. We also explore the gravitational instability, which is known to be stabilized
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by gyroviscosity, in some cases even when kρi ≪ 1 [1]. Previous work on this instability

by Roberts and Taylor [2] considered the low-β, electrostatic limit. We extend their treat-

ment to arbitrary β, including the effects of electromagnetism and perturbations parallel to

the gravitational force. Our simulations agree quite closely with our expanded dispersion

relation in the linear regime.

Finally, we present the results of numerical simulations demonstrating the “gyroviscous

cancellation” effect, in which one term of the gyroviscous stress has the effect of subtracting

~v∗ from the advective velocity in the fluid momentum equation. Often it is assumed that ~v∗

is the ion diamagnetic drift velocity, but ~v∗ should in fact be the ion magnetization velocity

(defined by equation (19)) if magnetic field gradients are present [11]. The simulation results

demonstrate the importance of this point. We also present a simple situation in which

~v∗ = 0, but ∇ · Π 6= 0, which clearly could not be treated correctly by models which make

the common approximation ∇ · Π = −n~v∗ · ∇~v.

II. FINITE ELEMENT DECOMPOSITION

We consider a mesh of E 2-dimensional finite elements, having D total basis functions,

and with each element having N nonzero basis functions within its domain. The set of

all independent basis functions is νi, where i ranges from 1 to D. The scalar fields are

represented as a linear combination of the basis functions. For example, U = νiUi (we

adopt the convention that repeated indices imply summation). In this paper, we make no

distinction between the projection of the field into the space spanned by the basis functions

(e.g. νiUi) and the field itself (e.g. U). That is, we formally assume that the basis is

complete.

We write the magnetic and velocity vector fields in terms of scalar potential fields

~B = ∇ψ × ẑ + Iẑ (1a)

~v = ∇U × ẑ + V ẑ + ∇χ (1b)

where ẑ is the unit vector in the direction of the ignorable coordinate (∂z = 0).

The time evolution of the velocity field is governed by the momentum equation. For

clarity, we consider only the gyroviscous contribution to this equation:

n
∂~v

∂t
= −∇ · Π + · · · . (2)
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We now apply the operators −ẑ · ∇×, ẑ·, and ∇· to this equation to obtain the equations

governing the time evolution of the scalar velocity fields. For example, in the case of constant

density, we would have:

n∇2U̇ = ẑ · ∇ × (∇ · Π) (3a)

nV̇ = −ẑ · (∇ · Π) (3b)

n∇2χ̇ = −∇ · (∇ · Π). (3c)

Applying the Galerkin method, we multiply both sides by each basis function νi, and inte-

grate over the domain. Integrating equations (3) by parts, and allowing the boundary terms

to vanish, yields

−
∫

dA ∇(νin) · ∇U̇ =

∫

dA εzρν(∂µ∂ρνi)Πµν (4a)
∫

dA νinV̇ =

∫

dA ∇νi · (Π · ẑ) (4b)

−
∫

dA ∇(νin) · ∇χ̇ = −
∫

dA (∇∇νi) : Π, (4c)

where ε is the Levi-Civita tensor, and Greek subscripts index spatial vector components.

The integrations by parts are done to move derivatives off of Π, which by itself involves the

second derivative of the velocity fields U and χ. This reduces the order of the differential

operators to two, which can be handled by C1 finite-elements without further approximation

[5].

In the following discussion we use the convenient tensor notation where aµ,ν = ∂νaµ, and

where square brackets (parentheses) represent anti-symmetrization (symmetrization) over

the enclosed subscripts. For example, a,[xb,y] = a,xb,y − a,yb,x. This particular combina-

tion is frequently written [a, b] in the MHD literature. Note that anti-symmetrization over

x and y produces quantities which are invariant to rotations about ẑ—that is, they are

coordinate-invariant in two dimensions. Similarly, contraction of indices (as in aµbµ) pro-

duces coordinate-invariant scalars. The complicated symmetries of terms in the following

expressions make it necessary to adopt this notation in order to write all of the terms in the

following tensors in a compact, manifestly coordinate-independent way.

We now insert the explicit form of Braginskii’s gyroviscous stress tensor for Π [11, 12]

Πµν =
p(i)

4B2
ερσ(µ

[

δν)τ + 3
Bν)Bτ

B2

]

Bρv(σ,τ) (5)
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where p(i) is the perpendicular ion pressure (in this paper we do not consider anisotropic

pressure). Note that in this notation, Π is manifestly symmetric. The integrands of the

right-hand sides of equations (4) can be written:

p(i)

2B2



















I
(

2 + 3ψ,µψ,µ

B2

)

νi,ν[xU,y]ν +

+ 1
2

[(

1 − 3 I2

B2

)

(

ψ,[xνi,y]µV,µ + V,[xνi,y]µψ,µ
)

− 3
B2ψ,[xV,y]

(

νi,µµψ,νψ,ν + 2ψ,[xνi,y][xψ,y]
)

]

+

+ I
[(

2 + 3ψ,µψ,µ

B2

)

νi,νρχ,νρ −
(

1 + 3ψ,µψ,µ

B2

)

νi,ννχ,ρρ − 3
B2ψ,[xνi,y][xψ,y]χ,µµ

]



















(6a)

p(i)

2B2



















1
2

[(

1 − 3 I2

B2

)

(

ψ,[xU,y]µνi,µ + νi,[xU,y]µψ,µ
)

− 3
B2ψ,[xνi,y]

(

U,µµψ,νψ,ν + 2ψ,[xU,y][xψ,y]
)

]

−

− 1
2
I
(

1 + 3 I
2
−ψ,µψ,µ

B2

)

νi,[xV,y] +

+ νi,µχ,µνψ,ν + 3
B2

(

ψ,[xνi,y]ψ,[xχ,y]µψ,µ − I2νi,[xχ,y][xψ,y]
)



















(6b)

p(i)

2B2



















−I
[(

2 + 3ψ,µψ,µ

B2

)

U,νρνi,νρ −
(

1 + 3ψ,µψ,µ

B2

)

U,νννi,ρρ − 3
B2ψ,[xU,y][xψ,y]νi,µµ

]

+

+ V,µνi,µνψ,ν + 3
B2 (ψ,[xV,y]ψ,[xνi,y]µψ,µ − I2V,[xνi,y][xψ,y]) +

+ I
[(

2 + 3ψ,µψ,µ

B2

)

νi,ν[xχ,y]ν − 3
B2

(

νi,µµψ,[xχ,y]νψ,ν − χ,µµψ,[xνi,y]νψ,ν
)

]



















(6c)

We now seek to write equations (4) in the form:

0 =











L11
ij L12

ij L13
ij

L21
ij L22

ij L23
ij

L31
ij L32

ij L33
ij





















U̇j

V̇j

χ̇j











+

+











R11
ij R12

ij R13
ij

R21
ij R22

ij R23
ij

R31
ij R32

ij R33
ij





















Uj

Vj

χj











(7)

Here we have written (Uj Vj χj)
T as shorthand for the vector

(U1 . . . UD V1 . . . VD χ1 . . . χD)T , and so each Labij and Rab
ij is an D × D block.

We write this system equations succinctly as

0 = L
↔

i · ~̇V +
↔

Ri · ~V , (8)

At this point, L
↔

and
↔

R must be viewed as linear integro-differential operators on ~V . For

example, in the case where density is constant, L11
ij Uj = −

∫

dA ∇(νin) · ∇U . However, the

differentiations and integrations can be carried out explicitly once the actual forms of the

basis functions are inserted, and equation (8) becomes an algebraic matrix equation. An

example is worked out in the appendix.

5



A. 4th rank Decomposition of R
↔

A difficulty is that the elements of
↔

R each involve products of between three and five

field variables, including the basis function. When contracted with the velocity field vector

~V , this increases the order of the nonlinearity to six. Since each field variable is itself

represented as a linear combination of basis functions having N terms, computing a sixth-

order nonlinear term involves computing a sum of N6 terms (neglecting possible symmetry

considerations). In this context, the computation is actually the contraction of a sixth-rank

tensor, potentially having N6 elements, with basis function expansion of six field variables.

These facts raise computational memory and speed issues, which are multiplied again by

the number of finite elements.

In order to circumvent this problem, we rewrite the elements of
↔

R in terms of fourth-rank

tensors only, which results in a significant (factor of N2) memory and speed advantage. In

order to do this, we define common products of fields as new “auxiliary fields.” These aux-

iliary fields, defined below, must not contain the velocity field variable or the trial function,

since these fields are not contracted in equation (8).

A slight complication introduced by this process is that we necessarily break up the

elements of
↔

R into pieces which are not all individually coordinate-invariant. (Note that

the elements of L
↔

and
↔

R must be coordinate-invariant.) This causes the final expressions

for the coordinate-specific tensors to contain explicitly the orientation of the finite element.

However, it does not impose any limitation on the orientations of the finite elements, or

contribute any significant difficulty to the calculation of the matrices.

We define the following auxiliary fields:

Y (1) = p(i)/B2

Y (2) = 3Y (1)/B2

Y (3) = Y (2)I2

Y (4) = Y (2)ψ,νψ,ν/2

Y (5) = Y (2)(ψ2
,x − ψ2

,y)/2

Y (6) = Y (2)ψ,xψ,y.

These variables must also be projected into the space spanned by the basis functions, so

Y (1) = νiY
(1)
i , for example. Note that Y (1), Y (2), Y (3), and Y (4) are coordinate-invariant,
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whereas Y (5) and Y (6) are not.

The individual elements of
↔

R can be written:

R11
ij = G

(11a)
ijkl Ik(Y

(1)
l + Y

(4)
l )

R12
ij = G

(12a)
ijkl ψk(Y

(1)
l − Y

(3)
l ) +G

(12b)
ijkl ψkY

(5)
l +G

(12c)
ijkl ψkY

(6)
l

R13
ij = G

(13a)
ijkl Ik(Y

(1)
l + Y

(4)
l ) +G

(13b)
ijkl IkY

(5)
l +G

(13c)
ijkl IkY

(6)
l

R21
ij = G

(12a)
jikl ψk(Y

(1)
l − Y

(3)
l ) +G

(12b)
jikl ψkY

(5)
l +G

(12c)
jikl ψkY

(6)
l

R22
ij = G

(22a)
ijkl Ik(Y

(1)
l + Y

(3)
l − 2Y

(4)
l )

R23
ij = G

(23a)
ijkl ψkY

(1)
l +G

(23b)
ijkl ψkY

(3)
l −G

(12c)
jikl ψkY

(5)
l +G

(12b)
jikl ψkY

(6)
l

R31
ij = −G(13a)

ijkl Ik(Y
(1)
l + Y

(4)
l ) −G

(13b)
jikl IkY

(5)
l −G

(13c)
jikl IkY

(6)
l

R32
ij = G

(23a)
jikl ψkY

(1)
l +G

(23b)
jikl ψkY

(3)
l −G

(12c)
ijkl ψkY

(5)
l +G

(12b)
ijkl ψkY

(6)
l

R33
ij = G

(11a)
ijkl Ik(Y

(1)
l + Y

(4)
l ) +G

(33b)
ijkl IkY

(5)
k +G

(33c)
ijkl IkY

(6)
k

where G operators have been defined as follows:

G
(11a)
ijkl BjCkDl = −νi,µ[xB,y]µCD

G
(12a)
ijkl BjCkDl = −1

2

(

C,[xνi,y]µB,µ +B,[xνi,y]µC,µ
)

D

G
(12b)
ijkl BjCkDl =

1

2
C,[xB,y](νi,xx − νi,yy)D

G
(12c)
ijkl BjCkDl = C,[xB,y](νi,xy)D

G
(13a)
ijkl BjCkDl = −

(

νi,µνB,µν +
1

2
νi,µµB,νν

)

CD

G
(13b)
ijkl BjCkDl =

1

2
B,µµ(νi,xx − νi,yy)CD

G
(13c)
ijkl BjCkDl = B,µµ(νi,xy)CD

G
(22a)
ijkl BjCkDl =

1

4
νi,[xB,y]CD

G
(23a)
ijkl BjCkDl = −1

2
νi,µB,µνC,νD

G
(23b)
ijkl BjCkDl =

1

2
νi,[xB,y][xC,y]D

G
(33b)
ijkl BjCkDl = (νi,µµB,xy −B,µµνi,xy)CD

G
(33c)
ijkl BjCkDl = (νi,xxB,yy − νi,yyB,xx)CD
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Note that contraction over the fourth index is always equivalent to scalar multiplication,

as contraction over the third index often is. Also note that all the operators containing

“a” in the superscript are coordinate invariant, but the ones containing “b” and “c” are not.

Comparing these definitions with the definitions of
↔

R, it is readily seen that B will always be

one of the velocity variables U , V , or χ; C will always be one of the magnetic field variables

ψ or I; and D will always be a linear combination of the auxiliary variables.

III. MODEL DESCRIPTION, APPLICATIONS, AND SIMULATION RESULTS

We have developed a numerical code which solves the full “eight-field” extended-MHD

model in 2D cylindrical slab geometry. The eight-field model is so named because U , V ,

χ, ψ, I, n, p(e) and p are evolved in time. In units normalized to an arbitrary density n̄

and magnetic field strength B̄, where time and distance are normalized respectively to the

inverse ion gyrofrequency Ω̄−1
i = mic/eB̄ and ion skin depth d̄i = c

√

mi/4πn̄e2, this model

is:

∂n

∂t
= −∇ · (n~v)

∂ ~B

∂t
= −∇× ~E

n
∂~v

∂t
= −n~v · ∇~v + ~J × ~B −∇p−∇ · Π(i) +

+ n~g + µ∇2~v

∂p(e)

∂t
= −∇ · (p(e)~v) −

− (Γ − 1)
[

p(e)∇ · ~v + ∇ · ~q(e) −Q∆

]

+

+
~J

n
·
(

∇p(e) − Γp(e)∇n
n

+ (Γ − 1)~R

)

∂p

∂t
= −∇ · (p~v) −

− (Γ − 1)
[

p∇ · ~v + ∇ · (~q(i) + ~q(e))
]

+

+
~J

n
·
(

∇p(e) − Γp(e)∇n
n

+ (Γ − 1)~R

)

where

~E + ~v × ~B = 1
n

(

~R + ~J × ~B −∇p(e)
)

~J = ∇× ~B; p = p(i) + p(e),
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FIG. 1: The measured phase velocity is plotted over the linear theory results (solid lines). The data

points are computed with p(i) = p/2. Left: k = 1, and β is varied. Also plotted is the theoretical

phase velocity with p(i) = 0 (dotted line). Right: β = 0.5, and k is varied. In both figures, error in

measuring the phase velocity is smaller than the plotting symbol size.

and Γ is the ratio of specific heats. The rate of momentum transfer between species is taken

to be proportional to the plasma current: ~R = ηn ~J ; the rate of heat transfer between species

is Q∆ = 3(me/mi)(p− 2p(e))/τe, where τe is the electron-ion collision time.

Our numerical method is the same as that used by Jardin and Breslau [6]. We use high-

order C1 finite-elements [5] with the split semi-implicit method [6] applied to the MHD

terms and a θ-implicit evaluation of the gyroviscous term, where θ = 1 corresponds to a

fully implicit time step, and θ = 1/2 corresponds to centered time derivatives.
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A. Normal Modes in an Infinite, Homogeneous Equilibrium

The normal modes are found for plane wave perturbations about a stationary, homoge-

neous equilibrium:

ψ(~r, t) = Bx0y + ǫψ1e
i(~k·~r−ωt)

I(~r, t) = I0 + ǫI1e
i(~k·~r−ωt)

U(~r, t) = ǫU1e
i(~k·~r−ωt)

V (~r, t) = ǫV1e
i(~k·~r−ωt)

χ(~r, t) = ǫχ1e
i(~k·~r−ωt)

p(~r, t) = p0 + ǫp1e
i(~k·~r−ωt)

p(e)(~r, t) = p
(e)
0 + ǫp

(e)
1 ei(

~k·~r−ωt)

n(~r, t) = n0 + ǫn1e
i(~k·~r−ωt).

The normal modes are found to first order in the ordering parameter ǫ. We do not consider

the damping effects introduced by dissipative terms (µ = η = 0). In the case that ~k = kxx̂,

we find the linear dispersion relation of this system to be exactly

0 = (a3ω̄
6 + a2ω̄

4 + a1ω̄
2 + a0)ω̄

2 (9)

where

a3 = −1

a2 = 1 + b2k + β̄ + ν̄2(1 + 6b2k − 3b4k) +
b2k
Ω̄2

a1 = −b2k
{

1 + 2β̄ − 2
ν̄

Ω̄
(1 + b2k) + ν̄2

[

4(1 − b2k) + β̄(1 − 3b2k)
2
]

+
1

Ω̄2

[

β̄ + ν̄2(1 + 6b2k − 3b4k)
]

}

a0 = b4kβ̄
[

1 +
ν̄

Ω̄
(1 − 3b2k)

]2

.

Here we have defined the following quantities: B2 = B2
x0 + I2

0 ; bk = Bx0/B; β̄ = Γp0/B
2 =

Γβ/2 is the ratio of the sound speed to the Alfvén speed; vA = B/
√
no is the Alfvén speed;

ω̄ = ω/kvA; Ω̄ = Ωi/kvA is the normalized ion gyrofrequency, and is present only in terms

due to the Hall effect; and ν̄ = ρ2
iΩik/2vA is present only in terms due to gyroviscosity.

In our system of units, Ωi = B and ρ2
i = p

(i)
0 /n0B

2. For the eigenmodes with ω̄ 6= 0, the
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perturbed fields are related in the following way:

Ū1 = −bk
ω̄

ω̄2(ω̄2 − β̄) − ω̄2 + b2kβ̄ + ν̄
[

ω̄2(1 + b2k) + b2k(1 − 3b2k)β̄
]

/Ω̄

(ω̄2 − 1)(ω̄2 − β̄) − (1 − b2k)β̄ − ν̄2
[

ω̄2(1 + 6b2k − 3b4k) − 4b2k(1 − b2k) − b2k(1 − 3b2k)
2β̄
] ψ̄1(10a)

V̄1 = −bk
bk(ω̄

2 − β̄)ψ̄1/Ω̄ − ν̄ω̄
[

2(1 − b2k) − (ω̄2 − β̄)(1 − 3b2k)
]

Ū1

(ω̄2 − 1)(ω̄2 − β̄) − (1 − b2k)β̄
(10b)

Ī1 = −bk(ω̄
2 − β̄)(V̄1 − ψ̄1/Ω̄)/ω̄ + ν̄(1 − b2k)(1 + 3b2k)Ū1

(ω̄2 − β̄) − (1 − b2k)
(10c)

χ̄1 = − I0/B

ω̄2 − β̄

[

ν̄(1 + 3b2k)Ū1 − Ī1
]

(10d)

n1 = n0χ̄1 (10e)

p1 = Γp0χ̄1 (10f)

p
(e)
1 = Γp

(e)
0 χ̄1. (10g)

Here we have defined the non-dimensional quantities Ū1 = kU1/vA, V̄1 = V1/vA, Ī1 = I1/B,

and χ̄1 = ikχ1/ω̄vA.

Formally there are eight solutions to the dispersion relation, equation (9). Since ω enters

only in even powers, for each of the positive eigenvalues there will be a corresponding neg-

ative eigenvalue of equal magnitude. Two of the eigenvalues are zero; these correspond to

stationary density and pressure perturbations. The remaining six eigenvalues correspond to

the shear Alfvén, slow magnetosonic and fast magnetosonic waves (which may each propa-

gate parallel or anti-parallel to the magnetic field). The equilibrium is linearly stable, so all

eigenvalues are real. When ν̄ 6= 0, there are no longer purely compressible or incompressible

wave solutions; this fact is due to issues raised in section III C.

We simulate these waves by finding the eigenvalues ω from equation (9), and initializing

a perturbation using the corresponding eigenvector determined by equations (10). The

parameters for these simulations are: p0 = 0.25, p
(i)
0 = 0.125, Bx0 = 0.8, I0 = 0.6, Γ = 5/3,

µ = 0.001, η = 0.001, ǫ = 10−4, and θ = 0.5. The simulation domain is doubly periodic with

Lx = 2π/k and Ly = 1, on a mesh with 100 elements. Phase velocities are determined by

measuring the velocity of the wave crest over the duration of the simulation. Wave velocities

of each wave are plotted versus β = 2p0/B
2 and k in figure 1.

The difference between the measured phase velocities and the theoretical phase velocity

is plotted versus the time step ∆t in figure 2, along with the best-fit curves of the form

f1(∆t)
f2 + f3. The values of f2 indicate that the fast wave converges approximately as

(∆t)2, while the slow and Alfvén waves converge approximately as ∆t. The values of f3

11



FIG. 2: Shown is the difference between the measured phase velocity and the theoretical phase

velocity, as a function of the time step. The broken lines represent the best-fit curves to the data.

show that the fast wave converges more accurately than the other waves. Both of these

facts are due to the the fast wave being fastest wave in the system, and small errors in the

eigenvectors of the other waves will excite the fast wave.

B. Gravitational Instability

In this section we consider an isothermal plasma in a uniform gravitational field, ~g = −gŷ,
having a density gradient opposite to the gravitational field. Equilibria having such an

inverted density profile are unstable in the ideal limit. Schnack has suggested [13] that this

gravitational instability be used to validate the implementation of the gyroviscous force in

extended-MHD codes, because of the severe and well-characterized effect of ion gyroviscosity

on its growth rate in the linear regime. Rosenbluth, Krall and Rostoker [1] were the first to

calculate, by kinetic analysis, the stabilizing effect on this instability of finite Larmor radius

effects at high wavenumbers. Roberts and Taylor [2] recovered Rosenbluth et al.’s result in

the fluid formalism by including the gyroviscous term. Both groups assume ky = 0, and

consider only the low-β limit in order to justify the electrostatic assumption. Starting from

an equilibrium with n(y) = ey/Ln and a uniform I, Roberts and Taylor’s result is the local

linear dispersion relation:

0 = ¯̄ω2 + (2¯̄ν + 1/ ¯̄Ω)¯̄ω + 1, (11)

12



where

¯̄ω =
ω̄√
ḡ

k2Ln
kx

=
kω

kx
√

g/Ln
(12a)

¯̄Ω =
Ω̄√
ḡ

=
Ωi

k
√
gLn

(12b)

¯̄ν =
ν̄√
ḡ

=
ρ2
iΩik

2
√
gLn

. (12c)

(Roberts and Taylor’s original definition of ¯̄ν is half of ours, because they assume p(i) = p/2.

For proper comparison with our results, which are obtained under the assumption that

p(i) = p, we use our definition of ¯̄ν in their dispersion relation. Also, strictly speaking,

Roberts and Taylor’s result is equation (11) evaluated at k = kx.) Here ḡ = gLn/v
2
A is the

normalized gravitational force. Again, the term due to gyroviscosity is proportional to ¯̄ν

and the term due to the Hall effect is proportional to ¯̄Ω−1.

Equation (11) elegantly shows that both gyroviscosity and the Hall term may indepen-

dently stabilize the gravitational instability. Physically, the gyroviscous stabilization is due

to the fact that gyroviscosity transports the y-directed momentum across the x-direction—

that is, it transfers some vertical momentum from upward-flowing regions into downward-

flowing regions, and vice-versa [1, 14]. The stabilization due to the Hall term results from

the electrons sweeping the magnetic field perturbations out of phase with the fluid velocity

perturbations.

1. Linear Theory

Schnack pointed out [13] that it is necessary for the equilibrium to be supported by a

magnetic field gradient, and not a thermal pressure gradient, in order to ensure that ∂p/∂n

is positive definite. Therefore we use the following equilibrium:

n(y) = n0e
y/Ln (13a)

p(y) = Tn(y) (13b)

I(y) =
√

I2
0 − 2(gLn + ΓT )[n(y) − n0]. (13c)

For simplicity we assume that p = p(i). We choose to work in the limit where kLn ∼ δ−1

and ḡ ∼ 1, where δ ≪ 1. The former limit corresponds to the case where the equilibrium

gradient scale length is large compared to the perturbation scale length, and is necessary in

13
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FIG. 3: Contours of the value of ¯̄ν for which the gravitational mode is stabilized are shown, for four

different models. The two points on the left of each graph represent the cutoffs of cases simulated

in section III B 2. (a) Complete model using the full Braginskii form of ∇·Π, and including the Hall

term. (b) ∇·Π = 0. (c) Full form of ∇·Π, the but the Hall term is excluded. (d) ∇·Π = −n~v∗ ·∇~v,

where ~v∗ is the magnetization velocity, given by equation (19).

order to justify any local analysis of the eigenmodes. The latter limit represents our choice

to focus on equilibria in which the ideal growth rate of the gravitational instability is on the

order of the Alfvén transit time across a gradient scale length. We consider perturbations

with space and time dependence of the form exp[i(kxx + kyy − ωt)], which is the form of

the eigenmode to lowest order in δ. We allow ky 6= 0 in order to accommodate the Dirichlet

boundary conditions at y = ±Ly/2 of our simulation domain. The gravitational mode can

be isolated by further choosing the frequency to be on the order of the ideal growth rate,
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ω ∼
√

g/Ln ∼ δ. Given this ordering, to lowest order in δ we find the dispersion relation to

be:

0 = 1 +

(

1 + 2
¯̄ν
¯̄Ω

)

(

ḡ + β̄
)

−

−
[

2¯̄ν
(

1 + ḡ + β̄
) (

1 + β̄
)

+ 2¯̄νḡ +
1 − ¯̄ν2

¯̄Ω

]

¯̄ω +

+
(

1 + β̄ + ¯̄ν2ḡ
)

¯̄ω2. (14)

This equation is useful for comparison with the simulations presented in section III B 2 where,

in one case, kρi approaches unity. However, the Braginskii form of the gyroviscous stress is

derived under the assumption of small Larmor radii [11], and it is possible that equation (14)

predicts unphysical behavior when the limit kρi ≪ 1 is violated. Applying this limit yields

0 = 1 + ḡ + β̄ −

−
[

2¯̄ν
(

1 + ḡ + β̄
) (

1 + β̄
)

+ 2¯̄νḡ +
1
¯̄Ω

]

¯̄ω +

+
(

1 + β̄
)

¯̄ω2. (15)

Equation (11) is recovered from this dispersion relation in the limit where β ≪ 1 and ḡ ≪ 1.

The introduction of the double-overbarred quantities elucidates the fact that equa-

tion (15) contains only three independent dimensionless parameters: ¯̄ν, ¯̄Ω, and β̄. Note

that ḡ is not an independent parameter, since ḡ = β̄/(2Γ¯̄ν ¯̄Ω). However, in equation (15) we

do not write ḡ in terms of ¯̄Ω and ¯̄ν so as not to imply that terms containing ḡ are due to

the Hall effect or the gyroviscous force.

Now, using the fact that ḡ is a dependent quantity, we are able to calculate the value of

¯̄ν at which the gravitational mode is stabilized as a function of the other two independent

parameters, β = 2β̄/Γ and ¯̄Ω. Contours of these values are shown in figure 3, using four

different models.

Figure 3a shows the cutoff value of ¯̄ν for the full dispersion relation, equation (15).

Figure 3b shows the cutoff value of ¯̄ν in the absence of gyroviscosity. From that figure, it

can be seen that the Hall term is responsible for stabilizing modes having both β ≪ 1 and

1/ ¯̄Ω & 2, but does not stabilize modes outside this region of parameter space. Figure 3c

shows the case where gyroviscosity is retained, but the Hall term is instead omitted; there

it can been seen that the gyroviscous stress independently stabilizes all modes at ¯̄ν = 1,

and is especially stabilizing to modes with high β. Note that the mode can be stabilized by
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FIG. 4: Simulation results are plotted against the solutions to equation (14) and Roberts and

Taylor’s result, equation (11). Left : A low-β case to which Roberts and Taylor’s result is expected

to apply. Right : A high-β case where compressibility and electromagnetic effects are important.

gyroviscosity even when ¯̄ν/ ¯̄Ω = k2ρ2
i /2 ≪ 1. This is possible because of the relatively slow

growth rate of the gravitational instability, even in the ideal limit [1]. Finally, figure 3d shows

the cutoff value when the Hall term is included, but the v∗ approximation for gyroviscosity

is used. (This approximation is discussed in section III C.) A comparison of figures 3a and

3d shows that the v∗ approximation is evidently quite accurate for this instability, in the

limit that we are considering.

It is important to realize that it is not the case that, in these diagrams, neglecting the the

gyroviscous stress is equivalent to letting ¯̄ν = 0, nor is it the case that neglecting the Hall

effect is equivalent to letting ¯̄Ω−1 = 0. In equation (15), terms due entirely to gyroviscosity

or the Hall effect are explicitly proportional to ¯̄ν or ¯̄Ω−1, respectively, only because we

suppress other occurrences of these factors by the introduction of the dependent variable ḡ

there.

2. Linear Simulation results

Our simulation domain has dimensions Lx ×Ly, with periodic boundaries at x = ±Lx/2
and conducting, no-slip boundaries at y = ±Ly/2. The dimensions are chosen to exclude

wavenumbers smaller than kx = 2π/Lx (smaller wavenumbers are more unstable). Dissipa-

tive terms can strongly affect the growth rate, but we are able to simulate the linear regime
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stably with η = µ = 0. The density gradient scale length is taken to be large (Ln ≫ Ly) to

keep the equilibrium fields approximately constant over the entire box.

To measure the growth rate in our simulations, we begin with a small (ǫ ∼ 10−6) pertur-

bation in density with kx = 2π/Lx and ky = π/Ly. The simulation is allowed to proceed

until the growth rate of the density and stream function perturbations equalize and become

independent of time. The growth rate is measured by

γ =
1

2

∂

∂t
ln

[∫ Lx

0

dxA2(x, y = 0, t)

]

(16)

where A is the density or the stream function. The data points in the figures actually

represent the average of the density and stream function growth rates, and the discrepancy

between the two values is illustrated by the error bars (this discrepancy is generally smaller

than the data point symbol itself).

We present two distinct cases here: a low-β case to which Roberts and Taylor’s result is

applicable, and a high-β case in which the effects of compressibility and electromagnetism

are important. Specifically, for the low-β case, we choose Lx = 2π/10, Ly = 1, Ln = 100,

g = 0.005, and I0 = 100. For the high-β case, we choose Lx = 2π/0.05, Ly = π/0.01,

Ln = 105, g = 0.0005, and I0 = 1. In both cases, n0 = 1. As expected, Roberts and Taylor’s

result is fairly accurate only for the low-β case (the discrepancy is due to the fact that ky = 0

in Roberts and Taylor’s analysis). In both cases the simulation results are quite close to the

exact solution to equation (15).

3. Nonlinear Simulation Results

As a test of the nonlinear capabilities of our numerical method, we have run simulations

of the gravitational instability far into the nonlinear regime. The parameters for these

simulation are I0 = 20, Ln = 100, g = 0.05, p0 = 0.5, η = 10−3, µ = 10−5, κ = 10−5, and

∆t = 800 Ω−1
i . The simulations are started with a density perturbation (ǫ = 10−3), and

allowed to proceed until the density gradient is essentially quenched.

Images of the density profile at an advanced time are shown in figure 6. In the figure,

the inclusion of gyroviscosity can be seen to cause the density perturbation to advect in

the x-direction. This is due to the “gyroviscous cancellation” effect, which is discussed in

more detail in section III C. The shear in this advection velocity is due to the fact that the
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FIG. 5: The density profile from nonlinear simulations of the gravitational instability are shown.

The two frames on the left are from a simulation with gyroviscosity turned off; the two on the

right include gyroviscosity. The horizontal motion in the simulation including gyroviscosity is due

ultimately to the gyroviscous cancellation effect.

magnetization velocity v∗ is not constant over the simulation domain, and to the no-slip

boundary conditions. This shear is not responsible for the stabilization of the gravitational

instability (e.g. by shearing apart nascent convection cells) in this regime, where kyLn ≫ 1.

C. Gyroviscous Cancellation

Frequently the gyroviscous stress is approximated by

∇ · Π ≈ −n~v∗ · ∇~v. (17)
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FIG. 6: The phase velocity of a perturbation in U is plotted against the absolute value of the ion

magnetization velocity. If the gyroviscous force is neglected, the perturbation remains stationary.

In this approximation, moving the gyroviscous term to the left-hand side of the fluid mo-

mentum equation yields the well known “gyroviscous cancellation” [11]:

n(~̇v + ~v · ∇~v) + ∇ · Π ≈ n[~̇v + (~v − ~v∗) · ∇~v]. (18)

That is, the gyroviscous force acts to “cancel” the velocity at which the fluid velocity is

advected, by an amount ~v∗. It is often assumed that ~v∗ is the diamagnetic drift velocity

but, as Ramos points out [11], this is only true when the magnetic field is constant. A more

general choice for ~v∗ is the ion magnetization velocity,

~v∗ = − 1

ne
∇×

(

p(i) ~B

B2

)

. (19)

To observe the gyroviscous cancellation phenomenon, we consider an equilibrium in which

the fluid velocity is zero but the magnetization velocity is nonzero. Specifically, we use the

same equilibrium described by equations (13), letting g = 0 (i.e. no gravity), I0 = 1,

Ln = 105, Lx = 2π/0.05, and Ly = π/0.01. We then apply a small (ǫ = 10−6) sinusoidal

perturbation to U , and measure the phase velocity of the perturbation. With the gyroviscous

force not included, the crest of the perturbation is observed to remain stationary. That is,

the perturbation is advected by the fluid velocity ~v ≈ 0. When the gyroviscous force is

included, the phase velocity of the perturbation is indeed observed to be approximately

~v − ~v∗ ≈ −~v∗. In figure 6, the measured phase velocity is plotted against the absolute

value of the magnetization velocity. It should be emphasized that for this equilibrium, the
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contribution of the diamagnetic velocity to ~v∗ is smaller than the contribution due to the

gradient in ~B by a factor β/2—which, for the parameters plotted in figure 6, is up to two

orders of magnitude. Therefore the diamagnetic velocity is an extremely poor approximation

to ~v∗ in this case.

Re-deriving the linear dispersion relation of the gravitational instability using equa-

tion (17) instead of the Braginskii form of the gyroviscous stress simply gives equation (15)

with the 2¯̄νḡ ¯̄ω term omitted. For the cases simulated in section III B, this turns out to be

fairly accurate, differing from the solid curves plotted in figure 4 by only a few percent.

However, there are other situations in which the v∗ approximation is completely inad-

equate. Consider a homogeneous equilibrium with constant density n0, pressure p0, and

guide field I0. Now perturb the stream function U1 such that

U1 = ǫ cos(kxx). (20)

In this scenario, ~v∗ = 0, since there is no gradient in the ion pressure or magnetic field.

However, evaluating the full form of Braginskii’s gyroviscous stress, one finds

∇ · Π =
p(i)∇(∇2U)

2I0
. (21)

This is a purely compressional force, and is a linear function of velocity. In the absence of

this term, there is no compressional force at all. The results of simulations of this scenario

are illustrated in figure 7. The parameters for those simulations are: p0 = p
(i)
0 = 0.1, I0 = 2,

kx = 2π, ǫ = 10−4, and µ = η = 0. In the figure, the data points labeled “no gyroviscosity”

would be the result of a simulation employing the v∗ approximation to the stress tensor.

IV. SUMMARY AND CONCLUSIONS

We have used the method described in section II to include the full form of Braginskii’s gy-

roviscous stress into our numerical extended-MHD model. To validate this implementation,

we have derived the linear dispersion relation of the full eight-field extended-MHD model,

including the full gyroviscous stress, for plane waves in a homogeneous plasma, and shown

that our numerical simulations converge to values obtained from the dispersion relations.

We have also revisited the gravitational instability, the stabilization of which provides

clear evidence of the effect of the gyroviscous stress. We have substantially generalized the
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FIG. 7: The domain-averaged compressional force is plotted as a function of time. Without

gyroviscosity, this force is due to truncation error only. The v∗ approximation would produce the

same results as “no gyroviscosity.”

treatment of Roberts and Taylor [2] to include high-β regimes and the effects of electromag-

netism. In the linear regime, our numerical simulations are shown to agree closely with our

linear theory of this instability. It is worth repeating that for some parameter regimes, this

mode is stabilized by gyroviscosity even when kρi ≪ 1.

Finally, we have demonstrated the “gyroviscous cancellation,” with our numerical simu-

lations, and explored some of the implications of using the v∗ approximation instead of the

full Braginskii form of gyroviscosity. Evidently this approximation is adequate for under-

standing the effect of gyroviscosity on the gravitational instability, at least in the limits we

have considered, when ~v∗ is taken to be the ion magnetization velocity. We have clearly

shown that it can be a poor approximation to use the diamagnetic velocity for ~v∗ in the

presence of a magnetic field gradient.

The effect of gyroviscosity on other phenomena in which it might be expected to play an

important role, such as low guide field reconnection [10], will be the subject of future work.
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APPENDIX A: EXPLICIT CALCULATION OF MATRICES FOR FINITE ELE-

MENTS WITH POLYNOMIAL BASIS FUNCTIONS

We now specialize to the case in which the basis functions are polynomials of the local

coordinates, ξe and ηe, for the finite element indexed by e:

νi = gepiξ
mp

e ηnp

e (A1)

where gepi is constant in space. Furthermore, the local coordinates are taken to be related

to the global coordinates through a simple rotation parametrized by θe:

ξe = x cos θe + y sin θe (A2a)

ηe = −x sin θe + y cos θe. (A2b)

We then define

Fe(m,n) =

∫

dAe ξ
m
e η

n
e (A3)

where dAe = dξedηe is the domain of finite element e. Using this definition, the L
↔

and
↔

R

matrices can be written algebraically. For example,
∫

dA νin∇2U =

∫

dA νi∇2(νjUj)νknk

=
E
∑

e=1

∫

dAe νi∇2(νjUj)νknk

=
E
∑

e=1

gepigeqjgeskUjnk ×

× [mq(mq − 1)Fe(mt − 2, nt) +

+ nq(nq − 1)Fe(mt, nt − 2)] .

where mt = mp + mq + mr and nt = np + nq + nr. The matrices used in our code, with

the exception of the ones arising from the implementation of the gyroviscous force–the G

matrices—have been computed before [5, 6]. The computation of the G matrices is slightly

more involved, because some of them are not coordinate-invariant. Suppressing the subscript

e, we find:
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G
(11a)
ijkl = g







F3,1 [mpmq(np(mq − 1) − nq(mp − 1))] −
− F1,3 [npnq(mp(nq − 1) −mq(np − 1))]







G
(12a)
ijkl =

1

2
g







F3,1

[

1
2
mp(mp − 1)(mrnq +mqnr) −mpnpmqmr

]

−
− F1,3

[

1
2
np(np − 1)(nrmq + nqmr) − npmpnqnr

]







G
(12b)
ijkl = g(mrnq −mqnr)

{

1

2
cos(2θ)[mp(mp − 1)F3,1 − np(np − 1)F1,3] − sin(2θ)mpnpF2,2

}

G
(12c)
ijkl = g(mrnq −mqnr)

{

1

2
sin(2θ)[mp(mp − 1)F3,1 − np(np − 1)F1,3] + cos(2θ)mpnpF2,2

}

G
(13a)
ijkl = −1

2
g



















F4,0 [mp(mp − 1)mq(mq − 1)] +

+ F0,4 [np(np − 1)nq(nq − 1)] +

+ F2,2 [4mpmqnpnq − (mp(mp − 1)nq(nq − 1) + np(np − 1)mq(mq − 1))]



















G
(13b)
ijkl = g



















1
2
cos(2θ)





mp(mp − 1) (mq(mq − 1)F4,0 + nq(nq − 1)F2,2) −
− np(np − 1) (mq(mq − 1)F2,2 + nq(nq − 1)F0,4)



−

− sin(2θ) mpnp [mq(mq − 1)F3,1 + nq(nq − 1)F1,3]



















G
(13c)
ijkl = g



















1
2
sin(2θ)





mp(mp − 1) (mq(mq − 1)F4,0 + nq(nq − 1)F2,2) −
− np(np − 1) (mq(mq − 1)F2,2 + nq(nq − 1)F0,4)



+

+ cos(2θ) mpnp [mq(mq − 1)F3,1 + nq(nq − 1)F1,3]



















G
(22a)
ijkl =

1

4
g(mpnq −mqnp)F1,1

G
(23a)
ijkl = −1

2
g



















F4,0 [mpmq(mq − 1)mr] +

+ F0,4 [npnq(nq − 1)nr] +

+ F2,2 [mqnq(mpnr +mrnp)]



















G
(23b)
ijkl =

1

2
g [mqnq(mrnp +mpnr) − (mpmrnq(nq − 1) + npnrmq(mq − 1))]F2,2

G
(33b)
ijkl = g



















cos(2θ)





F3,1 mpmq[(mp − 1)nq − np(mq − 1)] +

+ F1,3 npnq[(np − 1)mq −mp(nq − 1)]



−

− sin(2θ) [mp(mp − 1)nq(nq − 1) − np(np − 1)mq(mq − 1)]F2,2



















G
(33c)
ijkl = g



















sin(2θ)





F3,1 mpmq[(mp − 1)nq − np(mq − 1)] +

+ F1,3 npnq[(np − 1)mq −mp(nq − 1)]



+

+ cos(2θ) [mp(mp − 1)nq(nq − 1) − np(np − 1)mq(mq − 1)]F2,2


















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where g = gpigqjgrkgsl and Fa,b = F (mp +mq +mr +ms − a, np + nq + nr + ns − b).
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