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The DIII-D tokamak is using Ion Cyclotron Range of Frequencies (ICRF) fast wave (FW) 

heating and current drive in high performance discharges.  The ICRF system will supplement 

the existing neutral beam (NB) and electron cyclotron (EC) heating and current drive systems.  

This study addresses the application of FW heating and current drive to high beta discharges 

produced in 2005 [1], by reproducing a discharge (122976) in a transport simulation and adding 

the FW to observe the impact on the electron and ion temperatures, safety factor/current density 

profile evolution, and non-inductive current. 

 
Fast Wave Heating and Current Drive 

The ICRF system on DIII-D [2-4] is composed of 3 launchers, all 4 strap, one at 60 MHz and 

the other two at 83 MHz.  The launched spectrum, in parallel index of refraction, is composed 

of a single broad lobe modeled as n|| = (k||c/ω) = 1.85, 3.05, 4.45, 5.85, and 7.05, with power 

fractions of 11%, 22%, 33%, 22%, and 11%, respectively, for the 83 MHz launchers.  The 

values are n|| = 2.45, 3.50, 5.25, 7.00, and 8.06, with the same power fractions for the 60 MHz 

launcher.  There are some additional lobes in the spectra but they are neglected here due to their 

small power fraction (< 5%).  The powers delivered to the plasma, based on previous 

experiments[2], are 1.5 MW into L-mode plasmas and 0.7 MW into H-mode plasmas, for each 

of the 83 MHz launchers.  The powers to the plasma are 1.2 MW into L-mode plasmas and 

0.75 MW into H-mode plasmas for the 60 MHz launcher.   

 
The calculations of the FW power deposition and current drive are done with CURRAY[5], 

assuming the fast ions from neutral beam injection (NBI) are Maxwellian at an effective 

temperature determined from the TRANSP[6] analysis, Tfast = (2/3)〈Efast〉/nfast, where nfast is the 

fast ion density and 〈Efast〉 is the average fast ion energy density integrated over the slowing 

down distribution.  Impurities assumed in the heating and CD calculations are 2% hydrogen, 



and 2% carbon in L-mode or 5% carbon in H-mode, the remainder being deuterium.  In the 

transport simulations, the FW heating profiles are used from the CURRAY analysis, with the 

FW power deposited on fast ions redistributed 75% to electrons and 25% to thermal ions, based 

on the typical fast ion energy observed in previous FW experiments[2].  Efforts to better 

understand the power damping on fast particles and the subsequent slowing down on thermal 

particles is continuing[7].  Analysis shows that the low n|| part of the spectra has the strongest 

absorption on fast ions, and the 60 MHz waves are absorbed more strongly on thermal ions 

than the 83 MHz.  The few pass (1-2) absorption is strong for both FW frequencies at the high 

densities in this discharge.  In fact, towards the end of the discharge at the highest densities, the 

absorption is all on the LFS with no access to the magnetic axis.   

 
DIII-D High Beta Discharge 122976 

The discharges 122976, 122004, and 121996, reported in ref.[1], are similar and represent the 

high beta plasma configuration of interest for this study.  The plasma reaches βN values of 

about 4.0 for 2 s, and possess internal transport barriers in the ion thermal, particle, and ion 

rotation channels, at a radius of approximately ρ ≈ 0.5.  The plasmas are produced by an Ip 

ramp up to 1.65 MA and a BT rampdown, from 2.1 to 1.55 T, throughout the discharge.  The 

line average density rises through the discharge from 1.5-7.5 × 1019 /m3 after the transition to 

H-mode, although the peak density reaches 1.0 × 1020 /m3, giving a n(0)/〈n〉 of about 1.6.  In the 

high power phase the plasma κ is 1.85, 〈δ〉 is 0.75, li(1) is 0.65, WMHD is about 1.7 MJ, and the 

NB injected power is about 10 MW (which is feedback controlling βN), with a broad centrally 

peaked deposition.  The maximum NB driven current during the discharge is about 240 kA.  

The EC power in 122976 is injected for 3.1 s, beginning at 0.7 s, with power varying between 

1.2 and 1.8 MW.  Analysis with TORAY in TRANSP indicates that after 2.3 s of operation (or 

3.1 s in the discharge), the high density in the plasma is cutting off the EC, and it no longer 

deposits power into the plasma.  In addition, since the toroidal field is ramping down, the 

resonance location varies in major radius, resulting in a minor radial deposition that begins at a 

ρ of 0.45 and moves outward to 0.85 before being cutoff.  The maximum EC driven current is 

about 50 kA, while the bootstrap current maximizes at about 1.1 MA. 

 
Modification of High Beta Discharge 122976 with FW Heating 



The discharge 122976 is reproduced in the Tokamak Simulation Code (TSC)[7] using the data 

from the TRANSP[6] analysis, including n, χe,i, PNBe, PNBi, jNB, PEC, jEC, the PF coil currents from 

the experiment, and several experimental parameters (Ro, a, Zmag, li(1), Wth, Vsurf, qo, qmin) are 

matched as well as possible to those of the discharge.  The thermal diffusivities are scaled by 

IPB98(y,2) in the H-mode phase to account for any changes to global parameters, particularly 

the addition of injected power from the FW.  CURRAY calculations using time slices from the 

TSC simulation provides the PFWe, PFWi, and jFW for the various phases of the discharge as 

described above. Although the BT ramp causes the IC resonances to move across the plasma 

during the discharge this does not appear to affect the results significantly.  FW current drive 

was found to be very small at the densities in these discharges, ranging from 5-10 kA/MW in 

the H-mode phase, and is neglected here. 

 
Shown in Fig. 1 are the time histories of the plasma current and its contributions from NBI, EC, 

and bootstrap, for the reference case with NB and EC, and a case where the EC is replaced by 

2.2 MW, from all 3 launchers, (4.2 MW injected) of FW.  Cases where the FW was added to 

the EC were also done, but not shown.  Also shown are the heating and parallel current density, 

at 1.5 s in the discharge simulation.  Fig. 2 shows the central and minimum safety factor time 

histories, and profiles at 1.5 s.  The heating profiles for the EC (electrons only) and FW 

(electrons and ions) are quite different in location and distribution.  In spite of this, they both 

appear to have the same impact on the discharge, giving similar total non-inductive current, 

bootstrap current, and NB driven current.  However, the EC clearly produces a very localized 

off-axis current deposition , while the FW heating yields slightly higher NB driven and 

bootstrap current density in the core.  This results from higher temperatures produced in the 

core with FW heating.  From the safety factor profiles it can be seen that the ECCD is 

producing a local safety factor minimum at a larger radius than the FW heating case, and this 

tendency persists until late in the discharge simulations. 

 
Conclusions 

It is found that the FW heating deposits its power near the plasma core (ρ < 0.5), the central Te 

and Ti are increased by the FW heating, the FW heating leads to higher local NB and bootstrap 

current densities in the core, the FW power deposition persists at high density, and leads to 



similar total non-inductive current compared to EC.  However, the ECCD produced a local qmin 

with larger radii than the FW heating.  In addition, adding FW heating to the discharge with NB 

+ EC did not result in a significant change in the q profile evolution.  Future work will 

concentrate utilizing FW and EC heating and current drive at lower density (facilitated by the 

new lower pumped divertor geometry) and plasma current to sustain the high qmin and large 

ρ(qmin) characteristic of these discharges. 
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