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The influence of the circulating energetic ions on the quasi-interchange (QI) mode

in tokamak plasmas with a wide shearless core and the central safety factor close

to unity is considered. It is found that these ions tend to stabilize the QI mode

in the case of co-injection and balanced injection, whereas the influence of counter-

circulating ions is typically destabilizing because of finite-orbit-width effects. Specific

examples relevant to tokamaks with large and small aspect ratio of the torus are

considered.
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I. INTRODUCTION

Experiments on tokamaks show that the energetic ions, either trapped or circulating, can

stabilize sawtooth oscillations – a typical form of magnetohydrodynamic (MHD) activity

in tokamak plasmas – when the magnetic shear (ŝ) inside the q = 1 radius, rs [q(r) is the

tokamak safety factor] is considerable.1,2 These facts can be explained theoretically in terms

of the ideal kink mode and non-ideal MHD modes (tearing modes in various regimes of the

collisionality) in the presence of the energetic ions.3–7 The cited theoretical works imply that

the shear in the plasma core is not small (the works actually are valid for ŝ ∼ 1 − q0 À εs

in the region r <∼ rs, where q0 = q(0), εs = rs/R, R the large radius of the torus). Till

recent time, concerning the influence of the energetic ions on MHD activity in the small-

shear plasma core, ŝ <∼ εs, was known only that the trapped particles play a minor role

because the perturbed magnetic flux encircled by the precessional drift orbits vanishes in

the limit of 1 − q0 → 0.5 Thus, it is of interest to consider the effect of the circulating

energetic ions in this case. First results of the study of the influence of circulating particles

on the m = n = 1 ideal MHD modes in low-shear plasmas were reported recently in an

invited ICPP (International Congress on Plasma Physics) paper.8 However, the analysis

itself was not shown in the mentioned paper. Moreover, only a particular example was

considered. This motivated us to make this work where an analysis of the influence of

circulating energetic ions on MHD activity in plasmas with the shearless core is carried out

and tokamaks with various magnitudes of the aspect ratio of the torus and various shearless

regions are considered.

Equilibria with the extended low-shear central core separated from the wall by the region

with large magnetic shear are prone to the so called ”infernal” mode instability when the

safety factor profile q(r) is flat and sufficiently close to the mode rational m/n, with n

the toroidal mode number, in the central region.9–11 The dominant poloidal harmonic of

such modes is localized in the low-shear, near-resonant region, where the field-line bending

is minimized. Toroidal coupling plays a crucial part in the destabilization of the infernal

modes, allowing the mode to acquire quasi-ballooning character. The lowest mode number

(m = n = 1) member of this family is known as the quasi-interchange (QI) mode.12 The

structure of the QI mode has nothing to do with the rigid kink displacement taking place for

ŝ À εs in the core region. The QI instability was proposed in Ref. 12 to interpret sawtooth



3

crashes in those JET (Joint European Torus13) shots where the crashes were incompatible

with the Kadomtsev model described in Ref. 14. An analytical theory for the QI-mode

stability in the framework of the ideal MHD was developed in Refs. 15,16. However, plasmas

of modern discharges with equilibria prone to the QI mode typically contains a population

of energetic ions arising, e.g., from the neutral beam injection (NBI). That is why it is of

interest to extend analysis of the mentioned works to include effects of the energetic ions.

Note that flat q(r) profiles in the plasma core are typical for the low-aspect ratio tokamaks

(spherical tori). They may occur also in the conventional tokamaks. In particular, such

profiles were observed in JET and will take place in the ITER hybrid operation scenario.

II. STABILITY ANALYSIS

We consider a plasma with strong-shear periphery and shearless core that contains well

circulating energetic ions with the distribution function, Fα, given by

Fα(r̄, ε, Λ) =
m3/2

α

2
√

2πεα

pα(r̄)H(εα − ε)ε−3/2
[
1

2
(1− σb) + σbH(±v‖)

]
δ(Λ), (1)

where r̄ is the average radius of a particle during its orbital motion, Λ = µB0/ε, µ is the

particle magnetic moment, B0 is the magnetic field at the magnetic axis, εα is the birth

energy, pα(r̄) =
∫

d3vmαv2
‖Fα is the beam particle pressure, H(x) is the unit step function,

and δ(x) is the Dirac δ-function, σb = 0 for the balanced injection, and σb = 1 in the case

of co- and counter- injections.

In order to derive equations describing the QI mode in the presence of the energetic ions

we proceed from the following energy functional, δE :

δE =
R

π2B2
0

(δWMHD + δWhot) +
γ2

ω2
A

N, (2)

where δWMHD is the ideal MHD potential energy,15,16 δWhot is the energetic ion contribution

to the potential energy, and ωA = vA/R with vA the Alfvén velocity. The last term in Eq. (2)

represents the kinetic energy. It is given by

N =
1

2π2R

∫
d3r|~ξ|2, (3)
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with ~ξ the plasma displacement. The magnitude δWhot includes both the fluid part and

kinetic part (we used Refs. 17,18):

δWhot = δWf + δWk(ω = 0), (4)

δWf ≡ 1

2

∫
~ξ∗⊥ · ∇δΠf

αd3r =
π2mα

qR

∑
σ

∫
dr

∫
v5dv

∫ ∂Fα

∂r
τb〈|ξr|2r cos θ〉dΛ, (5)

δWk ≡ 1

2

∫
~ξ∗⊥ · ∇δΠk

αd3r = −π2mα

ωcα

∑

S=0,±1

∑
σ

∫
v3dv

∫
dr

∫
dΛτb×

∂Fα

∂ε

ω − ω∗α
ω − (k‖ + S/qR)v‖ − ωd

∣∣∣∣∣

〈(
v2
⊥
2

+ v2
‖

)
~ξ⊥ · ~κ exp

{
i

[
ω −

(
k‖ +

S

qR

)
v‖ − ωd

]
t

}〉∣∣∣∣∣
2

,

(6)

where δΠf(k)
α = δp

f(k)
⊥α Î + (δp

f(k)
‖α − δp

f(k)
⊥α )~b~b is the pressure tensor, Î is the identity tensor,

δp
f(k)
‖/⊥α is the parallel/perpendicular pressure perturbation associated with the adiabatic

(non-adiabatic) response of energetic ions, σ = v‖/|v‖|, ~κ is the field line curvature, τb is the

particle transit time, ω∗α is the diamagnetic drift frequency of the energetic ions, ωd is their

precession frequency, and 〈. . .〉 denotes the orbit averaging.

First of all, we perform the orbit averaging and calculate the velocity integrals in Eqs. (5),

(6). Omitting the term odd in θ in ~ξ⊥ · ~κ in the integrand of Eq. (6) (this term does not

contribute to δWk) we obtain:

|ξr|2 = ξ2
1 + 2ξ1ξ2 cos θ + ξ2

2 , (7)

~ξ⊥ · ~κ = − 1

R
ξ1(r) cos θ(t) exp{i[θ(t)− φ(t)− ωt]}, (8)

where ξ1 and ξ2 are the amplitudes of the m = 1 radial displacements and m = 2 radial

displacement, respectively,

r(θ) = r̄ + ∆α cos θ, θ(t) =
v‖
qR

t, φ(t) =
v‖
R

t, (9)

∆α = [q(r̄)/v‖ωcα](0.5v2
⊥ + v2

‖), ∆α ¿ r̄, where ωcα is the fast ion gyrofrequency. In Eq. (8)

the only term (proportional to ξ1) is retained because the term proportional to ξ2 does not

contribute to orbit averaged magnitudes in Eq. (6).
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Note that the precession of circulating ions is taken into account in Eq. (6). This preces-

sion plays an important role for the internal kink mode, providing a nonzero kinetic response

at ω = 0 for S = 0.7 However, in the case of the QI mode the particles deposited in the

shear-free core contribute to δW S=0
k .19 Because |1 − q| ∼ εs and ωd ∼ v2

‖/(ωcαR2), we have

in the shear-free core |ωd/k‖v‖| ∼ ρα/r ¿ 1, so that we can neglect the precession. This

justifies omitting a drift term in the equation for θ(t) in Eq. (9) and gives us grounds to

assume that ωd = 0 in Eq. (6). Then using the result of Ref. 19 for the S = 0 term, we find:

R

π2B2
0

δW S=0
k (ω = 0) = −ρ3

αR

5π

∫ a

0
dr̄

∣∣∣∣∣
dξ1

dr̄

∣∣∣∣∣
2
dβα

dr̄
, (10)

R

π2B2
0

[
δW S=1

k (ω = 0) + δW S=−1
k (ω = 0)

]
= −ραR

12π

∑
σ

σ
∫ a

0
dr̄

2q(1− q)

2− q
|ξ1|2dβα

dr̄
, (11)

The fluid part of the energy functional given by Eq. (5) can be written as follows [Eqs. (7),

(9) were used]:

δWf = δWcoup + δWFOW , (12)

R

π2B2
0

δWcoup =
R

8π

∫ a

0

dβα

dr̄
ξ1ξ2r̄dr̄, (13)

R

π2B2
0

δWFOW = −ραR

12π

∑
σ

σ
∫ a

0

d2βα

dr̄2
ξ2
1 r̄dr̄, (14)

where ρα = vα/ωcα, δWcoup and δWFOW are the term associated with the toroidal coupling

and the term associated with the finite orbit width, respectively. One can see that δWFOW

given by Eq. (14) has different signs for co-injection (σ = 1) and counter-injection (σ =

−1); it is vanishing for the balanced injection. Both fluid terms are of the same order,

δWFOW ∼ δWcoup for ρα/Lpα ∼ εa ≡ a/R ( a is the plasma radius, Lpα the fast ion pressure

scale length) because ξ2 ∼ εaξ1. They well exceed the kinetic terms. This conclusion can be

drawn by comparing Eqs. (10), (11) and (13), (14) and taking into account that |1− q| ∼ εs

in the region where ξ1 is localized. Therefore, below we neglect the kinetic terms.

Equation (2) and Eqs. ( 13), (14) lead to the following Euler equations (r̄ is replaced with

r):
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d

dr








(
1

q
− 1

)2

+
3γ2

ω2
A


 r3dξ1

dr



−G{ξ1}+

1

3

∑
σ

σραRrβ′′αξ1

= Ĉ{ξ2}+
1

2
Rrβ′αξ2, (15)

d

dr




(
1

q
− 1

2

)2

r3dξ2

dr


− 3

(
1

q
− 1

2

)2

rξ2 = Ĉ+{ξ1}+
1

2
Rrβ′αξ1, (16)

where prime denotes the radial derivative, G is the toroidal driving term, Ĉ and Ĉ+ are the

toroidal coupling operators in the absence of energetic ions. The explicit forms for G and Ĉ

are given in Ref.16. The operator Ĉ+ is adjoint to Ĉ :

∫ a

0
drf(r)Ĉ{g(r)} =

∫ a

0
drg(r)Ĉ+{f(r)}. (17)

We assume that γ/ωA = O(εa), |1/q − 1| = O(εa), G(ξ1) = O(ε2
aξ1), Ĉ(ξ) = O(εaξ), ξ2 =

O(εa)ξ1 in the plasma core.

Due to the mentioned ordering, we can take q = 1 in the terms G, Ĉ, and Ĉ+ for the

shearless core. Then Eqs. (15), (16) can be written as follows [cf. Eq. (44a,b) of Ref. 16]:

d

dr̃








(
1

q0

− 1

)2

+ 3γ̂2


 r̃3dξ1

dr̃



− 4ε2

a

(
r̃

4
β′p + βp

)2

r̃3ξ1 +
1

3

∑
σ

σ
ρα

εaa
r̃β′′αξ1 =

(
r̃

4
β′p + βp

)
ε2
a

d

dr̃
(r̃3ξ̂2) +

1

2
r̃β′αξ̂2, (18)

d

dr̃

(
r̃3dξ̂2

dr̃

)
− 3r̃ξ̂2 = −4r̃3 d

dr̃

[(
r̃

4
β′p + βp

)
ξ1

]
+ 2r̃β′αξ1, (19)

where r̃ = r/a, γ̂ = γ/ωA, ξ̂2 is defined by ξ2 = εaξ̂2, and

βp(r̃) = − 1

ε2
ar̃

4

∫ r̃

0
r̂2 d

dr̂

(
βc +

βα

2

)
dr̂. (20)

In Eq. (20) a contribution of the anisotropic fast ion population to the Shafranov shift is

taken into account. This is done using the following solution of the equilibrium equations

with the anisotropic pressure:20

∆′(r) =
r

R

(
li
2

+ 〈βp〉S + βA
ph

)
, (21)
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βA
ph =

1

2

(
qR

r

)2

〈(βα⊥ + βα‖) cos 2θ〉S,

〈βp〉 = −q2R2

r4

∫ r

0
dr̂r̂2 d

dr̂

[
βc +

1

2
〈(βα⊥ + βα‖)〉S

]
,

where li is the local internal inductance and 〈. . .〉S denotes the flux surface averaging.

We assume that transition between the low-shear region and large-shear region is suf-

ficiently abrupt and use the fact that ξ1 is small and can be neglected in the large-shear

region.15,16 The eigenvalue γ̂ can then be obtained in two steps. At the first step, Eq. (16)

with the neglected right-hand side will be solved numerically in the outer region, r0 ≤ r ≤ a,

where r0 is the boundary between the shearless region and large-shear region, with imposing

the following boundary conditions:

ξ̂2(r0 + 0) = 1, (22)

ξ̂′2(r2) = 0, (23)

where r2 is defined by the equation q(r2) = 2, and it is assumed that the q = 2 radius lies

inside the plasma, r2 < a. Note that Eq. (22) represents a normalization condition. At the

second step, Eqs. (18), (19) will be solved numerically in the inner region, 0 ≤ r ≤ r0, with

the boundary conditions

ξ′1(0) = ξ1(r0 − 0) = 0, (24)

ξ̂2(r0 − 0) = 1, ξ̂′2(r0 − 0) = ξ̂′2(r0 + 0), (25)

where ξ̂′2(r0 + 0) is the magnitude obtained at the first step.

When the energetic ions are absent, Eqs.(18), (19) can be solved analytically, which

yields:

ξ1(r̃) =
ε2
aCξ1

(1/q0 − 1)2 + 3γ2

∫ r̃0

r̃
rβp(r)dr (26)

ξ2(r̃) = r−3
∫ r̃

0
r4βp(r)

dξ1

dr
dr + [Cξ1 − βp(r̃)ξ1(r̃)]r̃, (27)
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where the constant of integration Cξ1 and dispersion relation for γ are determined by the

boundary conditions given by Eqs. (24) and (25).

Below we choose the following model profiles for β(r), βα(r) (the ratios of the particle

pressure to the magnetic field pressure), and q(r):

β(r) = β0

(
1− r2

a2

)l1

, (28)

βα(r) = βα0

(
1− r2

a2

)l2

, l2 > l1, (29)

q(r) =





q0 = 1−∆q for 0 ≤ r ≤ r0

q0 + (qa−q0)(r−r0)2

(a−r0)2
for r0 ≤ r ≤ a,

(30)

where ∆q > 0. For these profiles, Eqs. (26), (27) with the boundary conditions (24) and

(25) yield:

3γ2 =
−τ + αξ

′
2(r̃0 + 0)

1− r0ξ
′
2(r̃0 + 0)

−
(

1

q0

− 1

)2

. (31)

In particular, for l1 = 2 the expressions for τ and α are given by

τ =

(
q2
0β0

ε

)2 {
−dP1

dr

∣∣∣∣∣
r̃0

+ P2(r̃0) + r̃0
dP2

dr

∣∣∣∣∣
r̃0

}
, (32)

α =

(
q2
0β0

ε

)2

{−P1(r̃0) + r̃0P2(r̃0)} , (33)

where P1(r̃) and P2(r̃) are the polynomials,

P1(r̃) =
1

6
r̃3

{
− 4

15
r̃4 + r̃2 − 1

}
, P2(r̃) =

1

2

(
2

3
r̃2 − 1

) {(
r̃4
0

3
− r̃2

0

)
− r̃4

3
+ r̃2

}
. (34)

In the considered case of l1 = 2, the eigenfunctions corresponding to the eigenvalue (31) are

also polynomials:

ξ1(r̃) =
Cξ2

2

{(
r̃4
0

3
− r̃2

0

)
− r̃4

3
+ r̃2

}
, (35)

ξ2(r̃) = −
(

q2
0β0

ε

)
Cξ2P1(r̃) +

[
Cξ1 +

(
q2
0β0

ε

)
Cξ2P2(r̃)

]
r̃, (36)
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where

Cξ1 =

[
r̃0 +

(
q2
0β0

ε

)
q2
0β0

(1/q0 − 1)2 + 3γ2
{−P1(r̃0) + r̃0P2(r̃0)}

]−1

, (37)

Cξ2 = Cξ1

q2
0β0

(1/q0 − 1)2 + 3γ2
. (38)

We developed a code which solves Eqs. (18), (19) numerically. When βα = 0, it reproduces

the analytical results for both γ and eigenfunctions very well (including the case when the

system is near threshold, i.e. when γ is very small). The code makes calculations for βα 6= 0

by means of an iteration procedure, with the initial solution given by Eqs. (31), (35), ( 36).

Using this code, calculations were carried out for two tokamaks, which we refer to as

the conventional tokamak (CT), and spherical tokamak (ST). We assumed that β(0) = 0.1,

l1 = 2, l2 = 4, ρα/a = 0.05 and varied βα(0), r0/a, and A ≡ R/a. In CT we took

A ≡ R/a = 4 and qa = 3, whereas A = 2 and qa = 5 in ST. The ratio r0/a was taken 0.5 in

both CT and ST. In addition, we took r0/a = 0.3 in CT.

The results for ST and CT with r0/a = 0.5 are shown in Figs. 1, 2a. We observe that the

instability is more strong in the CT: in the absence of the energetic ions γCT
max/γ

ST
max = 1.7,

the growth rate decreasing by a factor of 4 for (∆q)0 = 0.06 (the subscript ”0” means that

the energetic ions are absent) in CT and (∆q)0 = 0.035 in ST. The stabilizing effect of the

energetic ions is roughly the same in CT and ST, γmax decreases by a factor of 2 due to

the presence of the energetic ions with βα = 5%, and (∆q)0/(∆q)α ∼ 2, where (∆q)α is the

magnitude of ∆q for which the growth rate decreases by a factor of 4 in the presence of the

energetic ions.

The results of calculations for CT with r0/a = 0.3 are shown in Fig. 2b. Comparing Figs.

2 and 3 we conclude that the influence of the unbalanced injection (either co- or counter-)

is much more strong in tokamaks with smaller r0/a. In particular, when ∆q → 0, adding

co-/counter- injected ions with βα(0) = 1% reduces/increases the growth rate by a factor

of 2. Surprisingly, adding a counter-directed beam with βα(0) = 1% to a co-directed beam

with βα(0) = 1% only weakly affects the growth rate of the co-injected case: the curve

corresponding to the balanced injection with βα(0) = 2% (not shown in Fig. 2b) almost

coincides with the curve corresponding to the co-injection with βα(0) = 1%, in spite of

the fact that the curve corresponding to the counter-injection with βα(0) = 1% lies above
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the curve in the absence of the energetic ions. The explanation of these results is the

following. There are two mechanisms responsible for the influence of the energetic ions on

the instability. First, the toroidal coupling of the mode harmonics, which leads to terms

proportional to β′α in Eqs. (18), (19), and second, the finite orbit width of the energetic

ions, which leads to terms proportional to β′′α. The decrease of r0/a leads to the decrease

of the region where the dominant harmonic (m = 1) is localized; therefore, the ratio β′′α/β′α

grows. This explains why the effects of the energetic ions for unbalanced injection are more

pronounced for smaller r0/a. On the other hand, finite-orbit terms compensate each other

for the balanced injection. As a result, only terms proportional to β′α, which are relatively

small for small r0/a and do not depend on the beam direction, contribute. This explains why

the balanced injection has a stabilizing influence on the instability and why this influence

is relatively small, so that the balanced injection with βα(0) = 2% produces approximately

the same effect as the co-injection with βα(0) = 1%.

In conclusion, we note that the energetic ions affects not only the stability of the QI

mode but also its radial structure. Figure 3 demonstrates this for the case of a balanced

injection. When a non-balanced injection is used, the mode structure can be considerably

changed, especially ξ1(r) in the region of small r for σ = −1 (counter-injection). However,

the term in Eq. (18) describing the contribution of the finite orbit width was obtained in

approximation of the small orbit width, which implies that our calculations are correct only

when effects of the near-axis particles are small. This is the case when r0 À ∆α.

III. SUMMARY AND CONCLUSIONS

In summary, we have shown that the circulating energetic ions can stabilize the QI mode

in tokamaks with the shearless plasma core and the central safety factor slightly smaller

unity. Normally, the stabilizing effect takes place when the co-injection or balanced injection

is used. It weakly depends on the aspect ratio of the torus. The effect is most strong in the

case of co-injection and when the shear-free region (r ≤ r0) is not too large, so that finite

orbit width effects may considerably contribute. On the other hand, when r0/a is relatively

small and counter injection is used, the particle finite orbit width may either enhance the

instability. The reason for the stabilizing (destabilizing) effect of the co- (counter-) injection

is clear: when the stability is determined by the region where ξ1(r) is a smoothly decreasing
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function (in contrast to the internal kink mode), the co- (counter-) injected ions with their

orbits shifted outward (inward) ”feel” smaller (larger) ξ1 when passing the region with

unfavourable curvature, and larger (smaller) ξ1 when passing the region with favourable

curvature.

For the balanced injection, finite orbit width effects compensate each other, so that the

energetic ions influence the instability only due to the toroidal coupling of the dominant

mode harmonic with m = 1 and the satellite harmonic with m = 2. This mechanism is

relatively does not depend on the beam direction.

The effect of the mentioned toroidal coupling does not depend on the beam direction.

Therefore, when this effect exceeds the influence of the finite orbit width on the mode, some

decrease of the instability growth rate can take place also during counter-injection.
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FIG. 1: Safety factor profile q(r) with q0 < 1 (Fig. 1a) and the QI instability growth rate for this

profile but various q0 (∆q ≡ 1 − q0) (Fig. 1b) in a small-aspect-ratio tokamak (ST) with A = 2,

qa = 5, and r0/a = 0.5. The other parameters used: l1 = 2, l2 = 4, β0 = 0.1, ρα/a = 0.05. Blue

line corresponds to the balanced injection, red line corresponds to the co-injection.
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FIG. 2: The QI instability growth rate versus ∆q ≡ 1− q0 in a tokamak (CT) with A = 4, qa = 3:

a, r0/a = 0.5; b, r0/a = 0.3, the other parameters are the same as in Fig. 1. Purple line, blue line,

and red line correspond to the counter-injection, balanced injection, and co-injection, respectively.
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FIG. 3: Eigenfunctions ξ1(r) and ξ2(r) in a small-aspect-ratio tokamak: a, in the absence of the

energetic ions; b, during a balanced injection. The used parameters are the same as in Fig. 1.
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