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Abstract

The turbulent convective flux of the toroidal angular momentum density is derived using the
nonlinear toroidal gyrokinetic equation which conserves phase space density and energy [T.S. Hahm,
Phys. Fluids, 31, 2670 (1988)]. We identify a novel pinch mechanism which originates from
the symmetry breaking due to the magnetic field curvature. A net parallel momentum transfer
from the waves to the ion guiding centers is possible when the fluctuation intensity varies on the
flux surface, resulting in imperfect cancellation of the curvature drift contribution to the parallel
acceleration. This mechanism is inherently a toroidal effect, and complements the k| symmetry
breaking mechanism due to the mean E x B shear [O. Gurcan et al., in press Phys. Plasmas (2007)]
which exists in a simpler geometry. In the absence of ion thermal effects, this pinch velocity of the
angular momentum density can also be understood as a manifestation of a tendency to homogenize
the profile of “magnetically weighted angular momentum density,” nmiRQwH /B2. This part of the
pinch flux is mode-independent (whether it’s TEM driven or ITG driven), and radially inward for
fluctuations peaked at the low-B-field side, with a pinch velocity typically, V}nEgP ~ —2x¢/Ro- Ton
thermal effects introduce an additional radial pinch flux from the coupling with the curvature and
grad-B drifts. This curvature driven thermal pinch can be inward or outward, depending on the

mode-propagation direction. Explicit formulas in general toroidal geometry are presented.



I. INTRODUCTION

It is well known that plasma rotation can play a crucial role in reducing turbulence
and transport as well as in stabilizing MHD instabilities including the Resistive Wall Mode
(RWM). Therefore, understanding momentum transport which influences the plasma rota-
tion is a very important issue. However, current theoretical understanding of the momentum
transport lags behind that of ion thermal transport, if not that of the electron thermal trans-
port and particle transport.

Transport analysis of tokamak experiments usually indicates that the toroidal momen-
tum diffusivity x, is anomalous, i.e., higher than neoclassical theory predictions from col-
lisional transport mechanisms. Typically, x4 is comparable to the ion thermal diffusivity
Xi,! in rough agreement with theoretical predictions based on low frequency, ion gyroradius
scale, electrostatic drift wave turbulence, including ion temperature gradient (ITG) mode
turbulence? and trapped electron mode (TEM) turbulence.®> However, the observation of
spontaneous toroidal rotation of plasmas in the absence of apparent torque input brought
new challenges for theoretical understanding. Spontaneous rotation has been observed in
many tokamaks.*'% In particular, it has been explored in detail by the Alcator C-Mod team

579711 and is sometimes called an “intrinsic rotation””. The variety of rotation

and others
behavior in many tokamaks seems to indicate that it is not possible to explain most rotation
profiles, which are sometimes peaked near the axis where there’s no torque input, using
an “anomalous diffusion” of momentum only. A likely dynamical scenario for the origin
of spontaneous rotation involves a nondiffusive inward flux of toroidal angular momentum
from edge sources. In addition, a recent perturbation experiment on JT60-U neutral beam
heated plasmas showed a need for an “inward pinch term” of angular momentum in the
transient transport analysis, to match the measured centrally peaked rotation profiles'?!3.

Recognizing a need for theoretical identification of a pinch mechanism (or to be more
generic, a non-diffusive component of the radial transport of toroidal momentum?!?), there
has been renewed interest in establishing physical mechanisms for non-diffusive momentum
transport. These include recent work by Gurcan et al.,!> where the role of the E x B
shear in inducing a nondiffusive component of toroidal momentum transport is elucidated

and quantitatively calculated. To obtain a nondiffusive flux of parallel momentum, it is

necessary to produce a net acceleration of the ion flow parallel to the equilibrium magnetic



field. In nonlocal analysis, this accelaration is proportional to the radial average of k) over
the spectral width, which usually vanishes in a simple analysis, since the eigenmode is peaked
at the rational surface and kj oc m — £q flips sign at the mode rational surface.'* However,

the E x B shear provides a robust symmetry breaking mechanism,!®

which is necessary
for net plasma accelaration, by radially shifting the eigenmode to one side, and thereby
making the radial average of k| non-zero. One obtains a similar, but much weaker effect
from the parallel velocity shear.'® Nonzero value of (k) also implies a finite mean parallel
wave momentum, since the wave-momentum density is P = kN, with N the wave population
(action) density. That work exhibited several promising features including the observation of
co-rotation of many H-mode plasmas, produced via various methods, in tokamaks'” in which
E x B shear is expected to be significant. In particular, the theory predicts a V P;/n;-shear
driven residual stress (i.e., neither diffusion nor pinch) which, acting in concert with the edge
boundary condition on the flow, can drive ‘intrinsic’ rotation. An extension of this theory
from cylindrical to toroidal geometry in order to obtain more quantitative comparisons with
experiment is currently in progress'®.

On the other hand, spontaneous rotation has also been observed in L-mode®>!® and OH
plasmas”!! in which the E x B shear effect is expected to be weak. Therefore, it is worth-
while to explore other possible physical mechanisms for an inward pinch of toroidal angular
momentum in the absence of E x B shear.

In this paper, we develop a general nonlinear expression for the radial flux of ion parallel
angular momentum density using the electrostatic toroidal nonlinear gyrokinetic equations
with proper conservation laws, including those of phase-space density and energy.?® From
this study, we identify a novel pinch mechanism for parallel angular momentum density
which originates from the symmetry breaking due to the equilibrium B field curvature and
inhomogeneity. In this analysis, E; = 0 throughout.

From our work, the resulting radial component of the turbulence driven flux, Il 4,4 of the

ion parallel momentum density m;noU) R can be written as,

(TU5-75) == oty (RBo)? - (minoU} )} + Vaug{ R BomenoUj ),

o
where v is the poloidal flux designating the radial coordinate with the relation di) = RBydr.

In the hydrodynamic limit,
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is the flux-surface-averaged turbulent angular momentum density diffusivity, where Ret.y is
the turbulence decorrelation time, and / is the toroidal mode number. The novel turbulence

driven convective pinch velocity V1% ¢° consists of two parts with different physical origins.

Ang

To the lowest order in /Ry, with Ry the major radius at the magnetic axis, the turbulent

equi-partition pinch velocity, V2" is driven by V(1/B), and given by

VTEP _ 2Fbattoon
Ang — RO XAng>

where a dimensionless coefficient on the order of unity, Fyu00n characterizes the “Ballooning
structure” of turbulence. For typical outward balloning fluctuations (peaked at the low-B
side), Fyayoon ~ 1 > 0, and V};ng < 0, i.e., inward in radius. This part of the prediction
comes mostly from the geometric properties of the nonlinear gyrokinetic system, and is
insensitive to the propagation direction of the underlying microinstabilities. On the other

hand, the curvature driven thermal (CTh) flux is given by

Th
VCTh ~ 4FballoonG
Ang — R XAngs
0

and is due the ion thermal effects associated with the ion temperature fluctuations. This

0T;
ei0p

this ratio depends on the direction of mode propagation (very roughly #:%%) the sign and

piece is characterized by a dimensionless coefficient on the order of unity , GT" ~ (2%). Since

magnitude of ngg;h depends on the details of underlying microturbulence. For fluctuations

propagating in the electron diamagnetic direction, G*" is positive definite, making Vf;?;h
inward for outward ballooning fluctuations. On the other hand, for fluctuations propagat-
ing in the ion diamagnetic direction, G™ can be negative, (though a precise determination

of sign requires a numerical evaluation as we discuss in the main text), and V{Z" can be

Ang
VTEP

outward for outward ballooning fluctuations. So unlike Vo, which is inward regardless

of microinstabilty details, V1" depends on the mode propagation direction and proxim-
VCTh : .
V;}:{’gjﬂ ~ 7. Therefore, we predict

ity to linear margnality. We also note that, typically |
that for TEM-dominated turbulence expected for Ohmic and electron-heated plasmas, the

total convetive pinch velocity Vﬂ‘g’" Co = V};LE;P + anj;h is inward. On the other hand, for

VTE‘P :

ITG-dominated turbulence, V1" can sometimes be outward, while is always inward.

Ang Ang
Therefore, the resulting net sign of V},}‘g’ Co depends on several factors such as % and prox-
€

imity to linear marginality, and a general prediction of the pinch velocity direction is not

possible.



As discussed in relation to Ref. 15, a net acceleration of the parallel velocity after an
average over the mode width is a key to obtaining a non-diffusive radial flux of the parallel
momentum. In a sheared slab or in cylindrical geometry with negligible variation of B
or of the curvature of B, a necessary symmetry breaking mechanism required for a net
acceleration is provided by the E x B shear, as shown in a nonlinear gyrofluid simulation.?%?2
In strongly magnetized plasmas in toroidal geometry, the nonlinear gyrokinetic equation

satisfying the relevant conservation laws?° indicates that the perturbed gyrocenter parallel

velocity vﬁl) =b-dR"M /dt obeys:

oV B* B + 2V xy b
| e ~ _ € 12 ..
mi—, o e;V{0p) ~ iL e;V{do),

since B* =B + me—::CvaHb. Therefore, the parallel acceleration of gyrocenters in a strongly
magnetized plasmas depends not only on the k| of the fluctuations, but also on the perturbed
E x B velocity which couples to the magnetic curvature o< b x (b - V)b, orthogonal to b.
To obtain a net acceleration, we need either a symmetry breaking in the first term (o< k),
which is discussed in detail in Ref. 15, or a symmetry breaking in the second term, addressed
in this paper, which is related to the magnetic field inhomogeneity. For the latter, since the
magnetic curvature changes its sign along the B field as one moves from the low B field
(bad curvature) side to the high B field (good curvature) side, the fluctuation amplitude
must change along the magnetic field to yield a net acceleration. This is why ballooning
structure of the fluctuations is required to obtain the momentum pinch term studied in
this paper. These two physically different symmetry breaking mechanisms can be viewed as
limiting cases of a more general symmetry breaking mechanism which can be dubbed the
”"B*-symmetry breaking”.

The remainder of this paper is organized as follows. In Sec. II, the physical mechanism
of the parallel angular momentum pinch identified in this work is discussed. From the non-
linear gyrokinetic equation, a moment approach leading to the radial flux of parallel angular
momentum density in the hydrodynamic limit is presented in Sec. III, and explicit expres-
sions for the angular momentum pinch and the momentum diffusivity are derived. In Sec.
IV, we interpret the V B-driven inward pinch of parallel angular momentum density in terms
of turbulent equipartition (TEP) theory. We also compare and contrast the pinch with the
now familiar TEP mechanism for the density pinch.?*25 In Sec. V, a quasilinear gyrokinetic

expression for the radial flux of parallel angular momentum is presented and compared to the



moment results. Finally, our results are discussed in relation to experimental observations

and the theory of the curvature driven particle pinch in Sec. VI.

II. ORIGIN OF MOMENTUM PINCH IN TOROIDAL GEOMETRY

In this section, we discuss the physical origin of a novel momentum density pinch in
toroidal geometry. Further detailed analyses are presented in the forthcoming sections. The
purpose of this section is the identification of terms which lead to a momentum density
pinch, rather than a systematic derivation thereof. While the angular momentum density is
the quantity of primary physical interest in toroidal systems, for simplicity we first discuss
the convective pinch of simple momentum density in this section. Since some transport
analyses were implemented for the momentum density in the past, it is also useful to point
out some quantitative differences originating from geometric effects such as the dependence
on B o< 1/R.In Sec. III, IV,V, and V, we deal with the angular momentum density explicitly.
The radial flux of the toroidal momentum density nU, driven by the electrostatic turbulence

can be written as
T vtom = (6v,0(nUy)), (1)

where v, is the radial component of the fluctuating E x B velocity due to turbulence,
and §(nUy) is the momentum density fluctuation. Here, (...) represents the flux surface
average. We will use ((...)) for the gyro-phase average. We note that, since 6(nU,) =
nooUy + Updn + 6ndUy, not only the velocity fluctuations, but also the density fluctuations
can contribute to the radial flux of momentum density, since each particle carries its own
momentum. Hence, there are both convection (~ (dv,0n)) and Reynolds stress (~ dv,0Uy))
contributions to the total momentum flux. There also exists a triplet term (dndéUgdv,)
which is a higher order effect which we don’t address in this paper. However, triplet terms

2733 which is another

like this have been shown?® to be responsible for turbulence spreading
outstanding theoretical issue. Possible extensions of the theory to include the effects of
turbulence spreading are discussed briefly in the conclusion section.

In tokamaks where By >> By, the “magnitude” of U, can be approximated by U, since

A 3 ) ) B B
Uj=U-b= Uy + Upy) - (Byy + Bo&y)/B = U¢§¢ + U9§0 ~ U,,

if Ug% < Uy. Since k| < k1, the effect of U on turbulence is relatively weak compared
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to that of the E x B flow which is perpendicular to B.3* As is well known from nonlinear
theory®> and from experiments,®® E x B shear plays an essential role in reducing turbulence.
In this paper, we focus our studies on the radial transport of Uy, rather than on its effect on
turbulence. With this in mind, the radial flux of the toroidal momentum is approximated

by that of the parallel momentum, and we have
L atom = (0(nUy)dv,) ~ (5(nU)))év,) = UpL'py + nom)r, (2)

where I')y = (6ndv,) is the particle flux (assuming én; = on.), 7, = (0U|0v,) is the parallel
Reynolds stress, which has been measured from experiments,®” and Uy is a simpler notation
for Uy,|. Therefore, in discussing momentum transport, contributions from particle transport
should be kept in mind. For instance, particle flux can manifest itself as part of an apparent
momentum pinch, if one considers the flux of U. As will become more apparent in the
forthcoming sections, a formulation in terms of the (angular) momentum density (rather
than in terms of momentum or velocity U}) is most natural. We also note that calculating
the turbulent particle flux from the ion response alone can be misleading. This is because of
the quasi-neutrality constraint on the density response. Indeed the expression I'py is merely
an apparent, test-particle type radial flux of ion guiding centers. Given the subtlety of all
these interconnections between momentum, angular momentum, and particle transport, we
defer any further discussion of particle flux coupling to Appendix A.

In this paper, we show that a careful treatment of geometric effects due to nonuniform B
yields a novel pinch mechanism for parallel (angular) momentum density. Before presenting
more detailed systematic derivations in Sec.III and Sec. V, here, we discuss the basic physics
mechanism in a simple manner. The nonlinear electrostatic gyrokinetic equation with proper

conservation laws in general geometry is given by Egs. (19)(21) and (22) of Ref. 20:
oF dR dU” oF .

>tV — av”_o, (3)
with
B e+ X € (56) + VB )
and i
U [V (66) + mV B )



Here, the gyrokinetic Vlasov equation, Eq. (3) is written in terms of the guiding center

distribution function F(R, p,v),t), with p = v} /2B. B* is defined by

m;

b - Vx b},

B'=b-B*=B{l+
e

and is the phase-space volume in guiding center coordinates, i.e., the Jacobian of the trans-
formation from the particle coordinates (x,v) to the guiding center coordinates (R, u, v)),

satisfying Liouville’s theorem

dR 0 dUH
- | B*— — | B*— | =0.
v ( dt>+avn< dt) ’

In the expression for B* = B+ %EUHV x b, the second term is typically ignored for stability
and transport calculations. Since its magnitude is small, including this term will only make
quantitative corrections to the linear growth rate and the turbulence-induced “diffusion”
coefficients for tokamak plasmas which are mostly determined by other larger terms, such as
the familiar ITG curvature drive. However, we find that keeping this correction is essential
to identifying a new pinch mechanism in toroidal geometry. The question of the pinch’s
effect on coupling of drift/ITG modes to parallel shear flow drive will be left for future
study.

The evolution equation for §(nlj) can be obtained by taking an appropriate velocity

moment of the perturbed distribution function
d(nl)) = 27r/d,udv||B*5fv||,

and using the perturbed version of Egs. (3)(4), and (5),

(1)
af dR dUHaéf dRM dU” o0F,
A k| - _ VF, — il
o @ VT @ o, a VT T oy, (6)
Here, "
dR cb
= X V((50),
and
dv . B*
[ _&ab

The last term on the RHS of Eq. (6) shows that the parallel acceleration of gyrocenters in
a strongly magnetized plasmas depends not only on the kj of the fluctuations (along the

equilibrium B), but also on the perturbed E x B velocity which couples to the magnetic

8



curvature b x (b - V)b, orthogonal to b. This follows from the identity V x b = b(b - V x
b) +b x (b- V)b, and the inequality kj < k..
After straight forward algebra, including integrations by parts, we obtain

D
Eé(nUH) =cbxVigp - V(Zﬂ/dudU”FOU”)
—2b x (b- V)b Vip(2r / dydvB* Fyvy) —

nie;

B V. (7)

my
Here, we have used a long wavelength approximation £k, p; < 1, and D%(S (nU))) is short-hand
for the moment of the LHS of Eq. (6) to be discussed later. On the RHS of Eq. (7), the

first term can be written as

cbx Vg -V (2r / dpdv Fyvy) =~ cbx Vg - V(”;UO), (8)

where we have used the fact that
nolUy = 27r/dudv||B*F0v|| ~ 27TB/d/,LdU||F0’UH.

Therefore, the fluctuation §(nU)) is driven not only by the radial gradient of nyUp,, which
leads to a diffusive radial flux, but also by the gradient of B~!, which leads, to a non-diffusive
radial flux of the parallel momentum. Note that the latter term noUygbxVd¢ - V(1/B) is
explicitly proportional to ngUy, and therefore can be identified as a “pinch”.

The second term of the RHS of Eq. (7) is
—2b x (b-V)b- Vip(2r / dpdv| B* Fyvy) = —2n,Ugb x (b- V)b - V64, 9)

Since this pinch in Eqgs.(8)-(9) is driven by the magnetic field inhomgeneity (which is not a
thermodynamic force), it must be of the “turbulent equipartition pinch” (TEP) type, rather
than a thermoelectric pinch. For this reason, we call this the “TEP” flux which will be

discussed further in Sec. IV. This TEP contribution to the radial flux
fhwom EE(}E:é(nIGOkév:k>
Kk

can be written as

€5¢k 65¢k %
— 1
T + Wik T )0V, (10)

I3 for = noUo (D~ Re(Tac) (2w
k

where 7. is the inverse of the propagator. The real part of 74 designates the correlation

time of turbulence, while dv, = £&,-bxVd¢ is the fluctuating radial E X B velocity. Here,

9



Wk = Z—jll'b x (b- V)b -k is the curvature drift of thermal ions, while wq1x = b x VB'k
is the grad-B drift of thermal ions. Here, k is the wave vector of the fluctuation d¢. In our
sign convention, wy x and wgk are negative at the low-B side mid-plane. From Eq. (8),
noting that wy),wqr o< kgcost + k,sinf, for circular magnetic surface model geometry, we
can see that the contribution of Eq. (8) to the radial flux of parallel momentum almost
vanishes for flute-like fluctuations with nearly uniform intensity along B.

There are other contributions to the “momentum pinch” which arise from the fact that
both the curvature drift and the grad-B drift depend on v and p of the ions, respectively.
This can be traced back to the LHS of Eq. (6), where % - V4 f contains an advection of 0 f
C::i;ﬁb x (b- V)b and the p-dependent
grad-B drift vyp = <74'b X VB contained in the expression on the RHS of Eq. (4). Then,

by the velocity-dependent curvature drift v .., =

after taking the moment
5(TLU||) = 27T/d,u,d1)||B*5fU||,

we obtain

0T, oT
Mo = 10U (32 Rerex (B 7vh, (1)
k | 1

+ Walk

Here, “CTh” stands for the “curvature-driven thermoelectric” pinch. The reason for this
acronym is that this portion of the off-diagonal flux is ultimately V7;-driven. Then, one can

write the final expression for the total radial flux of parallel momentum density as

Marom = Mgt + o7, + Wi, + TR0 (12)

Mom »

where TI2EP and TI{L" are the new pinch contributions to the radial flux as given in Egs.

(10) and (11). The diffusive flux of the momentum density is given by
Iyl = — (3" Rerad|dvmc e,V (noly)), (13)
k
with a corresponding parallel momentum density diffusivity
XMom = <; ReTck|5Urk\2)-

Note that this expression is similar to the test particle diffusion coefficient, and includes
possible variations of 7. which depend on the theoretical model. This is the main reason that

the ratio between these two, known as the Prandtl number, varies depeding on the theoretical

38,39

model under study From experiments, while y, ~ X; was typically observed,! some

significant deviation between these two quantities began to emerge in recent years.!34041
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Finally, [14f%% is a contribution from the 3rd term on the RHS of Eq. (7). This is
proportional to k|, related to the acoustic dynamics (from which we adopted a superscript),
and leads to an off-diagonal non-diffusive flux if the E x B shear is included in the analysis as
discussed in Ref.15. I14°%* is produced when Ex B shear breaks the z — —z symmetry of the
fluctuation spectrum about the resonant surface where k - B = 0. The symmetry breaking
mechanism considered in this paper and that considered in Ref.15 which are necessary for
net, acceleration of plasmas along the magnetic field, can be considered as two components
of a more general, unifying B*-symmetry breaking mechanism. Their relationships are
summarized and unified in Table. 1.

Now, regarding the new turbulent convective (“TurCo”) pinch terms, with the definition
Mhiom” = Mhiom + Wiiom = noUoVasom,

“the momentum pinch velocity,” V;,Mom, is given by

edPx ed Py 0T 0Tk
3 =
T + Wdlk T, + SWaj ik T + Wdlik T,

VMom = <Z ReTck(deHk )U:k>’ (14)
k

Note that, for a simple circular concentric high aspect ratio tokamak equilibrium, wg, wq: o
kgcosB + k,sin @ = kgcos(n) + §(n — mo) sin(n), in the ballooning coordinate n. With con-
tributions from both normal curvature (o< cos(n) and geodesic curvature (o (n — 19)sinn),
ballooning fluctuations can produce a nonvanishing momentum pinch velocity even after
flux-surface averaging. This will be illustrated at the end of Sec. III, with some examples

of numerical evaluation of these quantities for profiles from experiments.
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TABLE [: B*-symmetry breaking unifies two mechanisms:

From m;B*dv) /dt = —(eB + micyV x b) - V3¢ (cf. Ref. 20)

Gurcan et al.,'

This paper

Net acceleration of

parallel flow:

Symmetry-breaking:

provided by

Main consequence:

Most likely to be

relevant for

—e,BV”(SQZS

k| over the spectral width

mean E x B shear shifting

fluctuations radially

off-diagonal stress driven by
E x B shear
(or VP;/n; and velocity shear

via radial force balance)

plasmas with strong E x B shear,

including H-mode, ITB’s

_miC'UHV X I; V(SQS

curvature drift ~ b x (b- V)b

over the flux surface

ballooning mode structure causing
finite net parallel acceleration

over the flux surface

convective pinch-like term
(The TEP-like piece is

insensitive to mode details)

pinch is likely to be inward for OH and

electron-heated plasmas

III. MOMENT ANALYSIS OF PARALLEL ANGULAR MOMENTUM

TRANSPORT

In this section, we present a formal derivation of the turbulence driven radial flux of the

parallel angular momentum density which we construct by taking moments of the nonlinear

gyrokinetic equation. The final expression can be cast in a form in which not only the new

momentum pinch terms are clearly identified, but also the physics mechanisms behind the

curvature driven particle pinch are manifested transparently.
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We can derive the nonlinear evolution of the parallel momentum density per ion mass:
TLU” = 27T/d,ud?)HB*FU||,

by taking a moment of the nonlinear gyrokinetic equation, Eq. (3). It is more convenient
to use a conservative form of the nonlinear gyrokinetic equation (Eq.(24) of Ref. 20):

d (FB¥) LR\ 0 Sy
VY <FB dt>+av” (FB o) =0. (15)

Multiplying Eq. (15) by v and integrating over the velocity space, we obtain the following

expression after some algebra:

10 . 0 % 2 px m;C 3
| = a/cmduHB Foy =~ [ dydy, (U|B b VF + b x (b-V)b- VFUH)
—C/d/LdUHV X b- (V¢+ Tr::'uVB) FUH — C/d,udUHbX (V¢ + m;'uVB) -VFUH

m

1
—— [ dudu FB*-V (6 +
m; €

" BY16)

In this work, we consider a case in which the mean parallel velocity Uy is lower than the
phase velocity, w/k|, of the fluctuations such that its contribution to the propagator for the
distribution function can be ignored. Quantitatively, this implies

ko  kiboa o kpa o0 1

— <1
w kaps Cs Ske Ps SqR kﬂps

I

with the Mach number using the sound speed M, = g—‘s’ Also, we adopt an ordering kyp, >
;LRMS, and we assume M, < 1 so that we can ignore B - VnUﬁ in comparison to B - VP.

The pressure moments per unit mass are defined as follows:
P” = Qﬂ/dudU”B*F(UH — U||)2, (17)

P = 27r/d,udv||B*FuB. (18)

With this ordering, we can make the following simplifications. From the first term on the
RHS of Eq. (16), we have

1Y

3
[ dudv Fof = [ dpdoyP{(y = U))* +3(0 = 0))20) +3(vy = UpUF + U = =L (19)

Here, terms proportional to Uﬁ’ and to a moment of v —U); have been ignored according to the

ordering M, <1 and to the definition of U} respectively. In addition, a term proportional
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to a moment of (v; — U)))* has been ignored by adopting a simple closure approximation.
From similar considerations, the second term of the RHS of Eq. (16) can be approximated
as follows, by using Eq. (18) and adopting a simple closure ignoring [ dudvB*Fp(v,—U)) :

1 Py
2r B2

/dudv||B*Fu(v|\ — U+ = (20)

Manipulations involving other terms in Eq. (16) are relatively straightforward, and employ
the same vector identity and k-component ordering utilized previously. Since B* = b -B* =
B —i—me—icv”b - Vb, the scalar B* can be approximated by B, ignoring a correction typically of
the order of p;/Ls, where L; = qR/§ is the shear length. While this term can be nonnegligible
very near the last closed flux surface of diverted plasmas where the magnetic shear § diverges
more strongly than the magnetic safety factor ¢,*?> we ignore this term in this work.

We will also eventually ignore terms which are proportional to the gradient of B along
B, i.e., B - VB related to the mirror force. For instance, from the first term of the RHS of

Eq. (16), we can show that, after an integration by parts,
- / dpdvy (v} B*b - VF) = —b - VP + / dpdvy (viFb- VB +b-VnUP).  (21)

As mentioned before, we ignore the last term, b - VnUﬁ, assuming M; < 1. The second
term on the RHS of Eq. (21) is ~ %B - VB. On the other hand, from the last term of Eq.
(16),
—/d,udv”FB-V(e,-qﬁ 4 miuB) ~ —m;B - VB/d,udeF,u )
B2
After being combined with %B - VB, this term leads to a familiar expression which is due

to ion pressure anisotropy, which is in turn related to parallel viscosity,

o . D . P - B
U = QWa/dp,dUHB Foj=..—-—=-B.VB. (22)

While the term on the RHS can affect the long term evolution of the parallel momentum,
in this paper, we focus on the turbulence driven radial transport of the parallel momentum.
Therefore, we don’t further discuss the effects of the contribution given in Eq. (22). Finally,
we take the long wavelength limit (k,p; < 1) in this section, such that {(¢)) ~ ¢, in
order to further elucidate the physics without the complications of keeping Bessel functions

originating from the finite Larmor radius (FLR) effects.
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With these considerations, we can write a nonlinear evolution equation for the parallel

momentum, starting from Eq. (16), that is:

%(mmU”) — —cbx V8- V(™) _ gminliib x (b - V)b - Vi

1 PU, .1 ||U||

_bxVB V() 3eib><(b V)b - v
—njeb-Vép—b - VP”. (23)

In a low-$ limit where the curvature drift and the VB drift are approximately equal, the
form of Eq. (23) can be further simplified into a suggestive form illuminating the underlying
physics. In low-3 plasmas, b x (b-V)b = (V x b), ~ —B x V(5), since (V x B)/B =
J/B < B x V(1/B). With this approximation, Eq. (23) can be further simplified to:

0 minUH i Cbxv&/ﬁ miTLUH bxVB PJ_U” bxVB P||UH
a5 Vim) e; B3 Vg ) -3 e; B V=g

1

—phieh - vaqs——b VP (24)

It is noteworthy that the fluctuations in nlj can not only be driven by the radial gradient
of nU), which eventually leads to a diffusive radial flux, but also by the gradient of B3,
This leads to a non-diffusive radial flux of the parallel momentum. This latter term, which
is
nUHBbeV&b -V (1/B?)
will be identified as the “turbulent equi-partition pinch” proportional to nUj, in Sec. IV.
While the E x B flow is compressible in an inhomogeneous plasmas (i.e., V-ugp =

V-(@) # 0), we can make a low-£ approximation, i.e.,
V-(upB?) = ¢V-(B X V) = ¢V x B- V¢ = 47J - Vo < B2V - up,

to illuminate the physics associated with the compressibility caused by inhomogeneous B.

After some manipulations using the low-3 approximation, we can again rewrite Eq.(24) as

follows:
9 mnllyy g () V[(b VB)(—5 )] - —V-[(3b x VB)< és””

It’s important to recognize that the underlying symmetry and conservation laws of the

nonlinear gyrokinetic equation in a nonuniform B field?® led to the particular combination
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of variables in Eq. (25) when one writes as many terms as possible in the form of a divergence
of a flux.
First, since B x 1/R in tokamaks, we note that

%U” o mnUj R = minR?wj, (26)
is the parallel angular momentum in tokamak geometry, with w) being the parallel angular
rotation frequency, and m;nR? being the density of the moment of inertia. Therefore, within
the context of this paper in which Uy ~ Uj, Eq. (25) describes the evolution of the toroidal
angular momentum, m;nR?ws. The expression “V-(%U”u];)” essentially leads to a radial
flux of the toroidal angular momentum. It’s also noteworthy that this particular combination
arose without assuming axisymmetry. Therefore, this formulation should be useful for future
applications to 3-dimensional systems, including quasi-axisymmetric stellarators such as
NCSX (National Compact Stellarator eXperiment). It will be interesting to contrast this to
a neoclassical approach considering the electrostatic fluctuation ripples.®3

Typically, transport analyses** deal with the temporal evolution of the flux-surface-
averaged toroidal angular momentum density (m;nR?)wy, where the toroidal angular fre-
quency is a flux function. In this paper, we use an orthogonal set of variables (¢, 0, () to
denote the radial, poloidal, and toroidal coordinates, respectively. The equilibrium magnetic

field B is given by
B =V({xVy + I(y)V(, (27)

where diy = RBydr, and the toroidal magnetic field strength is given by B, = I(¢)/R. From
Eq. (27), we can also show that the following useful identity holds,

R*V( = VyxB/B?* +1(¢)B/B>. (28)

With these definitions, the mean toroidal angular momentum density evolution equation
can be derived by taking a flux-surface-average of Eq. (25), after multiplying by BoRy to

restore the proper dimensions, assuming wy = wj (1), i.e.,

9 ((manR?)ay) = ~(V - Thagg) — (V- T} + (B Ty, (29)

Here, the first term on the RHS of Eq. (29),

cbx Ve

T4,y = mid(nUR) 5
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with 6(nUyR) = 2r [ dudv B*6 f Ry, is the main turbulence driven contributor to the evo-
lution of the mean angular momentum, i.e., the perturbed parallel angular momentum
density carried by the fluctuating E x B velocity due to turbulence. Note that this expres-
sion contains a nonradial, perpendicular component, as well as the radial component of the

fluctuating E x B velocity. However, using Gauss theorem, one can show that,*® for any

vector field A,

(V- A) = 5y V(A T0))
where V is the volume element of the flux-tube, V' = %. Therefore, only the radial
component of A contributes to the flux-surface-average of the divergence of A. Thus, we
obtain,
(V-ITe) = Lo [V (T gy Vb)] = L 0 [V (m;0 (nUj )5 “b x Vi V)]
V' oy V' oy
~ 6‘1[V (mieh S 6(n0 ) C(sqs;;)]. (30)

Here, we used the fact that & < k., and the identity given in Eq. (28).
The second term on the RHS of Eq. (29) has not been considered in previous studies of

anomalous momentum transport. Its turbulent contribution,

0T, + 30T,

TG = 3(nUy B)(b x VB)(“E =20

(31)

can be considered as the parallel angular momentum density advected by the velocity-
dependent residual part of the curvature drift (which has been replaced by the grad-B drift
within the low-3 approximation). We denote this as IIL¥ since the flux-surface-averaged
value of its divergence is proportional to the geodesic curvature in the low-8 approxima-

tion,i.e., the flux surface component of the magnetic field line curvature:*
1
(b V)bxB Vi ~ ~VBxB- Vy.

Since  the flux-surface-average of its divergence contains the expression
((...)B x VB-V¢/B?), then by using Eq. (28) and axisymmetric equilibrium, one
can show that this is proportional to (I(1))/B?)(B - V)B. Therefore, this contribution is
subdominant to the first term on the RHS of Eq. (29), which is the main term we keep
in this paper. A more formal estimation using a quasilinear expansion in terms of §7°

and §(nUjR) also shows that the (IIZ%P-Vip) term is o(“%) smaller than the turbulent
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convective pinch terms which originate from (IT}%°°.V¢). However, the mathematical
form of these terms as functions of thermodynamic driving forces is different from those of
either diffusive or turbulent convective pinch terms. For instance, we can identify terms
which do not dependent on either %UO, or Uy. This subdominant term should not be
confused with the curvature driven thermoelectric flux II°"" in Eq. (11) and in Eq. (51),
which originates from Il ,,.

Finally, noting that for any scalar S, (B - VS) = 0, we observe that the surviving contri-

butions from the last term
R
B- T|| = —BE[(TLZEZVQS + VPH)],

involving the parallel torque T} in Eq. (29), are proportional to (B-V)B, or kj of the
fluctuations. As mentioned before, the effects associated with these parallel dynamics are
not addressed in this paper. The physics associated with the symmetry breaking of k| has

been extensively discussed in Ref. 15.

Turd ;
Ang 1 Eq.

For the evaluation of the nonlinear turbulent flux of angular momentum II
(30), the expression for the perturbed angular momentum §(nU;R) can be obtained by

linearizing Eq. (23). In k-space, it can be written as

[—iwk + Awk + 7;(3de||k + dek)](S(nU”R)k = —5’Urké¢'V(noU0R)

. €5¢k . 6T]|k 5TLk
—12Wgq)k noUo R — i (3wax—— + Walk JnoUo R
I T|| | T|| T,

The origin of various terms has been discussed in Sec. II, in relation to Eqgs. (10) and (11).
The expression multiplying 6(nU)R)x on the LHS of Eq. (32) is the (k,w)-space version of
the renormalized propagator, in which Awy is the decorrelation rate which originates from
the E x B nonlinear term in Eq. (32). Here, we consider stationary turbulence (yx = 0),
but with a finite amplitude and thus, a finite correlation time. Awy is from the E x B
nonlinearity-induced self-decorrelation rate, Note that causality requires that Awy, > 0.
For rough estimates, it is useful to take Awg ~ |yin k|- The absolute value applies for the
case of damped modes (i.e., non-resonant quasilinear diffusion is positive definite). Here,
Tae = |[—iwk + Awi + 1(3wg)x + wq U()]_1 is the inverse of the propagator. Its real part,
which is positive definite and independent of mode propagation direction, corresponds the

correlation time of the turbulence.
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Now, we can explicitly evaluate the angular momentum flux and can calculate its diver-
gence from Eq. (30). From the first term on the RHS of Eq. (32), we obtain the usual

diffusive part of the radial component of the toroidal angular momentum density flux:

i 15)
(T -Vy) = ZRenkww V (mingUoR)-Vp) = —X ang((RBy)? =

5y (MinaFwn))-

(33)
While one can measure the angular momentum density flux directly from nonlinear turbu-
lence simulations, transport analysis** of experimental data involves flux-surface-averaged

quantities. Here, the flux-surface-averaged “angular momentum density diffusivity” can be
defined as

Xang = ZReTck|5vrk| )y = RB ZReTck€2|5¢k| ) (34)
To obtain Eq. (34), we used the following identities. |V1,b\ = RBy, b x &é,-k = {B/RBy,
dv,x = —i(cl/RBy)d ¢y with £ = toroidal mode number. From the second term on the RHS

of Eq. (32), we obtain the turbulent equipartition pinch (TEP) part of the radial component

of the toroidal angular momentum density flux, i.e.,

ed
(I1 Efgp Vi) = ZReTckévrkz(wd”k Tﬁk)mmOR2w“RB9> = (minOR?’Bg)wHVEgP_ (35)
Here, the ﬂux—surface—averaged “TEP angular momentum pinch” can be defined as
TEP _ e Pk
Ving = — ZzReTck(SUTkwde T ) = RBg ;ReTckgwd||k_|(5¢k| ) (36)
Using the indentity wdH,k(O) = —(e,ﬂ; )£ at the low-B side mid—plane (0 = 0), we can write:
1 W ( ) wd”k )
VIEP — _o Reracl? ~M | 5 Rer, Sursl?) (37
Ang <R RB9 ; W) ( )| ¢k| > Z wd|| ( )| ,k| > ( )

Note that, in comparison to Eq. (10) Wthh gives the TEP plnch of the (linear) momentum
density, the piece proportional to wg i is absent in Eq. (36). This is a consequence of
the fact that the definition of angular momentum density has an additional factor of R in
comparison to the definition of linear momentum density. Since R « 1/B, a part of the
TEP pinch driven by VB for the momentum, as described by Eq. (8), does not exist for
the angular momentum.

From the third term on the RHS of Eq. (32), we obtain the curvature driven thermoelec-

tric pinch (CTh) part of the radial flux of the toroidal angular momentum:

0T, 0T |«
(Hifgh V) = Z Re[ZTckévrk{Swd|kT”k + dek }]m,noR w|| RBy)
<mmoR By Vil (38)
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Here, the flux-surface-averaged “CTh angular momentum density pinch” can be defined as

o 5T 5T
ng;h = —(Z Re[wckévrk{3wd||k# + dek Lk }])
k

c 0T oT
= (75, L (Rerad) (3w T::k + WaLk T“‘)aqﬁk> (39)
Again, using the indentity wqy x(0) = —(e:%)}% at 0 = 0, we can write
6) 6T, wa1x(0) 0T,
VCTh _ 3 Rer, £2wdllk( [ Rer /2 4k S
Ang <R RBQ ; k UJde( ) ¢k> <R RBQ ; k C(.)de(O) € ¢k)
wde( )6 |/€ dek( )5TL/€
—3{—= ) Rer, oV, Rer, v, 0
<R ; “wap(0) 3¢ ol Z “wi(0) 6 0740

The last term in Eq. (32) contributes nothing in the absence of mean E x B shear. In
summary, the flux-surface-averaged turbulence-driven parallel angular momentum flux, in
the absence of E X B shear, can be characterized as the sum of a “diffusive” flux and the

“turbulent convective” flux:

<HTurb Vw) <HDfo V¢> <HTu'rC’o Vw)

Ang Ang Ang
—XAng<(RBg) (mmoR w”)) VT“TC"(minOR Ba)UJH. (41)

Ang

O
Here, the angular momentum diffusivity xan, is given by Eq. (34), and the turbulent

convective (TurCo) pinch velocity is given by

TurCo __ TEP CTh
VAng VAng VAng ’

with the TEP contribution and CTh contribution given by Eq. (37) and Eq. (40) respec-
tively. From Egs. (34),(37), and (40), it is obvious that the relative magnitude of the pinch

velocity VIurce

Ang . and the angular momentum density diffusivity Xxang can be quantified in

terms of two dimensionless parameters.

= @ad®)l80(0)
1 = (ad0)30(0) )

and
cirn _ {(6T3/e)303)
(loo(0)1?)
for quantities with subscripts, | and 1. Fyaoon quantifies the ballooning mode structure.
We can distinguish the contributions from the normal curvature and the geodesic curvature,

by defining
= (Wa—norma(0)|66(0) ‘2>

Fnorma = = 0)666) )
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TABLE II: Here, Fuorma = [ d wa-norma(0)|06(0)[*h(6)/ [ d0 Wa-norma(0)|6¢(6)|*h(0) and Fye, =
J d0 wa—geo(0)|04(0)[*1(8)/ [ A0 wa—norma(0)|66(0)[*h(6), Where wy—norma(6) and wa—geo () are the
normal and geodesic components, respectively, of the magnetic drift frequency calculated numer-
ically by an MHD equilibrium code for non-circular cross section geometry, and R(0) = Ryh(6),

where R is the major radius and Ry is its average value for the chosen magnetic surface, and

pi = \/T;/m;/(eBy/m;c).

Radial location r/a=0.4 r/a=0.7

Key local values §=0.78, T;/T. = 1.17 §=0.80, T;/T. = 1.38
from profiles n§ =2.34, Ro/Lpe = 9.13 n§ =1.72, Ry/Ly. = 6.14
Complex frequency normalized to v=1."71 v =0.72

(cs/Ro) at kgp; = 0.50 wy = —0.08 wy = —0.50

Frorma 0.56 0.54

Fyeo 0.38 0.41

and

i = (Wageo(0)166(0)%)
T {wa(0)[66(0)12)

We note that for outward ballooning mode structure, Fj,omq > 0, and Fy,, > 0, for positive

magnetic shear.

From the FULL code®” calculation using positive magnetic shear parameters and profiles
from JT-60U,*® we find that the fluctuation is strongly ballooning outward, yielding F},;ma =~
0.5, and Fye, ~ 0.4 at two different radii, while the normalized growth rate varies more than
a factor of 2. More thorough parameter scans will be reported in future publications.

G™" quantifies the relative strength of contributions from ion temperature fluctuations
related to the curvature driven thermoelectric effect. Due to the phase relation between §7;
and 6¢, the sign of G depends on the mode propagation direction. While G*™ > 0 for
fluctuations propagating in the electron diamagnetic direction, an accurate prediction for
fluctuations propagating in the ion diamagnetic direction is difficult due to a hydrodynamic

approximation employed in the derivation. Using these two dimensionless quantities, we can
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write the pinch velocity in terms of the angular momentum density diffusivity.

VTEP ~ 2waablloon

Ang — RO XAnga
and Th Th
CTh Fballoon (3G|| + GJ_ )
VAng ~ — RO XAng.
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IV. PHYSICS OF THE CURVATURE DRIVEN PARALLEL ANGULAR MO-
MENTUM PINCH

In this section,we discuss the physics of the curvature driven pinch of parallel angular
momentum density which was derived in Sec III. Since the aim of this section is physical
insight and understanding, rather than the presentation of detailed results, we use a simpli-
fied notation here. The reader seeking detailed results is referred to Sections III and V, and
to Table III.

As discussed previously, a unique feature of the turbulence driven covective pinch derived
here is that it consists of pieces driven by both non-thermodynamic (i.e., VB) and thermo-
dynamic (i.e., VT;) forces. The non-thermodynamic force driven terms suggest a physical
interpretation in terms of the theory of “turbulent equipartition” (TEP). In particular, we
compare and contrast the pinch of parallel angular momentum with the now familiar TEP
mechanism for the particle pinch. As for the TEP particle pinch, the underlying conser-
vation laws of the nonlinear gyrokinetic equation are the ultimate motivation for the TEP
interpretation. A simple introduction to TEP fluxes and their relation to homogenization is
presented in Appendix B, with an illustration of the TEP pinch for density in a 2D system*®
with a straight, but inhomogeneous magnetic field B = B(z, y)Z.

Our starting point is Eq. (24), which states that a ‘magnetically weighted’ parallel

momentum density m;nU)/B* evolves according to:

d m;nlj cbxVigp m;nlj| _ bxVB P, U bxVB Py
at(B3) B V(B3)_ B3 (32)334 VB
1 1

Note that the first two terms on the RHS of Eq. (44) (i.e., related to ion curvature drift and
ion pressure) are formally O(®%) = O(a/R) with respect to the LHS. Similarly , the second
two terms on the RHS of Eq. (44) (i.e., related to parallel acoustic dynamics) are formally
O(:—'i) with respect to the LHS. Thus, to the lowest order in a/R and II:_L" the magnetically
weighted parallel ion momentum density obeys the equation,

0 minU” CbXV(5¢ minUH
o) 5V

) = 0. (45)

Note that the magnetically weighted angular momentum density is a locally advected scalar,

so that with the addition of any minute diffusive dissipation to regularize the RHS, Eq.
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(45) will become isomorphic to Eq. (B1), thus indicating that the scalar m;nU;/B* will
be turbulently mixed or ‘homogenized’, given sufficient time. As discussed in Appendix
B, such homogenization problems are prime candidates for the application of TEP theory.
Before launching into a discussion of TEP theory for m;nU;/B?, we first comment that
the approximate conservation of m;nU)/B* « m;nUyR/B? (since B o 1/R in a torus) is a
consequence of: i) the fact that B?*up is an approximately incompressible flow velocity in the
low-f3 toroidal equilibrium, and ii) the fact that m;nUR, the parallel angular momentum
density, is the ‘natural’ quantity which is homogenized or mixed by the flow B*ug. i) and ii)
together explain the origin of the magnetically weighted momentum density m;nU)/B* as
the advected scalar to be homogenized. Note also that since m;nU;/B? is the ‘fundamental’
quantity, quantities such as the parallel Reynolds stress (dUjdv,) must be extracted from
the flux of magnetically weighted parallel momentum density. This requires subtracting off,
or separating the particle flux, which may produce unusual off-diagonal contributions to
(0U)0v;).

The physical origin of the VB-driven piece of the TurCo momentum pinch is easily
revealed by considering the radial quasilinear turbulent flux of m;nU)/ B3, the ‘magnetically
weighted angular momentum’ (MWA) density. Using B o 1/R, the MWA density maybe
written as mmUHR/B2 up to a constant, so that applying a straightforward quasilinear
closure to Eq. (45) gives:

95V = — 3 (Rerac|6vne )V (minl R/ B?)- Vi
k

= XS aV (minU R/ B*)-V4) (46)

Here, X%LW 4 1s the quasilinear diffusivity for MWA. Note that

C

RBy

XMWA = (Z ReTck|(5Urk|2) = (( )QZReTck€2|5¢k|2>,
k k

and so is relatively insensitive to mode-frequency and propagation direction. The flux
I,/ 9% is driven by V(mnUR/B?)-V4, and so has elements driven by Vn and V(1/B),
as well as VU). The V(1/B)-driven piece is the non-thermodynamic-force-driven TurCo
pinch. In particular, since

V(mnU R/B?) = V(L/B?),
where L = m;nU| R is the parallel angular momentum density, and we have

V(m;nUR/B?) = (1/B*)VL + LV(1/B). (47)
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This, in turn, implies
LA 9"V = —x3wa{(1/B*) VL + LV(1/B*)}- V4. (48)

Hence, the transport evolution equation for MWA is, then, just

0

a(L/B2)Jrv-rIf;JVfAQL 0. (49)
Since B? is static, we have
if f— 1 0 ’ if f—
(L) = (VI = - [ (o)
1 0
= 81/;[ ({(1/B*)VL+ LV(1/B*)}-V)] (50)

Thus, we see that the total flux of parallel angular momentum density L consists of;

i) a diffusive piece, driven by VL,

ii) an off-diagonal, or convective piece, driven by VB. Since V(1/B?) > 0, this piece is
indeed a pinch, and produces an inward flux of parallel angular momentum density. The
pinch term described above corresponds to the V B-driven component of the TurCo flux of
angular momentum.

The pinch of parallel angular momentum density described here is rather clearly of the
TEP genre. This follows from the fact that it is V B-driven, and so not driven by a ther-
modynamic force. The VB-drive arises from the fact that proper symplectic nonlinear
gyrokinetics® reveals that (to the lowest order in € and kj/k.), L/B? is locally advected,
or ‘relaxed’ and transported, so a homogenized state is one Wlth (L/ B?) = 0, rather than
with a L = 0. The dynamics of homogenization and its relatlon to TEP pinches are dis-
cussed in Appendix B. Indeed, the condition of relaxation 2 a5 (L/ B?) = 0 defines a ‘canonical’

profile of angular momentum density with gradient,

(5)/L=2(=")/B. (51)

The canonical profile is the expected ‘end state’ of the homogenization process, and so defines
the limiting (VL)/L which may be ‘held’ in the state of turbulent equipartition. Note too
that the details of the turbulence dynamics do not enter the TEP theory, in that x%y 4 is
insensitive to the mode propagation direction etc., and depends only upon the correlation
time and the spectrum of radial E x B velocities. It is always inward for outward ballooning

mode structure.
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Here, it is appropriate to compare and contrast the TEP theories for angular momentum
and density. Both these theories yield pinches with roughly comparable magnitudes, which
arise from the local advection and mixing of magnetically weighted quatities, namely L/B? in
the case of angular momentum, and n/B in the case of a density transport model in a simple
geometry (without consideration of magnetically trapped particles*®) which is presented in
Appendix B for an illustration of homogenization theory. More magnetic fusion-relevant
TEP theories for density involve magnetically trapped electrons.?*?® The dynamics for these
is governed by bounce-kinetics in which parallel streaming averages out, and so is constrained
by conservation of two adiabatic invariants, namely the magnetic moment p, and the bounce
action invariant J. Therefore, the commonality in their underlying physical mechanisms is
obvious.

For completeness, we present a full expression of the TEP pinch originating from the

homogenization of MWA. Writing the full expressions in Eq. (47), we have

V(mnU R/B?) = (1/B*)V (minR*w)) + minR’w V(1/B?).

Then,
iffo RB, 0
(298 Vy) = =X 3w al(F52) 5 - (minRw)))
B 7 oy
RBy
+VEER 5 minR2>w||, (52)
where x%% 4 is defined below Eq. (46), and
TEP _— ed P
VMWA = 2(2 ZReTckév rkWd—normak 7 ) Z ReTckwd normakz ‘6¢k‘ >
T, RB

k

Here, we note that a contribution to wy i (Which is same as the wgy in the low-3 approxi-

— LT
— ¢;B?

mation) from the radial component of VB is Wa_normak = (2 5 w) Now, it is quite obvious

that VL2, derived above, is a part of ViEP

Ang 10 Eq. (36), showing they are from the same

origin. Finally, there are additional contributions to the TurCo flux of angular momentum
originating from the ion thermal effects, as discussed in other sections. This curvature driven
thermoelectric (CTh) flux is ultimately driven by gradients in the thermodynamic variables
(e.g., VI'\ and V1), and the mode-dependency of the CTh flux is inevitable. Of course,

the total turbulent convective (TurCo) flux of the parallel angular momentum,

TurCo _ T7TEP CTh
HAng - HAng HAng ’
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is an interesting and unusual combination of TEP and CTh contributions with different

physics origins.

V. NONLINEAR GYROKINETIC EXPRESSION FOR TOROIDAL ANGULAR
MOMENTUM DENSITY FLUX

The main goals of this section are to present the full Larmor radius (FLR) version of the
perturbed angular momentum response, and the turbulence driven mean radial flux of the
perturbed angular momentum, and to show that we recover the results of Sec. III in the
hydrodynamic limit. These were derived using a moment approach.

The ordering for this general formulation consists of
w/Q e~ edp/T; ~ piky ~ €

and

kipi ~1,

where w and (2 are the characteristic fluctuation frequency and the ion cyclotron frequency,
respectively; k) and &, are the components of the wave vector in the parallel and perpendic-
ular directions with respect to the magnetic field; p; is the average ion gyroradius; d¢ is the
fluctuating electrostatic potential; and € < 1 is a small ordering parameter. As discussed
in Sec II, we take Uy/vp; = O(e) < 1. A tokamak-specific ordering, By/B ~ rq/R < 1, is
implied since we take the parallel flow as an approximation to the toroidal flow. Here, r/R

is the local inverse aspect ratio, and ¢ is the magnetic safety factor. We start again from

Eq. (6),

(1)
a5f dR dv 85f  dRO dv” 9F,
= 4 . A = _ .VEF, — -2
o T YV T a | a VT g | (53)
with "
dR" b
— = o X V(09),
and 0
dv . B*
L

We further simplify Eq. (53), ignoring terms involving O(k)/kL), O(p;i/Ls), and write it in

k-space as:
[—i(Wk — Weurvk — WV BK — ’UHkH) + Awy]d fi
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2cl 8F 65¢kJ0 8F0
5¢kJ0e¢ VF() + Z—k 5¢kJ()— + v Wk -
RB [ duy ([l Ty oy

(54)

cmgv ”

Weurvk = b x (b-V)b-k, and wypkx = %‘ib x VB-k. On the RHS, the first term is
the E x B advectlon of Fy, the second term depends on the parallel acceleration, and the
last term is the B* modification to the parallel acceleration which is written in terms of the
curvature drift of a thermal particle, wqx. Now using Eq. (54), we can calculate the angular

momentum density perturbation;
8(nUR) = 27 [ dpudvy B*6 fiwy B,

as well as the nonlinear gyrokinetic expression for the mean turbulence driven radial flux of

the angular momentum density carried by the fluctuating E x B velocity;

(TIG-V) = @mm; [ dudv[B'6 fo Rob x V(66)]-Ve) (55)

While the expression for (II§ V) in Eq. (55) can be evaluated from nonlinear turbu-
lent gyrokinetic simulations, a further explicit analytic evaluation of the kinetic expessions
(including convoluted velocity-space integrals involving wave-particle resonances and finite
Larmor radius (FLR) effects ) is very complicated. Some general formulas are presented
in Appendix B. We note that what we are calculating in this paper is the gyrocenter
quantities, not the particle quantities. Therefore, we don’t explicitly perform pull-back
transformations®® from the gyrocenter quantities to the particle quantities, steps which are
now routine in modern nonlinear gyrokinetic theories. We also note that, including the full
Larmor radius (FLR) effects, the general gyrokinetic expression of the angular momentum
flux in Eq. (55) includes an integration over u which involves the u-dependent ¢ f, and
{6k ). A simple decoupling of these terms is straightforward only in the long wavelength
limit where £, p; < 1, i.e.,

TI§%, Vi = mid (nUj R) b x Vog-Vip = micR 3 8(nUj R)i 9 56,
k

¢
which is identical to those in Eq. (30). Approximate, but systematic, ways to extend the
decouplings of various hydrodynamic variables have been explored in the context of gyrofluid
approaches.?™53

In passing, we discuss the gyrokinetic equivalent of the flux component

0T, + 30T

g = [(b x VB)(——

)8 (nUj R)],
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presented in Eq. (31), which is subdominant to the IT4,,. As discussed in Sec. III, one can
consider the flux of the angular momentum density carried by the curvature drift and the

grad-B drift to be
2mm; /d,udUHB*vaR((vcuw + vyg)-

Indeed, this expression can be deduced from an expression for the neoclassical momentum
transport based on the Fokker-Planck equation.*®. In this paper, we study the turbulence
driven angular momentum transport. For this, the quasi-linear expression for the radial
flux should involve the turbulence driven angular momentum density (i.e., a moment of
df) carried by the fluctuating curvature and grad-B velocities. Noting that vy, vﬁ,
and vyp x puB, the “turbulence-driven fluctuating” curvature and grad-B velocities should
involve the temperature fluctuations. Thus, we can identify the gyrokinetic expression for
the flux of the angular momentum density carried by the curvature drift and grad-B drift

as

(IGe, V) =
. vif — 3ugy uB — v,
(2rm, / dpd)[B0 fo R(-_—=b x (b V)b + == b X VB) V) (56)

TurCo

Ang _» and we

As discussed in Sec. III, this term is on the order of o(wy/w) smaller than IT

don’t pursue reduction of these terms further in this paper. An evaluation of this flux from

GK

turbulent nonlinear gyrokinetic simulations will be more complicated than that for IT7, .

However, turbulent contribution to this flux expression should be revisited when a fully
nonlinear simulations, including both neoclassical and turbulent effects, is attempted.
Now returning to the mean turbulence driven radial flux of the angular momentum density

carried by the fluctuating E x B velocity, and using the expression for 0 fi in Eq. (54), we

GK

can write a more explicit theoretical expression for I,

as

nglz(g = 27rmi Z / dudeB*[—z(wk — Weurvk — WV Bk — UHI{J”) + AwTk]il
k

edPxJy

)8F0 icl
Ty oy

icl
bRl

~ My
{R—B‘9J05¢ke¢'VF0 + Z(e—ik‘HJO(S(}Sk + U)Wy |k

)Jobd_x (57)

As is well known, when Awr > W, Weury, Wy B, kv, for significant nonlinear frequency broad-
ening, strong turbulence theory applies. But when Awr << w,Weurs, wvs, kv, quasi-
linear scaling applies, and turbulent flux scales with the fluctuation intensity. In the case

that Awr is negligible, 74 must arise from resonant wave-particle interaction restricted by
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§(wk — Weurvk — wypk — k|v)). General formalisms for transport in the quasi-linear regime
focusing on the roles of the resonant wave-particle interactions have been presented for
drift waves in cylindrical geometry®* and for generic low frequency fluctuations in a dipole
geometry®®. Neither of these works, nor another which addresses the neoclassical trans-
port matrix®® has predicted the possibility of a turbulent convective flux of toroidal angular
momentum density as discussed in this paper.

To make a direct connection to the results from the moment approach in Sec. III, we
make the following hydrodynamic limit approximation which is slightly different from the
usual one. This somewhat unusual expansion allows us to relate and connect terms which
emerge from this kinetic calculation to the various contributions to the angular momentum
flux we obtain using the fluid theory in Section III. The hydrodynamic expansion is based

upon the following disparities in spatio-temporal scales:
W, AWT > Weurvy, WV B, kHUH

and

kip; < 1.

Guided by Eq. (32), we expand the renormalized propagator in terms of the ratio,

Weury — 3Wq| + wvp — wal + k)
W — 3wd|| — Wql + iAwT

Note that wey, and wyp are velocity-dependent, and that 3wy and wqy are their appropriate
thermal average values. Therefore, the denominator in this expansion is independent of the
particle velocity. In the limit kjv — 0, the numerator of this expansion is weyry — 3wg| +
WyB — W4l = wdH(Uﬁ/v%” — 3) + wai (uB/v}, — 1). Here, the subscript k is understood.
For simplicity, we neglect the kv, term in the propagator hereafter, but we present some
kinetic results in Appendix C. The kv term is related to the acoustic dynamics along the
magnetic field, and plays an important role in theories in simple geometry.!®®” The kinetic
expression for the kj-dependent angular momentum flux has been given in Ref. 15, and
is not repeated here. Then, focusing on the perpendicular dynamics, the inversion of the

renormalized propagator can be approximated by

[_i(w — Weurv — WVB) + AWT]i1

wa| (v} /v3) — 3) + war (uB/vy — 1)
W — 3wy — war + iAwr '

~ [—i(w — Bwg — way) + Awr)] 7M1 +
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In this limit, we can identify the terms contributing to the diffusive angular momentum

GK.Dif] the TEP angular momentum density flux, TI$STFF and the CTh

density flux, IT;,~ Ang

GK,CTh

Ang - Tespectively. Using the leading order renormal-

angular momentum density flux, IT
ized propagator and considering the relaxation of VFy due to the fluctuating E x B velocity,

we obtain

Hfjf;‘) —27Tm,; Z / dpdv) B*Re[—i(wi — 3wg) — way) + Awrk]” L

ct

Ul gg,

V2 JE| 6k |*V Fy. (58)

Also, from the leading order term in the renormalized propagator and the (B*-related)
curvature drift correction to the parallel acceleration (which relaxes the v-gradient of Fyp),

we obtain

I'I%ZTEP = —2mm; Z/dudeB Re[—i(wi — 3wg — wa1) + Awri] "

V)W 7 Jo |0 |*@, (59)

T} dv,

Finally, from the first order (o(wq/w)) correction term to the renormalized propagator in the
hydrodynamic expansion, and the relaxation of VFj due to the fluctuating E x B velocity,

we obtain

H%{g’l = —2mm; Z / dpdv B*Re[{—i(wk — 3wq — wa1) + Awri} ™
k

wa| (v} /v3y — 3) + war (LB /vy — )]U R( ct )
W — 3wg| — wqL + 1Awr I RBy

2 J316u|*V Fy. (60)

For the explicit calculation of the expressions in Eqs. (58-60), the gradients of Fp in the
phase-space should be evaluated using a specific choice of Fy. Assuming a shifted (in v))

local Maxwellian Fj, we have

U B
VInF, = Vinng+- (M )V]nTH—i-('u——l)VlnTL—i- (v”—Uo)VUO——VB (61)
and
8lnF0 my;
= ——(U” — UO).
I T

Here, all the derivatives are taken in (R, 1, v))) space. We note that many integrals vanish due

to the odd parity of the integrands in v, — Uy. For this choice of Fp, only the 7t (UH Us) VU
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term, the VInn, term, and the T“ VB term contribute to II Ango' Note that two thermody-

namic driving terms Vng and VU, and a geometric correction VB o« —V R necessary for
the angular momentum density, can be combined into I'y(b;)V(noUpR), after velocity-space
integrations. Here, T';(b;) = I,(b;) exp(—b;), I,,’s are the modified Bessel functions, and
b; = k% p?. Due to additional y dependence, the V B-driven term produces an FLR residual
contribution o< b;(I'; — I'))VR. As we will explain shortly, from Hifg’l, we obtain FLR

residual terms driven by VU, and Vlnng which are also proportional to o b;(I'; — I'g). So,

GK,Diff

within this hydrodynamic limit, the full Larmor radius version of the diffusive flux I,/

has a relatively compact form which is;

(TIGPH Iy = <Z[Renk( )|5¢k| (To + bi(T's — o)) |06k [V (minoUs R)- V) .(62)

Then, as in Sec. III, from

(TGP Yy = —XGE (RBy)? 9 (o R? wy)),

o

we can define the flux-surface-averaged angular momentum density diffusivity:

Xono = (55" Y Reracl? (Lo + bi(T1 — To)) |60 [*). (63)
RB(; "
Hﬁﬁ;TEP is relatively insensitive to details of the hydrodynamic expansion, and to the choice

of Fy. As one can check via an integration by parts, the TEP pinch can be easily evaluated
by assuming that Fj is an even function of (v — Up) (i.e., without using a specific Fj
explicitly). In a collisionless Hamilonian system, only an Fy which is a function of any of
the constants of the motion (u, Ly, E) alone, exactly satisfies the zero-th order nonlinear
gyrokinetic equation. Here, E' is the single particle energy in the absence of time-dependent
electro-magnetic field. Use of the usual choice of a shifted Maxwellian for Fj typically causes
an error on the order of v /L, with Qy = e;By/m;c, and a characteristic gradient length
in the perpendicular direction L .

Note that those errors originate from using the radial coordinate 9 in lieu of the canonical
angular momentum Lg =~ €4 + m;v R, as the argument of ng, Ty, and Us. On the other
hand, HifngEP is driven by the gradient in v-space. The “TEP” mechanism relies almost
entirely on the single particle guiding center dynamics and is relatively insensitive to the
choice of Fy. For the gyrokinetic expression for the TEP flux, we have;

e ct
@5y = =203 ReTckwdeﬁR—BPO\5¢k\2(min0R2)w||RBg). (64)
k
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Then, as in Sec. III, from
(TSing" V) = (ming R*By)w|Vig

we can define the flux-surface-averaged “TEP angular momentum density pinch”:

Ving' = RB ZReTckwdnkf Tologwf)

L )23 Rer, a0 )r0|5¢k\2> (65)

= 9 (—— 3
<R RB@ K wde(O)

On the other hand, the temperature-gradient-related terms contribute to IT AngCTh. Since

the velocity dependence of the renomalized propagator has been approximated using a par-

GK,1

Ang 18 less robust for

ticular version of the hydrodynamic expansion, the expression for II
a particular choice of the theoretical framework, as demonstrated further in Appendix C.
After evaluating the velocity space integral in Eq. (60), we note that the terms driven by
the temperature gradients VI and VT in Eq. (61) can be identified as Hiﬁ;cm. Other
FLR residual terms driven by VU, and VInny which are also proportional to b;(I'y — T'y),
can be absorbed into the diffusive flux HGK birf . Thus, with its dependence on wg and wg, ,
this flux can be characterized as the CTh (curvature driven thermoelectric) flux. For the

gyrokinetic expression for the CTh flux, we have;
<H§§gCTh VT/} Z Re —z(w - 3wd|| — de_) + AMT)}il{OJ — 3wd|| — Wql + iAwT}il]

[QdQ*T](FLR)( ) [66x|*{ (mino R*)w) RB,)66)

where [Q4Q.7](FLR) = 3wgxwsry Lo + warkwer { (1 — 2b; +207)Tg + (b; — 207)I'1}. Then, as
in Sec. III, using
(TG0 V) = (mino R* R By)uwy Vi,

we can define the flux-surface-averaged “CTh angular momentum density pinch,” which is:

Vﬁ; CTh _ Z Re[{—i(w — 3wy — wai) + Awr)} {w — 3wy — wai + iAwp} ]

cl

[26822) (FLR) (55 7

[6¢xl?), (67)

where wq < 0, and wg, < 0 at the low-B field side mid-plane. The total turbulent convection
(TurCo) velocity is, again, given by

GK,TurCo __ 1,;GK, TEP GK,CTh
VAn_q VAng VAng )
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TABLE III: Summary of key expressions for pinch velocity of angular momentum density

Turbulent Convective (TurCo) Pinch Velocity

Theoretical Model VTEP (turbulent equipartition) VETh (curvature-driven thermoelectric)
. 0 8T,
Hydrodynamic —2(L > Re‘l'ck% burkl®) (75 Ek(ReTck)l[Swd”k$ + wa 1 167
Eq. 41 Eq. 37 Eq. 40
Finite Larmor Radius See Eq. 65 See Eq. 67
Generalization
Typical magnitude —2x 4ng/ Ro —4G""x ang/ Ro

Comments Always inward
for outward ballooning turbulence
for normal magnetic shear;

Insensitive to

details of microinstabilities

Independent of the sign of either By or I,

Sign of GT" depends on
mode propagation;
Inward for TEM
Can be either inward or ouward
for ITG
Small for electron-heated or

OH plasmas

the sign of either By or I,

with the TEP contribution and CTh contribution given by Eq. (65) and Eq. (67) respec-

tively.
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VI. CONCLUSIONS

In this paper, we presented the nonlinear gyrokinetic theory of the toroidal momentum
pinch. We develop the theory from a symplectic gyrokinetic equation in toroidal geometry?°,
which conserves phase space density and energy. The principal results of this paper are:

i) the total flux of toroidal angular momentum density is calculated. This is shown to
consist of three pieces, namely the now-familiar diffusive flux,? a novel turbulent convective

flux with velocity VIurce

Ang s and an off-diagonal flux produced by acoustic perturbations in

the presence of broken xr — —z symmetry, as discussed in Ref.15.

ii) the novel convective velocity V1% is shown in turn to consist of two distinctive com-

Ang

ponents produced by two distinctive process. Vﬂ‘g’ Co consists of a V(1/B)-driven turbulent
equi-partition (TEP) convective velocity (not produced by a thermodynamic force) and a
curvature driven thermal (CTh) convective velocity (produced by VT, a thermodynamic
force). The TEP component of Vi Co arises from electrostatic acceleration along curved
field lines (~ —m;cyV x b-Vd¢) and its resulting contribution to the parallel Reynolds
stress (dv,0v)), which co-exists with the usual parallel acceleration in toroidal geometry.
Both components of V,{“"“° require symmetry breaking via ballooning mode structure to
exist, and will vanish for flute-like fluctuations with ¢ = const on a flux surface.

iii) the V(1/B)-driven TEP piece of V" is shown to arise from the fact that, in a
low-3 tokamak equilibrium, B?ur = ¢B x V¢ is approximately incompressible, so that
the magnetically weighted angular momentum density (m;nU;/B?* « m;nUyR/B?* = L/B?,
since B « 1/R) is locally advected by fluctuating E x B velocities, to the lowest order in
O(a/R). As a consequence L/B? is mixed or homogenized, so that %(L/BZ) — 0. Thus,

the V(1/B)-driven V"¢ pinch is seen to be of the turbulent equipartition variety, and is

Ang
not driven by a thermodynamic force. Typically, V" is given by
2
TEP
VAng = _R_OXAnga

for outward ballooning fluctuations (peaked at low-B side). Here, xan, is the angular mo-

mentum density diffusivity, similar to xs. The TurCo TEP pinch, Vi 2P is insensitive to

Ang >
mode phase velocity.

iv) on the other hand, the curvature driven thermal (CTh) flux is shown to be VT;-driven,
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and so is of the ion thermoelectric variety. Typically,

Th
CTh . 4G

VAn_q — RO XATL_(],
where G ~ %. Unlike V{27 which is inward regardless of microinstabilty details, V,{1"

depends on the direction of mode propagation. Thus, roughly speaking, for fluctuations

propagating in the electron diamagnetic direction, G*" is definitely positive, making Vﬁ?;h

inward for outward ballooning fluctuations. For fluctuations propagating in the ion dia-

VC’Th

ing. Can be outward for

magnetic direction, GT" can be negative (but not always), and
outward ballooning fluctuations. We emphasize, though, that numerical calculations are

usually required to determine the net direction or sign of the V" The trends in the

Ang
various contributions to V{*““° are summarized in Table ITI.
v) the basic implications for tokamak experiments have been outlined. Since both V{ ™"

and Vg};h are inward for fluctuations propagating in the lectron diamagnetic direction, we

TurCo __ V}EP + VCTh

= Ving ing s 10 be inward for

expect that the total convective pinch velocity V"
TEM-dominated turbulence, which is expected for Ohmic and electron-heated plasmas. On

the other hand, for discharges where transport is determined by I'TG-dominated turbulence,

VCTh

TEP
Ang V.

Ang 1S always inward, making the net sign of

can sometimes be outward, while
Vf,f‘; Co a question of detail. Note, however, that the off-diagonal piece of (0v,0U))) produced
by the synergism between the parallel acceleration by V| d¢ and x — —x symmetry breaking
by E x B shear is usally inward for ITG-driven turbulence. Thus, the toroidal mechanism
for TurCo pinch nicely complements that mechanism, and can help explain (via an inward
pinch of momentum) the appearance of spontaneous or intrinsic rotation in electron heated
plasmas.

Several other comments are in order here. First, this calculation is a good example of
how consideration of the subtleties of modern gyrokinetics can lead one to identify a novel
physics effect, as well as improve the treatment of familiar ones. Indeed, this is likely the
first significant example of such a discovery. Second, it should be clear, this calculation
is in the spirit of quasilinear theory, and focuses on evaluating the momentum flux given
an absolutely minimal characterization of the turbulence. In particular, effects of mode-
mode coupling, turbulence spreading and nonlinear wave-particel interaction -all of which

may contribute to non-diffusive momentum transport - are not addressed here. Third, the

calculation discussed here is primarily concerned with calculating the flux of magnetically
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weighted angular momentum density m;nU /B3. Indeed, a major result of this paper is
the identification of that quantity as one which is (approximately) locally conserved and
homogenized. However, experiments often are mostly concerned with the parallel Reynolds
stress (0v,0U)), and thus some care is required in subtracting off the contribution from
particle flux Up(év,0n)/B? from (év,6L/B?). This part is discussed in Appendix A. Also,
we note that the treatment here applies only to electrostatic microturbulence at low-g.
Finally, we note that, like virtually all theories of toroidal momentum transport and spon-
taneous/intrinsic rotation, this paper does not address either the role of perpendicular flows
in toroidal momentum transport or the dynamics of poloidal momentum transport. Both
of these can be quite important, since experimental evidence for non-neoclassical poloidal
flows is accumulating.’®® Noting the richness of turbulence-driven flow physics®’, we note
that a proper gyrokinetic treatment of this problem requires a lengthy calculation along the

lines of Ref. 61. This calculation will be presented in a future paper.
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APPENDIX A: TREATMENT OF PARTICLE FLUX

The main subject of this Appendix is to discuss the relationships between the quantities
derived in the main text and those commonly used in the transport analyses of experimen-
tal data. We also discuss the effects of particle flux on rotation evolution. While it’s most

natural to study the evolution of the angular momentum density, nU,R, for theoretical
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studies of the toroidal momentum transport, and for analysis of perturbative momentum

L1213 what’s measured and estimated from experiments is the toroidal velocity

experiments
Us = wyR. In an analysis of experimental data', the “toroidal (linear) momentum diffusiv-

ity,” Xamom,» Was defined from:
I rviom = —Xmomen0miVUg + miUglion, = _X;flgm,danﬂmiVUq&- (A1)

Here, ITp/om is the total radial flux of the (linear) toroidal momentum density 6(nUy)dv,,
I';,, is the ion particle flux. Note that the TurCo momentum pinch terms discussed in
this paper are not included in this relation. In a simpler characterization, Xjﬁw includes
contributions from both diffusive momentum flux and an apparent ‘convective’ momentum
flux which comes from the ion particle flux. Thus, even before getting into the issue of the
possible TurCo momentum pinch (the main contribution of this paper), we recognize the
importance of a proper treatment of partcle transport in the momentum transport studies.
Of course, the quasineutrality requires I'io, = Teiectron = T'pu, and T'py = —DpuyVn 4 Vpun
is a typical characterization. Hence, the convective particle pinch can result in an inward
pinch of toroidal moemntum.

One might think the influence of particle transport on the characterization of momentum
transport can be avoided by calculating the radial flux of rotation (i,e., U without a density
multiplier) directly. However, this is not, in general, true, since the dynamics of Uj will
be coupled to that of density n even more strongly than the dynamics of nlU) is. We
think with the possible exception of “pure” ITG turbulence with no particle flux (i.e., due
Boltzmann electrons), the calculation of the radial flux of rotation from the gyrokinetic or
moment approach will be more complex as compared to that of our approach in the main
text (i.e., calculating the radial flux of the momentum density nUj). We claim that from
our calculation of the total radial flux of the (linear) toroidal momentum density, ITysopm, in
the main text, one should define the momentum diffusivity and various pinch velocities as
follows.

M irom = —Xaom,goms VU + V32rC%n0m, Uy + mUgTpu, (A2)

where VIrCo i the ‘“Turbulent Convective’ radial pinch velocity of the momentum density.
When one calculates the evolution of the flow using the continuity equation, a contribution
to %n coming from the V-I'y; appears. Sometimes one neglects the influence of the particle

flux on the flow evolution, assuming negligible particle source at core. However, in general,
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from Eq, (A-2), it’s obvious that I',y; can manifest itself as an apparent “velocity pinch” if
one does not elaborate on the particle flux in studying the momentum transport. Since the
particle flux can manifest itself as an apprent momentum pinch, it’s instructive to compare
a typical particle pinch velocity to the V5P in Eq. (37). Since the magnitude of the
particle pinch varies considerably depending on plasma conditions, it makes more theoretical

sense to compare the particle pinch and the momentum pinch from similar physical origins.

Therefore, we compare VIEP with VIEP from Ref. 25 which obtained:

Ang P
1 25
‘/p'l’;lEP ~ —Q(Dptl/R())(Z -+ g)_
Thus, we see that, in normalized form for comparison,
TEP ;y;TEP 1 23
Vang /Vou | ~ (XAng/Dptl)(Fballoon/(Z + 3))

While x 4ng > D,y typically, they are roughly of the same order. Furthermore, with a contri-
bution t0 Fhauieon coming from Fy., which depends on §, the ratio Fyuoon/ (i + %) is typically
on the order of unity. A notable difference is the fact that trapped electrons, for which the
response is bounce-averaged, carry the particle pinch in particle TEP theories, but circulat-
ing ions carry the momentum pinch in our theory. Thus, the particle transport contribution
should be kept in mind, when one studies momentum transport. Note also that possible
confusion from considering the ratio [Vyyir /V PP | for reversed magnetic shear plasmas is

unfounded, since the turbulence is so weak under these conditions that the assumption of

homogenization, which is generic to TEP models, is dubious.

APPENDIX B: DYNAMICS OF TURBULENT EQUIPARTITION FLUXES
AND HOMOGENIZATION

In this Appendix, we review the physics of TEP fluxes in the light of homogenization
theory. The aim here is to elucidate the fundamentals of TEP theory using ideas relevant
to homogenization and transport of potential vorticity and scalar concentration in 2D in-
compressible flows. The latter provide useful, unifying principles within which to consider
a variety of problems involving mixing, transport, and relaxation. In particular, turbulent
equipartition (TEP) pinches emerge as effects which limit compelete homogenization due to

(effectively) compressible dynamics.
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C,, : bounding streamline

A, : area enclosed by

streamline C,

unit vector
normal to
streamline

:iso-scalar on
streamline

SI’\

FIG. 1: Geometry nomenclature for homogenization.

Homogenization theory, derived from the Prandtl-Batchelor theorem,5? is concerned with
the mixing of a scalar quantity within a regoin bounded by a closed streamline in a 2D

incompressible flow. The basic equation of the homogenization problem is

gts + Vo x2-VS=vV2S, (B1)

with v = V@ x 7 satisfying V - v = 0. Here S = V?2¢ (vorticity) for a 2D fluid, S = —By+V?¢
(potential vorticity) for a geostrophic fluid, S = Inng+ ¢ — V2¢ for 2D drift wave turbulence,
and S = A (magnetic potential or other scalar field) for scalar evolution. We will show that
ultimately S — const within a closed, bounding streamline Cy. We consider a particular
closed streamline C,, within C).

Homogenization requires that the small scale dissipation be diffusive (~ vV?), but is
insensitive to whether or not S is an ‘active’ or passive scalar. To show that S is well mixed

within a bounding streamline C,, (see Fig.1), consider the ¢ — oo limit, where
Voxz-VS =V-(vV5S). (B2)
Then, integrating Eq. (B2) over the enclosed area gives
/A av VS = /A a0V, (B3)
However, since V - v = 0, Gauss theorem gives

/ d’zv-VS = d(in vS (B4)
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where 1 is a unit vector normal to the bounding streamline and d/ is the differential incre-
ment along the streamline. Since n is normal to the streamline C),, we have n-v = 0, so it
followes that

/A EeVvSs = [ dtavvS, = 0. (B5)
n C’n

Here, S, is the value of S along the streamline, which since ¢ — oo, must be an isopotential.

Thus, S, = S,(¢). Hence,

b - Vv O5n

Note, however, that
/ d0h - Vi :/ ALV éx3 =,
Ca Cn

where 7, is the circulation around the contour C,,. Thus, we arrive at

0S.

5—5’}/” = O:
SO % = 0 necessarily. Since C), is not special, any interior contour is equivalent, so %’ =
for all n, so % = 0. Therefore, there’s no variation from streamline to streamline within the

outermost closed contour Cy, so S is homogenized within Cy. In short, then
VS =0

within Cj, so S is mixed (homogenized), and VS is relaxed.

Several comments are in order here. First, the essential elements of argument above are
that V - v =0, so that %S = 0, up to only diffusive dissipation. Second, it does not matter
whether S is an active scalar (as in vorticity or potential vorticity) or a passive scalar. Third,
the nature of Cy and v is flexible. In this regard, Cjy can be exact, so that v corresponds
to the molecular diffusivity, or Cy can be approximate, i.e., coarse-grained, where v = vp, a
turbulent diffusivity which includes effects from fluctuations on scales smaller than that of
the coarse graining. In particular, Cy can be a closed streamline bounding the system, so
that, given fluid excitation, mixing will continue till V.S = 0 throughout. Finally, the time
scale of homogenization is not specified, but will be determined by both diffusion and the
time scale for shearing by bounded, circulating flow.

For transport problems in MFE, the programatic ‘bottom line’ of homogenization theory
is that a scalar field which is advected by “incompressible turbulent flow” will be homog-

enized, so that only the gradient in the mean of that scalar will relax and flatten. Thus,
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homogenization implies that the flux of the mean S, denoted by (S), may be written as
I's = —DsV({(S),

where Dy is fluctuation-driven, and usually at least estimated by some sort of quasi-linear
closure, sometimes with renormalization. In confinement devices, mean quantities are func-
tions of the flux surface, so

0

FS = _DSE<S>

Now, throughout the above discussion, we have assumed S to be a single quantity and the
advective flow to be incompressible. In a sense, all that TEP theory involves is the possibility
that compressibility of the advecting flow results in a situation where a ratio or product of
two fields is effectively advected . A particularly simple example*’ is that of 2D E x B mixing
of density in an inhomogeneous, but straight, magnetic field i.e., B = B(z,y)z. Then, from
the continuity equation and E x B flow, we have

%n + V-(nv) = vV’n, (B7)

with
CVquA
vV=—— )
B Z

We find a re-scaled version of the density evolution equation is just

0 . n.o o
prid +cVoxz - V(E) =vVin. (B8)

Note that this equation almost has the form of Eq. (B1), with S = n, except that the ratio
n/B, not n is advected, on the account of the compressibility of the E x B flow induced by
the inhomogeneity of B. Thus, n/B is locally conserved up to dissipation of n. Now, it is
important to note that [ dlcVéxz- V(%) = 0 here, so that homogenization will still occur.
However, homogenization theory would then immediately predict that the spatial profile of

the mean n/B would relax aCCOTding to
L'y =—Dnp=—(n/B)
n/B n/B ) )

so that

9 0
57" + 5T/ = 0. (B9)
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This, at long last, brings us to TEP theory. Of course, what is of interest is not the flux of
n/B, but the flux of n, and the evolution of n. Thus, writing out the various terms in Eq.
(A) explicitly gives

9
0x

0 0 Dyp 0 (n) 0 — 0
= — — ~~D, g—B}=—{D,
B2 /B(?x } 836{

5™ =5 H 5™~ 5 (n) + VI {n)}, (B10)

where B = <<"> ~ (B),

n/B) —
D, = Dl/B
n B 7
and
D,/p 0 =
vr=_"MEZR
n F2 oz

In other words, homogenization and relaxation of gradients of the locally advected quan-
tity, mean n/B, appear as ‘diffusion and advection’ of density. Here, D,, and V? are the
diffusion coefficient and pinch velocity, assuming that the n-dependence of B is negligible.
Note that both quantities have D, g, the original diffusion coefficient for n/B, as a common
factor. VP is inward for (%F > 0, and constitutes a pinch in that case. Thus, the density

profile is stationary for mean profiles which satisfy

0
5 (n/B) =0,

or n/B = const in terms of mean values. These are termed ‘canonical’ profiles, and are
simply those for which the mean profile of the locally advected quantity is flat. It is inter-
esting to note that the pinch velocity is driven by g—f which is not a thermodynamic force
(i.e., not related to a moment of the distibution function). This is not surprising, since the
pinch arises from local conservation of n/B, and not from some competition of thermody-
namic forces and fluxes, as does a thermoelectric pinch. Finally, we note that: i) what is
ultimately of relevance is the ¢ — oo limit of Eq. (B8), and ii) the scales of B ( a mean
fixed quantity) are much more slowly varying than n (a local fluctuating quantity), so it is
a reasonable approximation to let n — % in the diffusion term on the RHS of Eq. (BS).
At that point, homogenization theory applies and the rest follows directly. Sec. IV in the

main text contains an application of the concept of TEP fluxes and homogenization to the

momentum transport problem.
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APPENDIX C: NONLINEAR GYROKINETIC DERIVATION OF THE LINEAR
MOMENTUM FLUX

In this Appendix C, we calculate the radial flux of the linear momentum density from
nonlinear gyrokinetic equation, and present fully kinetic experessions. We intentionally
consider the linear momentum instead of angular momentum, to contrast the dependence
of the final results on the major radius R o< 1/R. We present a more traditional integration

in (v1,v)) — space, rather than in terms of (u, v)). The gyrokinetic equation is*

0 B* ub b e B* 0

Assuming Fj is a shifted Maxwellian, we can write:

5ty = J. (UJ_kJ_) [(U” UO) k_EEXVF—?k
k 0 0 [w_(vllB*"‘HLXVB) k]

e B*
The parallel velocity moment gives the parallel momentum:

0 (Twn)k =27 ‘/_o:o dUH /OOO dUJ_ [Jo (kBUL> ULU||5fk] (C3)

] %&kao . (C2)

7

where we used Bdy/ — v, dv, .

Substituting (C2) into (C3), after some algebra, we obtain:

Jo(fpilum¢)2mw z? {
o (nv = —== dx dz z \/_UZ
(nv)) k” D2 % day [ Tonomtoaet 2ot VTV
+ (kHUO + 2v§zxﬁg (B-Vb) . ) (33|| + \/—v“) walky}a (C4)
where
Uy
k= [k| +2 2pibx (b-Vb) - k]
(ool 2v,pib (b-Vb) 'k _ 204 (5%9) piky
“T \/ivtikﬁ > SPI= \/ivtikﬁ Pt V2u ki I ’
b= 2K = U = (o1 — )
iVl o \/E'Uti ’ I \/i'Utz’ ’
and

T dr 2 vy dr LB dr

1dn 3 dv 1dB
1= (R - n (3-st - af)] 4 vER D a2 1 F)
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Defining
9 oo 00 x’ixﬂ”Jg (\/2_me) g2
Vv Jo —o () = Ca — Cp17% /2 — (pa?)

we can write:

o (nv”)k =

K eM) { (\/_Utz Uow”m +w*szZ dUo) 1o
+ [k”UO —wii (1= 3m)] I + (21)3,3 (b-Vb) -k — w.m) Lis
— Wi (1 — %m) fg—,‘jﬂho — Wy (ﬂz + L3 df) I3 — wy (77z’ + Ln}g(fif

2

Notice that, according to the usual convention, w,; < 0 for k, > 0, and w oc w,; for the

ITG mode. Note also that the I,,,’s themselves are complicated functions of kH and other
variables, because of their dependence on the parameters (,, (p and (p1. Therefore it is
not easy to identify the resulting “net momentum pinch” analytically in the fully kinetic
expression. Instead, we take the fluid limit of (C5), as a confirmation of the previous result,

using the fluid limit of 1,,,:

r (”T“) (m+2) m: odd

Inm ~ —
G/ F(T*) 1+ () (@2 =) = (%31) (e +0)] moeven
This gives:
) (nUH)k = vti"(’y)%{vti (1 — w — w—(;LL—é”d—f) [k'H + 2%&-13)( (BVB) -k]
Fula s — (14 Ly d8) et} (©6)

where the the last two terms may be combined as [w.;L,B/ (viing)] X & (Uyno/B). It sould
be understood that, in fluid limit formulas in this Appendix, 1/w should be interpreted as
1/(Rew + i|y|) as required by causality constraint.

The Reynolds stress

<5'UET5 (TL’UH)> = Re Zk 04 s yn(l]e(*r) _‘ { (\/_vtzkn w*szo +w*z\/_L7: dUO) Iy
[k”UO — Wy (1 — 57’]1)] 111 + (QUtZQ (be) k — w*m,) _[13

—Wai (1 - %77@) fg—gﬁho — Wai (77z' + Loy 'fif) I31 — wy (m + n;ﬁf \fvt 13((}37

which becomes

<(5vEr5 (nv||)> Re 3, w%pf-"

66_;&‘2 {Utino (r) (1 _ wei(l4m) Mﬂ@) [kll + Q%piﬁx (BVB) .k]

w w B dr

H,Lal 4 (el } (C8)
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when we take the fluid limit. Note that (C8) exhibits the B*-symmetry breaking mechanism
via [kll +200 pibx (BVB) : k]. We can also see that the result for V52 in Eq. (10) is fully
recovered. Terms related to 7;w,; correspond to the V77" Noting that 6T;/T; ~ n;“=ted¢/T.,
we recover part of the result for V,5I" in Eq. (11). The slight difference in coefficients is
due to the fact that different versions of the propagators have been used in taking the fluid

limit.
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