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Abstract

The theory of variances of equilibrium reconstruction is presented. It complements existing practices

with information regarding what kind of plasma profiles can be reconstructed, how accurately, and

what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory,

give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium

reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different

physical nature.
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1 Introduction (to ToC)

The solution of the Grad-Shafranov (GSh) equation [1]

∆∗Ψ̄ ≡ ∂2Ψ̄

∂r2
− 1

r

∂Ψ̄

∂r
+
∂2Ψ̄

∂z2
= −T − r2P, Ψ̄ ≡ Ψ

2π
, T = T (Ψ̄) ≡ F̄

dF̄

dΨ̄
, P = P (Ψ̄) ≡ dp̄

dΨ̄
,

B = Bpol +
1

r
F̄ (Ψ̄)eϕ, Bpol =

1

r
(∇Ψ̄ × eϕ), p̄ = µ0p(Ψ̄), ̄ ≡ µ0jϕ =

1

r
T + rP

(1.1)

gives the most basic information on the magnetic configuration, which is necessary for all physics models
of the tokamak plasma. Here, r, ϕ, z, are cylindrical coordinates reflecting axisymmetry of tokamak plasma,
Ψ is the poloidal magnetic flux, Bϕ is the toroidal magnetic field, p is the plasma pressure, and jϕ is the
toroidal current density.

The equation (1.1) is two-dimensional, and its solution Ψ̄(r, z) is determined by the shape of the plasma
boundary and by the two one-dimensional functions T (Ψ̄), P (Ψ̄) in the right hand side representing the
current distribution inside the plasma. Correspondingly, the variances in the magnetic configurations are
related to uncertainties in the plasma boundary and in two profiles T (Ψ̄), P (Ψ̄). The present paper gives
the theory, which allows the evaluation of these variances in equilibrium reconstruction.

Determination of the plasma boundary from external magnetic measurements can be considered as a
separate problem, not directly related to the GSh equation. Its reconstruction is linked in a straightforward
way with the accuracy of external magnetic measurements, which can be improved upon necessity. We have
intentionally neglected (except for one example) the discussion of boundary reconstruction in orderto focus
on the more challenging problem of reconstruction of plasma profiles.

If the plasma boundary is reconstructed in some manner, the measured distribution of the magnetic field
Bpol along the plasma boundary restricts the choice of the two functions P, T in the right hand side of the
GSh equation. This effect, evident in equilibrium calculations of non-circular plasmas, motivated the first
equilibrium reconstruction as early as the 1970s [2] in an attempt to recover the current density (and magnetic
configuration) from information on the measured Bpol outside the plasma. At present, reconstruction is a
standard tool for interpreting the geometry of magnetic configurations due to the wide use of the EFIT code
[3, 4] and its modifications.

Nevertheless, having only external measurements in tokamaks, the two unknown functions in the right
hand side of Eq.(1.1) can be reconstructed only in a limited way. Thus, in tokamaks with a circular cross-
section (in a high aspect ratio approximation) only integral parameters such as plasma current Ipl, internal
inductance li and Shafranov’s βj [5] can be determined from external magnetic measurements (which include
the diamagnetic loop). An outstanding example of a non-circular configuration with the same property of
“hiddenness” was theoretically described by Bishop and Taylor in 1985 [6, 7]. On the other hand, all
equilibrium calculations show a distinctive effect of the current distribution on the external magnetic fields
in non-circular plasmas, indicating that the shaping helps to retrieve more information about internal plasma
profiles from external measurements.

But in any case, internal measurements are necessary. Because of the extreme importance of the equilib-
rium information, different diagnostics are being developed to provide additional information for reconstruc-
tion of the current distribution inside the plasma. Examples include kinetic measurements of electron and
ion temperatures, plasma density, contribution of the fast particles into the plasma pressure, polarimetry
(measuring the line integrated Faraday rotation of polarized light from the laser beam [8, 9], or spectral lines
[10, 11, 12]), signals related to Motion Stark Effect (MSE) [13], position of resonant surfaces from internal
magneto-hydrodynamic modes, etc.

Still, up to now, even with additional internal measurements the objective assessment of the value of
equilibrium reconstruction has not been possible and the reconstruction itself remains a sort of “art” in
numerical simulations rather than a science.

Here, we describe a rigorous method, based on analysis of linear perturbations of equilibria, which
allows assessment of uncertainties in equilibrium reconstruction, its overall value, and the contribution of
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measurements of different physical nature to the reconstruction. The same approach makes possible the
quantitative evaluation of quality of the diagnostic systems on existing and future machines. For practical
use, the theory was implemented into ESC (Equilibrium and Stability Code) [14], which is intrinsically based
on linearization of the GSh equation as a method of its solution.

Sect. 2 describes reduction of the problem of variances in equilibrium reconstruction to a matrix problem,
which can be solved using the SVD (Singular Value Decomposition) technique [16]. Sect. 3 introduces the
variances in equilibrium reconstruction and σ-curves. Sect. 4 gives σ-curves for characteristic equilibrium
configurations. Sect. 5 demonstrates the crucial role of internal measurements for reconstruction using the
line polarization (MSE-LP) and line shift (MSE-LS) signals from the motional Stark effect as an example,
relevant to the ITER diagnostics. Sect. 6 outlines the possibility of aligning the accuracy levels of different
measurements. Sect. 7 addresses the issue of solving the non-linear, ill-posed problem of reconstruction for
the GSh equation. It gives a rigorous practical recipe, based on σ-curves, for how to perform the actual
reconstruction in a stable and accurate manner.

The Summary outlines the possible applications of the theory of variances and its extension to other
types of reconstructions of either one- or two-dimensional sources of signals.

2 The formulation of the problem of variances (to ToC)

The theory of variances assumes that the reconstruction has been already performed and has generated
a plasma shape and reconstructed functions T (Ψ̄), P (Ψ̄). The question to answer is what kind of other
equilibria are possible within the given accuracy of diagnostics.

This problem is reduced to solving the linearized equilibrium problem

Ψ̄ = Ψ̄0(a) + ψ, ∆∗ψ + T ′
Ψ̄
ψ + P ′

Ψ̄
ψ = −δT (a)− δP (a)r2 (2.1)

for N possible perturbations of the plasma boundary ξ,and the functions T and P , δT, δP , which can be
represented as

ξ =

n<Nξ∑

n=0

Anξ
n(θ), δT =

n<NJ∑

n=0

Tnf
n(a), δP =

n<NP∑

n=0

Pnf
n(a),

N = Nξ +NJ +NP , ξn =

{

cosmθ, n = 2m, m = 0, 1, . . . ,

sinmθ, n = 2m− 1, m = 1, 2, . . . ,
, fn = cos

πna

2
,

(2.2)

where 0 ≤ a ≤ 1 is the square root of the normalized toroidal flux, used throughout this paper as a flux
coordinate, and θ is the poloidal angle on magnetic surface. The trigonometric basis functions fm(a) are
used here as a particular choice.

Instead of functions T (Ψ̄), P (Ψ̄) and their perturbations δT (Ψ̄), δP (Ψ̄), most of results in this paper are
presented using an equivalent pair of current densities ̄s(a), ̄p(a) and their perturbations

̄(a, r) =
R0

r
̄s(a) +

(
r

R0

− R0

r

)

̄p(a), ̄p(a) ≡ R0P, ̄s(a) ≡
T

R0

+R0P, (2.3)

where R0 is the radius of magnetic axis. Fig. 1 shows an example of the background current density profiles
̄s(a), ̄p(a) and the basis functions fn(a).

The displacement ξ, used here, specifies the plasma boundary perturbation δr(θ), δz(θ) in the following
form

r(a+ ξ, θ) = r(a, θ) + r′aξ, z(a+ ξ, θ) = z(a, θ) + z′aξ, δr(θ) = r′a(θ)ξ|a=1, δz(θ) = z′a(θ)ξ|a=1. (2.4)
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Figure 1: (a) Background current density profiles ̄s(a), ̄p(a), and (b) trigonometric expansion functions
fn(a)

The displacement defined in this way is related to the solution of the linearized GSh equation (2.1)

ξ = − ψ

Ψ̄′
0

∣
∣
∣
∣
a=1

. (2.5)

A numerical code, like ESC (Ref. [14]) can solve the linearized GSh Eq. (2.1) for each particular
perturbation either of the plasma boundary or of the plasma profiles δT, δP . Then, the signals on diagnostics
for each of N solutions ψ can be calculated in a straightforward way. The linear relationship between the
vector ~X of coefficients of perturbation

~X ≡







A0, A1, . . . , ANb−1
︸ ︷︷ ︸

Nξ of ξ

, T0, . . . , TNT−1
︸ ︷︷ ︸

NT of δT

, P0, . . . , PNP −1
︸ ︷︷ ︸

NP of δP

,







(2.6)

and the vector δ~S of measured signals

δ~S ≡







δΨ0, . . . , δΨMΨ−1
︸ ︷︷ ︸

MΨ of δΨ

, δB0, . . . , δBMB−1
︸ ︷︷ ︸

MB of δBpol

, δS0, . . . , δSMS−1
︸ ︷︷ ︸

MS of others






(2.7)

can be written in matrix form:

δ~S = A ~X, A = AM×N , M ≡MΨ +MB +MS, N ≡ Nξ +NJ +NP , . (2.8)
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Here, MΨ is the number of flux (saddle) loop signals, MB is the number of signals from the local pickup
coils, measuring poloidal magnetic field, MS is the number of other signals (including the diamagnetic loop
signal), MSE signals and all other signals used for equilibrium reconstruction, while M is the total number
of signals. Typically M > N .

The response matrix A, calculated for a representative set of perturbations for a given magnetic con-
figuration, is the final product of equilibrium calculations in the theory of variances. After this step, the
analysis of the matrix problem (2.8) is applicable to other reconstruction problems, reduced to inversion of
the response matrix.

3 Variances in equilibrium reconstruction (to ToC)

After calculation of the response matrix A, it is necessary to make a transition to a working matrix A, which
weights each signal δSm in accordance with its accuracy ǫm(assumed to be known a priori).

(A)0≤n<N
m ≡ 1

ǫm
(A)0≤n<N

m , δS̄m ≡ 1

ǫm
δSm, A ~X = δ~̄S. (3.1)

Then, using the Singular Value Decomposition (SVD) technique (Ref. [16]), the matrix A should be presented
as a product of three matrices

A = U · W · VT , U = UM×N , , W = WN×N , V = VN×N (3.2)

where U is a rectangular matrix with orthogonal columns, normalized to unity,

UT · U = I, Ik
i = δk

i , (3.3)

I is the identity matrix, W is a diagonal matrix containing the eigen-values wk of the problem

W k
i = wkδk

i , (3.4)

and the columns of V contain the normalized eigen-vectors of the problem

VT · V = I, (3.5)

as it is described in Ref. [16]. The expansion (3.2) is always possible and unique given the matrix A.

Each eigen-value, determined by this procedure, is associated with an eigen-vector ~Xk of coefficients
(2.6), defined in terms of columns of the matrix V as

~Xk ≡ γkVk. (3.6)

The factors γk scale each physical perturbation to the characteristic value of plasma perturbation ξmax ≃ 1,
or the current densities ̄s,max, ̄p,max (whatever is the most limiting one).

Calculation of standard deviations (or Root Mean Square, RMS) of the signals δ~̄Sk generated by each

eigen-perturbation ~Xk

δ~̄S
k

= A ~Xk = γkwk ~Uk,

√
√
√
√ 1

M

m<M∑

m=0

(
δS̄k

m

)2
=
γkwk

√
M

, (3.7)

allows the introduction of variances σ̄k in reconstruction of each eigen-perturbation as

σ̄k ≡
√
M

γkwk
. (3.8)
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Variances σ̄k in Eq.(3.8) specify uncertainties in the reconstruction of the plasma boundary ξk and current
density δT k, δP k for each eigen-perturbation in an explicit form, i.e.

~Xk ≡







Ak
0
, Ak

1
, . . . , Ak

Nb−1
︸ ︷︷ ︸

Nξ of ξ

, T k
0
, . . . , T k

NT−1
︸ ︷︷ ︸

NT of δT

, P k
0
, . . . , P k

NP −1
︸ ︷︷ ︸

NP of δP

,







,

ξk = σ̄k

n<Nξ∑

n=0

Ak
nξ

n(θ), δT k = σ̄k

n<NJ∑

n=0

T k
nf

n(a), δP k = σ̄k

n<NP∑

n=0

P k
nf

n(a).

(3.9)

The amplitude of the uncertainties is proportional to the variances σ̄k. Because of normalization of the
matrix equation (3.1), the characteristic value of σ̄k = 1 corresponds to a perturbation of the plasma
boundary and current density in a magnetic configuration which is comparable to their background values,
and still marginally visible by the diagnostics. The importance of variances σ̄k is related to the following
statement:

Perturbations ~Xk with σ̄k > 1, (log10 σ̄
k > 0) are essentially invisible to diagnostics with a given level of

accuracy. The number of variances σ̄k < 1 in the spectrum of σ̄k, defined by Eq.(3.8), serves as a quantitative
measure of quality of diagnostic systems for equilibrium reconstruction.

In this paper, the perturbations with (a) σ̄k < 0.1, log
10
σ̄k < −1 are qualified as “well detectable”,

with (b) 0.1 ≤ σ̄k < 1, −1 ≤ log10 σ̄
k < 0 called “barely visible”, and (c) with 1 ≤ σ̄k, 0 ≤ log10 σ̄

k called
“invisible”.

The distinction between these 3 kinds of perturbations becomes obvious with the use σ−curves, which are
plots of log10 σ̄

k as function of k (assuming ascending ordering in σk). The intersection of the σ-curves with
the zero level separates visible perturbations from those which cannot be reconstructed with a particular
diagnostic system.

Based on explicit solution Ψ̄0 + ψk of the linearized equilibrium equation for each eigen-perturbation, it
is possible to calculate uncertainties in reconstruction of all physical quantities related to equilibrium, both
local or integrated, e.g., q- and p-profiles, kinetic energy of the plasma, etc. Accordingly, it is possible to
introduce variances of these quantities, e.g, σ̄k

q , σ̄
k
p for q- and p-profiles

σ̄k
q ≡

√
∫ 1

0

(δqk)2da ∝ σ̄k, σ̄k
p ≡

√
∫ 1

0

(
δpk

pnorm

)2

da ∝ σ̄k, (3.10)

all proportional to basic variances σ̄k (3.8). The variances in integrated quantities (like q- and p- profiles)
are typically smaller than σ̄k, and they can be reconstructed with a better certainty than, e.g., the current
density. In Eq. (3.10), pnorm is the normalization value of plasma pressure, suggested here as

pnorm,MPa ≡ I2

MA

20Sm2

. (3.11)

This value corresponds to the average plasma pressure with βj = 1 in Shafranov’s definition

βj =
20

∫
pMPadSm2

I2

MA

, (3.12)

where IMA is the plasma current, and Sm2 is the plasma poloidal cross-section.
Calculation of σ-curves for variances of physical quantities using the SVD technique solves the problem of

uncertainties in a comprehensive way. The associated technique can be implemented into existing equilibrium
reconstruction codes in order to generate information on variances remaining after equilibrium reconstruction
has been performed.
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4 Characteristic cases of reconstructions based on magnetic measurements (to
ToC)

The ESC code [14] has been slightly modified in order to calculate wk and variances in the current density,
q- and p-profiles for different kinds of tokamak equilibria. They are presented in the order of complexity. In
all examples the expansion functions fn(a) are taken in the trigonometric form (2.2) illustrated in Fig. 1b.

4.1 Shafranov’s model of a circular plasma equilibrium (to ToC)

In the classical Shafranov model of equilibrium, only two harmonics of the poloidal magnetic field are present

Bpol(a, θ) = B0(a) +Bc
1(a) cos θ, (4.1)

where both B0 and Bc
1 depend only on integral characteristics of the current density

B0 = 2π

∫ a

0

̄sada, Bc
1 =

a

R

(

βj +
li
2

)

, βj ≡ 4

a2B2
0

∫ a

0

(p̄− 〈p̄〉)ada, li(a) ≡
1

a2B2
0

∫ a

0

B2

0ada (4.2)

inside the magnetic surface. Correspondingly, it is impossible the reconstruct the details of the current
density except the total current and the combination li

2
+ βj . The diamagnetic measurements, which are

included into calculations, allow a distinction to be made between li and βj.
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 gyUr i0=0 i1=41 k0=0 k1=5 Eq Rec Variances
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(c) (d)

Figure 2: (a) Amplitudes of Fourier harmonics ψk
m cosmθ of four eigen-solutions ψk(a, θ) to the perturbed

GSh equation (2.1) for Shafranov’s model (NJ = 3, NP = 2). Red color is used for ψk
m=0

and blue for all
others, ψk

m 6=0
. (b) σ-curves log10{σ̄k}. The colors of vertical bars are used to specify the index k of eigen-

values. (c) Normalized eigen-variances for δjm
s (a) as functions of a. The colors of functions corresponds to

the colors of eigen-values. The thick black profile shows the background ̄s(a). (d) The δjm
s (a) component of

eigen-functions. The thick black profile shows the background ̄p(a).

For Shafranov’s model only three well-known parameters of the magnetic configuration can be obtained
for a full set of external magnetic measurements. Accordingly, the σ-curves in Fig.2 of the present theory
of variances show only three meaningful eigen-values. (The fourth one was made artificially finite just for
purposes of displaying the tendency).

4.2 Circular and non-circular cross sections (to ToC)

In this section the capacity of external magnetic diagnostics is described for different shapes of tokamak
plasmas. All the figures are organized in the same manner for easy comparison. Initially, the plasma
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configurations are shown.
z PlVac
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Figure 3: Numerically obtained (using ESC) equilibrium configurations for circular cross-section plasmas: (a)
large R/a0 = 10, (b) medium R/a0 = 3 aspect ratios equilibria, and (c) Fourier harmonics of eigen-solutions
for R/a0 = 3 and NJ = 5, NP = 4.

Then, the plots of (a) the basic σk-curves together with σk
q,p-curves for q- and p- profiles, variances for

(b) q- and (c) p- profiles, (d) signals from variances (which fit the error bar range), and variances in (e) ̄s-
and (f) ̄p-profiles are shown.

For simplicity, the relative error of all signals, i.e. B-coils and diamagnetic loop, is taken to be 0.01, while
the absolute error in measurements is assumed to be 0.

We start with a circular plasma of a large aspect ratio R/a = 10 (Fig. 4), which is close to Shafranov’s
approximation. Similar to the Shafranov model, the σ-curves (calculated for σ, σq, σp) show that only 3
eigen-perturbations can be reconstructed by external magnetic measurements. The fourth one (blue curves)
corresponds to variances of plasma profiles exceeding the background values.
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Figure 4: The case of a fixed boundary circular plasma with a large aspect ratio, R/a = 10. (a) σ-curves
log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a diamagnetic Φ-loop. (b) q-profile (thick black

curve) and q-profiles modified by variances corresponding to four first eigen-solutions. (c) the same for the
pressure p-profile. (d) The signals from variances on 64 B-coils and one Φ-loop. The red horizontal lines
specify the range of detectability of the signals. (e) Background ̄s-profile (thick black curve) and variances
in the ̄s profile, normalized to the level of their visibility. (f) The same for the ̄p-profile.

Reduction of the aspect ratio to the level R/a = 10 (Fig. 5) makes the situation slightly better, i.e. four
eigen-perturbations can be reconstructed. The fifth one (cyan color) displays unacceptable variances despite
the fact that the signals from it are smaller than the detectable level.
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log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 5: The case of a fixed boundary circular plasma with a modest aspect ratio, R/a = 3 with (a) σ-curves
log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a diamagnetic Φ-loop. (b) q-profile (thick black

curve) and q-profiles modified by variances corresponding to four first eigen-solutions. (c) the same for the
pressure p-profile. (d) The signals from variances on 64 B-coils and one Φ-loop. The red horizontal lines
specify the range of detectability of the signals. (e) Background ̄s-profile (thick black curve) and variances
in the ̄s profile, normalized to the level of their visibility. (f) The same for the ̄p-profile.

4.3 Non-circular cross-sections (to ToC)

The transition to non-circular cross-sections extends the number of visible eigen-perturbations. Two simple
non-circular magnetic configurations are shown in Fig. 6.
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Figure 6: Numerically obtained (using ESC) equilibrium configurations for non-circular cross-section plas-
mas, large R/a0 = 3, elongation κ = 2: (a) elliptical cross-section (b) D-shaped cross-section.

The σ−curves in Fig. 7 shows that for the case of the elliptical cross-section, the number of visible
perturbations is enhanced to k = 7.
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log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 7: The case of a fixed boundary plasma with R/a = 3, κ = 2 with elliptical cross-section. (a) σ-curves
log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a diamagnetic Φ-loop. (b) q-profile (thick black

curve) and q-profiles modified by variances corresponding to the first eight eigen-solutions. (c) the same for
the pressure p-profile. (d) The signals from variances on 64 B-coils and one Φ-loop. The red horizontal lines
specify the range of detectability of the signals. (e) Background ̄s-profile (thick black curve) and variances
in the ̄s profile, normalized to the level of their visibility. (f) The same for the ̄p-profile.

The shaping of the elongated plasma (Fig. 8) does not affect the range of visible perturbations. As in
the previous case, the variances for k = 8 are unacceptable.
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log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 8: The case of a fixed boundary plasma with R/a = 3, κ = 2 with D-shaped cross-section. (a) σ-curves
log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a diamagnetic Φ-loop. (b) q-profile (thick black

curve) and q-profiles modified by variances corresponding to the first eight eigen-solutions. (c) the same for
the pressure p-profile. (d) The signals from variances on 64 B-coils and one Φ-loop. The red horizontal lines
specify the range of detectability of the signals. (e) Background ̄s-profile (thick black curve) and variances
in the ̄s profile, normalized to the level of their visibility. (f) The same for the ̄p-profile.

Nevertheless, comparison of the two cases (Figs. 7,8) shows that with the D-shaped plasma reconstruction
of the q-profile can be much better than for a simple elliptic configuration.
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4.4 Spherical tokamaks (to ToC)

Spherical tokamaks (ST) play a special role in fusion, because of their compactness and high beta. Also,
they can benefit from elongation, D-shaping and reduced aspect ratio. In Fig.9, two ST cross-sections are
shown. The first one is up-down symmetric, while the second one has different triangularities on the top and
bottom.
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(a) (b)

Figure 9: Equilibrium configurations for spherical tokamak plasmas, R/a0 = 1.4, elongation κ = 2 and low
beta: (a) up-down symmetric case (b) up-down asymmetric case.

The σ-curves in Fig.10 indicate that while the spectrum of the visible perturbations remains the same
k < 8, the q-profile of spherical tokamaks is better reconstructed than the pressure.
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log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 10: The case of a up-down symmetric fixed boundary plasma of a spherical tokamak with R/a = 1.4,
κ = 2. (a) σ-curves log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a diamagnetic Φ-loop.

(b) q-profile (thick black curve) and q-profiles modified by variances corresponding to the first eight eigen-
solutions. (c) the same for the pressure p-profile. (d) The signals from variances on 64 B-coils and one
Φ-loop. The red horizontal lines specify the range of detectability of the signals. (e) Background ̄s-profile
(thick black curve) and variances in the ̄s profile, normalized to the level of their visibility. (f) The same
for the ̄p-profile.

Asymmetry with respect to the mid plane only slightly improves the situation as is shown in Fig.11.
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log10 of Errors in j,q,p Variance= 1.000e+02

k    0     5    10
    -4

    -2

     0

     2

     4

     6

Ipl= 0.788 [MA] Bt=1.0000 [T]

err     Bp=0.010 0.0000 [T]

err     gF=0.010 0.0000 [Vsec]

q i0=0 i1=41 1<= k <=9

a    0    .2    .4    .6    .8
     0

    10

    20

    30 p [MPa] gbj=1 0<= i <41 1<= k <=9

a    0    .2    .4    .6    .8
     0

  .005

   .01

  .015

   .02

(a) (b) (c)
gd Signal 1<= k <=9

m    0    20    40    60

    -4

    -2

     0

     2

     4

gd j_s 0<= i <41 1<= k <=9

a    0    .2    .4    .6    .8
    -1

   -.5

     0

    .5

     1 gd j_p 0<= i <41 1<= k <=9

a    0    .2    .4    .6    .8
    -1

   -.5

     0

    .5

     1

(d) (e) (f)

Figure 11: The case of an up-down asymmetric fixed boundary plasma of a spherical tokamak with R/a = 1.4,
κ = 2. (a) σ-curves log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a diamagnetic Φ-loop. (b) q-

profile (thick black curve) and q-profiles modified by variances corresponding to the first eight eigen-solutions.
(c) the same for the pressure p-profile. (d) The signals from variances on 64 B-coils and Φ-loop. The red
horizontal lines specify the range of detectability of the signals. (e) Background ̄s-profile (thick black curve)
and variances in the ̄s profile, normalized to the level of their visibility. (f) The same for the ̄p-profile.

4.5 High β and non-monotonic current density (to ToC)

Now, two configurations with different ̄s, ̄p profiles are discussed. One of them (Fig. 12a) corresponds to a
high β = 0.35, while another (Fig. 12b) represents the case of non-monotonic q-profile.
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Figure 12: Equilibrium configurations for a spherical tokamak plasmas, R/a0 = 1.4, elongation κ = 2: (a)
high β = 0.35 configuration, (b) moderate β = 0.14 with a non-monotonic current density profile.

For both cases, the spectrum of visible perturbations remains the same as before (k < 8). Nevertheless
the relative accuracy of reconstruction of the pressure profile was significantly improved for the high beta
case in Fig. 13. At the same time, the variance in the q-profile reconstruction became larger.
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log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 13: The case of a up-down asymmetric fixed boundary plasma of a spherical tokamak with R/a = 1.4,
κ = 2 and high β = 0.35. (a) σ-curves log10{σ̄k, σ̄k

q , σ̄
k
p} for a diagnostic system using B-coils and a

diamagnetic Φ-loop. (b) q-profile (thick black curve) and q-profiles modified by variances corresponding to
the first eight eigen-solutions. (c) the same for the pressure p-profile. (d) The signals from variances on
64 B-coils and one Φ-loop. The red horizontal lines specify the range of detectability of the signals. (e)
Background ̄s-profile (thick black curve) and variances in the ̄s profile, normalized to the level of their
visibility. (f) The same for the ̄p-profile.

Fig. 14 indicates that the variances in reconstruction of the non-monotonic current density profiles are
esentially the same as for the monotonic case.
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log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 14: The case of an up-down asymmetric fixed boundary plasma of a spherical tokamak with R/a = 1.4,
κ = 2 and β = 0.14 and non-monotonic current density profile. (a) σ-curves log

10
{σ̄k, σ̄k

q , σ̄
k
p} for a

diagnostic system using B-coils and a diamagnetic Φ-loop. (b) q-profile (thick black curve) and q-profiles
modified by variances corresponding to the first eight eigen-solutions. (c) the same for the pressure p-profile.
(d) The signals from variances on 64 B-coils and one Φ-loop. The red horizontal lines specify the range
of detectability of the signals. (e) Background ̄s-profile (thick black curve) and variances in the ̄s profile,
normalized to the level of their visibility. (f) The same for the ̄p-profile.

5 Possibility of complete reconstruction with internal measurements (to ToC)

This section illustrates the effect of internal measurements on equilibrium reconstruction. As an example,
an ITER configuration with the plasma current Ipl = 15 MA is considered, where the external magnetic
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diagnostics are complemented by MSE measurements.
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Figure 15: Illustrative set of diagnostics for equilibrium reconstruction in ITER (a) ITER plasma cross-
sections with 32 Ψ-loops, one Φ diamagnetic loop, 64 B-pickup coils, and 21 pickup points of MSE (b)
Center line of 1 MeV NBI in ITER for collecting the MSE data

In this illustrative set of diagnostics, with no attempt to simulate the real one, it was assumed that the
magnetic measurements are collected from vicinity of the plasma boundary. The accuracies ǫ of signals have
been prescribed as shown in Table 1.

Signal name ǫrelative ǫabsolute Comment Table 1

B-coils 0.01 0.01 T local pickup coils
Ψ-loops 0.01 0.001 Vsec local value of the poloidal flux
Φ-loop 0.01 0.001 Vsec diamagnetic loop signal

MSE-LP 0.01 0.1o Bz/Bϕ from the line polarization signal MSE-LP

MSE-LS 0.01 0.05 T
√

|B|2 − (B · v)2 from the line shift signal MSE-LS

Two types of MSE signals are considered, the Stark line polarization signal (MSE-LP), providing the
information on the pitch angle of the magnetic field line, and the Stark line shift signal (MSE-LS). Giving
the quantity

√

|B|2 − (B · v)2 related to the magnetic field magnitude, where v is the unit vector along the
neutral beam, it may be possible to use MSE-LS on ITER because of the high energy neutral beam (1 MeV)
and high value of the magnetic field Bϕ ≃ 5.6 T [15].

MSE-LP and MSE-LS signals were assumed to be pointwise. In reality a spacially distributed model of
these signal is necessary.

The following examples demonstrate the effect of external and internal measurements on reconstruction
of the current density, q, and p-profiles. Use of different combinations of signals results in different residual
variances.

In most of the examples in this section, the plasma boundary is assumed to be well specified, while
other signals, Φ-loop, B-coils and MSE are used for reconstruction of the current distribution. The effect of
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plasmas boundary reconstruction is illustrated at the end of the section.

5.1 Variances in reconstruction with Φ-loop, B-coil signals for fixed plasma boundary (to ToC)

log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 16: (a) σ-curves log10{σ̄k, σ̄k
q , σ̄

k
p} for ξ = 0 and (NJ = 8, NP = 8). The relative and absolute

accuracy of signals, used in reconstruction, is specified in the yellow box. (b) Eigen-perturbations δjk
s (a).

(c) Eigen-perturbations δjk
p (a), jp ≡ P/R0. The color of eigen-perturbations corresponds to the color of the

index k.

In Fig. 16a, log10 σ̄q and log10 σ̄
k
p (where σ̄k

p are normalized to 1 [MPa]) are the σ-curves for the q-

and p-profiles. Eigen-perturbations jk>8
s , jk>8

p , corresponding to log
10
σ̄ > 0 are invisible in diagnostics and

cannot be reconstructed.
In practice, a very restricted number, like NJ+NP ≤ 5, of expansion functions is typically used in

reconstruction, in order to provide stability of an iterative solution of the GSh equation. Testing variances
using the same limited set of perturbations can produce a very good result, as in Fig. 17.

In fact, even a slight extension of the spectrum of perturbations from N = 5 to N = 7, 8, as in Figs. 18,19
shows that the variances could be noticeable. At the same time, the plots Figs. 18c,19c show that the ampli-
tude of the signals from perturbations is undetectable by diagnostics, making the reconstruction doubtful.
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Figure 17: Variances in (a) q and (b) p-profiles as functions of a in the range kJ ≤ 3, kP ≤ 2. (c)
Normalized signals δS̄m = δSm/ǫm generated by the eigen-perturbations on the B-coils (0 ≤ m < 64) and
Φ-loop (m = 64). The horizontal lines δS̄m = ±1 specify the range of “invisible” signals |δSm| < ǫm.
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Figure 18: Same variances and signals as in Fig. 17 but in an extended range kJ ≤ 4, kP ≤ 3.

23



q i0=0 i1=21 k0=0 k1=8

a    0    .2    .4    .6    .8
     0

     1

     2

     3

     4

     5 p [MPa] i0=0 i1=21 k0=0 k1=8

a    0    .2    .4    .6    .8
     0

    .5

     1

   1.5 gd Signal k0=0 k1=8

m    0    20    40    60

    -4

    -2

     0

     2

     4

(a) (b) (c)

Figure 19: Same variances and signals as in Fig. 18 but in the larger range kJ ≤ 4, kP ≤ 4.

A test of the full spectrum (Fig. 20), kJ+kP =16, used in this paper for current density perturbations,
shows that with no internal measurements constraints the variances are enormous and the reconstruction
has no scientific value.
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Figure 20: Same variances and signals as in Fig. 18,19 but in full range kJ ≤ 8, kP ≤ 8.

5.2 Effect of MSE-LP signals on variances in reconstruction (to ToC)

The behavior of the σ-curves as a function of the index k for a reconstruction based on external magnetic
measurements clearly indicates that even for non-circular plasma cross-sections it is not possible to get a
good reconstruction of q- and p-profiles by simply improving the accuracy of measurements.

Complementing magnetic measurements with the internal line polarization signal MSE-LP from the
motional Stark effect diagnostic, which gives a local information on the ratio Bz/Bϕ, makes the σ-curves
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less steep and significantly extends the spectrum of “visible” perturbations.
log10 of Errors in j,q,p Variance= 1.000e+02
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Figure 21: σ− curves log10{σ̄k, σ̄k
q , σ̄

k
p} for ξ = 0 and diagnostic system with (a) Φ, B, and 21 MSE-LP

signals, and (b) magnetic signals only Φ, B (Fig. 16a).

The σ-curves in Fig. 21 show that the use of MSE-LP reduces the largest RMS values of σ̄k, makes 12
perturbations visible, and dramatically improves reconstruction of q- and p-profiles, as in shown in Fig. 22
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Figure 22: Variances in (a) q-, and (b) p-profiles as functions of a in the range kJ ≤ 6, kP ≤ 6. (c)
Normalized signals δS̄m = δSm/ǫm generated by the eigen-perturbations on the B-coils (0 ≤ m < 64), Φ-loop
(m = 64) and on MSE-LP (65 ≤ m < 85) diagnostics.

Fig. 23, which presents the variances for the full spectrum, shows that only perturbations with k ≥ 14
might be potentially troublesome.

25



q i0=0 i1=21 k0=0 k1=16

a    0    .2    .4    .6    .8
     0

     1

     2

     3

     4

     5 p [MPa] i0=0 i1=21 k0=0 k1=16

a    0    .2    .4    .6    .8
     0

    .5

     1

   1.5 gd Signal k0=0 k1=16

m    0    20    40    60    80

    -4

    -2

     0

     2

     4

(a) (b) (c)

Figure 23: Same as in Fig. 22, but for kJ ≤ 8, kP ≤ 8.

5.3 Evaluation of MSE-LS signals for equilibrium reconstruction (to ToC)

Another signal made possible by the motion Stark effect diagnostic, corresponding to the line shift of the
Stark spectrum, MSE-LS, can potentially substitute the conventional line polarization signal MSE-LP. The
σ-curves for magnetic measurements complemented by MSE-LS exhibits a similar improvement of accuracy
of reconstruction as the MSE-LP diagnostics, as is shown in Fig. 24.
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Figure 24: σ-curves log10{σ̄k, σ̄k
q , σ̄

k
p} for the fixed boundary plasma ξ = 0 in for a diagnostic system using

(a) Φ & B & MSE-LS signals, (b) Φ & B & MSE-LP (Fig. 21a), and (c) only magnetic Φ & B signals
(Fig. 16a).

Variances in reconstructed q and p-profiles using Φ & B & MSE-LS signals (still for a fixed plasma
boundary) are given in Fig. 25. Perturbations with k ≤12 can be reconstructed using this set of signals.
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Figure 25: Variances in (a) q- and (b) p-profiles as functions of a in the range kJ ≤ 6, kP ≤ 6. (c)
Normalized signals δS̄m = δSm/ǫm generated by the eigen-perturbations on the B-coils (0 ≤ m < 64), Φ-loop
(m = 64) and on MSE-LS (65 ≤ m < 85) diagnostics.

Fig. 26 indicates that only the perturbations with k > 12 might be potentially troublesome.
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Figure 26: Same as Fig. 25, but for full spectrum kJ ≤ 8, kP ≤ 8

Figure 27 demonstrates the effect of improving the relative accuracy of MSE-LS signals by a factor of
10 to the level ǫrealtive

MSE−LS = 0.1%, which may be achievable. This significantly reduces the amplitude of
variances in the reconstruction of the q and pressure profile.
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Figure 27: Same as Fig. 25 (kJ ≤ 6, kP ≤ 6), but with enhanced relative accuracy ǫrelative
MSE−LS = 0.1%.

The ability of the diagnostic systems with internal measurements to reconstruct the q- and p-profiles is
not limited to equilibria with smooth current density profiles. Fig. 28 shows the variances in reconstruction
of an equilibrium with a non-monotonic current density. Use of the MSE-LS signal allows one to pick up the
details in q-profiles related to the non-monotonic current density.
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Figure 28: Same as Fig. 27 (kJ ≤ 6, kP ≤ 6, ǫrelative
MSE−LS = 0.1%) for non-monotonic current density.

5.4 The possibility of complete reconstruction of the q- and p-profiles (to ToC)

The use of both signals MSE-LP and MSE-LS in addition to external magnetic measurements can lead
to a possibility of complete reconstruction of q- and p-profiles in a whole spectrum of perturbations, as is
indicated in Fig. 29.
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Figure 29: σ-curves log10{σ̄k, σ̄k
q , σ̄

k
p} for diagnostic systems using (a) Φ &B & MSE-LP & MSE-LS signals,

(b) Φ & B & MSE-LP (Fig. 21a), and (c) Φ & B only (Fig. 16a).

In the case of this enhanced set of signals, the σ-curves for variances in q and p have lost their tendency to
increase at large k. This behavior of the σ-curves indicates that with an appropriate diagnostic system, the
complete reconstruction of q- and p-profiles is possible. On the other hand, the current density still cannot
be completely reconstructed.

The variances in q- and p-profiles for the full spectrum of k ≤ 16 are shown in Fig. 30 for the case of Φ
& B & MSE-LP&LS signals.
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Figure 30: Variances in (a) q- and (b) p-profiles as functions of a in the full range kJ ≤ 8, kP ≤ 8. (c)
Normalized signals δS̄m = δSm/ǫm generated by the eigen-perturbations on the B-coils (0 ≤ m < 64), Φ-loop
(m = 64), on MSE-LP (65 ≤ m < 85), and MSE-LS (85 ≤ m < 106) diagnostics.
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5.5 The effect of free boundary on reconstruction of the q- and p-profiles (to ToC)

So far, in all examples it was assumed that the plasma boundary shape was perfectly known. Of course,
this in not the case in practice. Nevertheless, because the accuracy of Ψ-flux loop signals is typically good,
the uncertainties in the plasma boundary do not affect significantly the overall ability (or inability) of a
diagnostic system to reconstruct q- and p-profiles.

The σ-curves, when the plasma boundary and q-, p-profiles were reconstructed using 16 Ψ flux loops in
the vicinity of the plasma, together with B-coils, Φ-loop, MSE-LP and MSE-LS signals, are shown in Fig. 31.
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Figure 31: σ-curves log
10
{σ̄k, σ̄k

q , σ̄
k
p} for free and fixed boundary cases (a) free boundary, ξ 6= 0, with

Φ &B & MSE-LP & MSE-LS signals, (b) fixed boundary, ξ = 0, with the same signals (Fig. 29a) (c) fixed
boundary, ξ = 0, with Φ & B & MSE-LP (Fig. 21a).

Fig. 32 shows the variances in reconstruction of the q- and p-profiles for a free boundary plasma, which
is essentially the same in quality as in the example in Fig. 30. The plot Fig. 32c shows a high role of the Ψ
signals in reconstruction.

5.6 Curious case of reconstruction without B-signals (to ToC)

It is interesting that the theory of variances predicts, at least hypothetically, a possibility of reconstruction
of q- and p-profiles even without B-signals from the local pick up coils. This situation was simulated by a
significant reduction in sensitivity of the B-coils.
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Figure 32: Variances in (a) q and (b) p-profiles as functions of a in the full range kB ≤ 16, kJ ≤ 8, kP ≤ 8.
(c) Normalized signals δS̄ = δSm/ǫm generated by the eigen-perturbations on B-coils (0 ≤ m < 64), Ψ-loops
(64 ≤ m < 96), Φ-loop (m = 96), in MSE-LP (97 ≤ m < 113) and MSE-LS (113 ≤ m < 139) diagnostics.
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Figure 33: σ-curves log
10
{σ̄k, σ̄k

q , σ̄
k
p} for free and fixed boundary cases (a) free boundary, ξ 6= 0, with

Φ & MSE-LP & MSE-LS signals only, (b) free boundary, ξ 6= 0, with Φ &B & MSE-LP & MSE-LS signals
(Fig. 31a), (c) fixed boundary, ξ = 0, with Φ & B & MSE-LP signals (Fig. 21a).

Fig. 33 show the σ-curves for the case than the Ψ-loops are located in the very vicinity of the plasma
boundary (so B-signal are not necessary for reconstruction of the plasma boundary) and Φ-loop, MSE-LP,
and MSE-LS are used for reconstruction. The σq, σp-curves indicate that the q- and p-profiles can be well
reconstructed even without B-signals as is shown in Fig. 34.
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Figure 34: Same as in Fig. 32, but for the case of very low sensitivity of the B-coils (0 ≤ m < 64).

6 Alignment of sensitivities of sensors (to ToC)

The technique of analyzing the equilibrium reconstruction allows the use of signals of different physical
nature in the process of reconstruction. The normalization of the working matrix using the sensitivity value
of every signal takes into account the contributions of every signal in a way that is appropriately independent
of the nature of the signal. The same technique provides the assessment of the role of each signal in the
reconstruction.

The plots of signals generated by eigen-perturbations in Figs. 17c,18c,19c,20c,22c,23c,25c,26c,27c,28c,30c,
32c,34c show some nonuniformity in the value of different signals relative to the sensitivity of sensors.
Correspondingly, the contribution of different signals to the reconstruction is not uniform.

The recipe for the optimal use of diagnostics of different physicale nature is to align the sensitivity of
sensors in such a way that the signals δS̄k

m from eigen-perturbations fill up the band |δS̄k
m| ≤ 1 uniformly.

The implementation of this recipe requires a statistical analysis of characteristic cases of reconstruction. We
leave this issue for future publications.

7 Use of σ-curves for optimal reconstruction (to ToC)

Besides assessment of final reconstruction, the σ-curves can provide information for optimal organization of
the iterative solving of the GSh equation in the process of fitting its solution and the current distribution to
the measurements.

The problem is in making a compromise between the goal of the most accurate reconstruction and stability
of iterations. If the σ-curves were to be calculated at every iteration, then the current distribution could
be composed from the eigen-perturbations, whose k-spectrum is limited by the condition of elimination of
“invisible” perturbations

log
10
σ̄k < −r, (7.1)

where the constant r is in the range 0.5 < r < 1. The left boundary here should be determined experimentally
from the marginal stability of iterations.
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In this way, reconstruction with a poor set of signals, e.g., containing only external measurements, would
be performed with a small set of free parameters leading to a reconstruction of limited value. On the other
hand, in the case of good diagnostics, the stability of reconstruction will be provided even for the most
accurate reconstruction possible.

The practical implementation of this algorithm is left future development.

8 Conclusions (to ToC)

The capability of calculating variances, now developed, has essentially completed the theory of equilibrium
reconstruction. In particular, the quantitative evaluation of the quality of diagnostic systems on existing and
future machines can be done based on spectrum of “visible” perturbations and σ̄-curves. The theory confirms
that internal measurements of the magnetic field are crucial for reconstruction. In this regard, either MSE-LP
(line polarization) or MSE-LS (line shift) signals from the plasma in addition to external measurements allow
for a complete reconstruction (of both q- and p-profiles). The presented technique can be used to optimize
the diagnostic set on any tokamaks. Contribution of any signal can be evaluated. The proposal by Nova
Photonics to utilize MSE-LS signals would significantly enhance the equilibrium reconstruction capability in
ITER.

Extension of the theory should be focused on realistic simulation of signals used in reconstructions and
on developing a working algorithms, based on σ-curves, for accurate and stable iterative solution of the GSh
equation for reconstruction purposes.

This work is supported by US DoE contract No. DE–AC020–76–CHO–3073.
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