memm——— Princeton Plasma Physics Laboratory =

PPPL- 4279 PPPL- 4279

Optimizing Extender Code for NCSX Analyses

M. Richman, S. Ethier, and N. Pomphrey

January 2008

PPPL

PRINCETON PLASMA
PHYSICS LABORATORY

; _ |]

P e — I

T T i ’ ..‘: . I..

i

S e

My T ———————

Ll

- el

q,_ll—-'i-" i b T
B Lhe S st et R

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Pamela Hampton
Text Box
PPPL-

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/bridge

Related Links:

U.S. Department of Energy

Office of Scientific and Technical Information

Fusion Links

Optimizing Extender Code for NCSX Analyses

M. Richmart, S. Ethief, and N. Pomphréey

1 The College of New Jersey, Ewing NJ 08628, USA
2 Princeton Plasma Physics Laboratory, Princeton UniwemRiinceton NJ 08543, USA

Abstract

Ext ender [1] is a parallel C++ code for calculating the magnetic figldhe vac-
uum region of a stellarator. The code was optimized for sggmwbaugmented with
tools to maintain a specialized NetCDF database. Two ghljorithms were ex-
amined. An even-block work-distribution scheme was comlplar in performance
to a master-slave scheme. Large speedup factors were edtiguwepresenting the
plasma surface with a spline rather than Fourier series. atharacy of this repre-
sentation and the resulting calculations relied on theitleakthe spline mesh. The
Fortran 90 moduleb_access was written to make it easy to stoEet ender output
in @ manageable database. New or updated data can be addestitgealatabases.
A generalized PBS job script handles the generation of @&da&from scratch.

1 Background

1.1 Extender

Ext ender [1] is a parallel C++ code, originally written by Michael ek of IPP Garch-
ing, for calculating the magnetic field in the vacuum regibma stellarator device. It op-
erates in two phases; current simplification and field catooh. The plasma equilibrium
is generated bynec[2] and stored in a filewput . ext passed tdxt ender at runtime.
The field contribution due to the plasma could be calculateohtegrating over the volu-
metric currents within the plasma, but the computation wdnd too demanding. Instead,
the internal plasma currents are represented by a sing& sheent lying on the outer
surface of the plasma (Figurk 1). Because the sheet cusreglaitively smooth, it can be
represented accurately by a spline. The sheet current isadgd at points on a mesh on
the plasma surface, and splines are generated.

Optimizing Extender Richman 2

After the sheet current splines are prepared, the field ddeetplasma currents at a
field point outside the plasma can be evaluated by addingeifigld contributions from
each sheet current element on the plasma surface. Thedahtegdaptive. For points
closer to the surfaceda must be smaller in order to achieve numerical accuracy. For
points more distant from the surface, less points are needed

Figure 1: Schematic diagram of integral with simplified sgg current

vy T~ First wall
Simplified Plasma Current

The calculations ofl at each field point are independent of one another. For this
reasonfExt ender is a prime candidate for parallelization.

1.2 Parallel Algorithms

It is assumed that there alg, independent calculations, or tasks , to be completed, and
there areNp processes running oNp processors available to do the computation. Two
work distribution algorithms were considered:

e master-slave algorithm: One processpy, is devoted to distributing the work. The
others,p; ... pn, request work from and return resultspg

e block-distribution algorithm: The set of calculations are divided into blocks of size
~ Nw/Np. po may be responsible for collecting results for the final otitput the
processes need not communicate during computation.

There are advantages and disadvantages to each algoritiecoirect choice depends
on the nature of the calculations and the parallel compuigtgvork being used. In the

Optimizing Extender Richman 3

master-slave scenario, one disadvantage isghdbes no useful computation, which ef-
fectively reduces\, by one. Furthermore, at least some inter-process comntiorida
required for the master process to direct the others. Conuation overhead can be espe-
cially significant on a workstation cluster, where commatimn is done via high-latency
ethernet interconnect and TCP/IP protocol. These peratoffset by the ability of this
algorithm to handle variable amounts of computational waetween processors, leading
to an improved load balance fpg thru py.

The block-distribution algorithm avoids some of the disathages of the master-slave
algorithm. Each process can independently determine thek laf calculations it should
work on based on its id. Ny = Q-Np+ R, thenpg thru pr_1 take blocks each of size
Q+ 1, andpr thru py take blocks of siz&€. Therefore, every process does useful com-
putation, and no inter-process communication overheadrsduced during computation.
However, the efficiency of the block-distribution algonttdepends on the blocks taking
equal time to complete. If the blocks are uneven, then someegses finish before others;
this isload imbalance. If there is no way to ensure that the inter-block differenaee
negligible, a master-slave algorithm can be more efficient.

2 Speed Optimization

Ext ender was optimized for speed by two approaches. The first was toreribat the
code was parallelized efficiently. The second was to reptéke plasma surface as splines
rather than the original Fourier series. The latter chawéh was suggested bygar of
profile of the code, had a significant effect on performance.

2.1 Efficient Parallelization

Ext ender originally used a master-slave parallel algorithm. Thelenpgentation worked
as follows: Each process computes the surface currenesgdieparately. Theipy has a
list of field points, and; thru py stand in a queue waiting for assignments frpgn When
the process at the head of the queue is assigned a field pb#atyeés the queue, computes
the magnetic field at that point, and returns to the tail ofgheue where it waits for its
next assignmentpg is in a loop, where it assigns one field point at a time to theetur
head of the queue during each iteration until the set of pagméxhausted. After all the
calculations are dongy loops through the slave processes, collecting their result
Under this master-slave implementation, there are sevwgetprocess communica-
tions for each field point. It was hypothesized that this leesbme inefficiency that could
be countered by using a block-distribution algorithm. Ie tlew implementation, each

Optimizing Extender Richman 4

process had a copy of the list of points. Each determinegpger#ently the block of points
it should work on. When every processes is finishggdgathers the results from all the
processes including itself.

Timing the computation phase under each implementatiowslibat the two algo-
rithms yielded similar performance. The two algorithmsexgnced different setbacks of
similar total cost to performance.

As discussed above, the master-slave algorithm resultsrredoad imbalance be-
causepp does not participate in the main calculation. While this wWaesmost significant
loss,Ext ender s implementation also suffered from excessive inter-pgsccommunica-
tion. An efficient master-slave algorithm could insteadigissarge chunks of work at
the beginning the computation phase, and then assign thefrése work in blocks of
decreasing size until all work was assigned and completbd.€ekisting implementation
assigns each point one at a time. Not only does this meanhtbasands of exced#!
communcation calls are made, but it is more likely for a slanoxess to be stuck waiting
in the queue whilgy assigns work to those processes closer to the beginning glikue.

The block-distribution implementation suffers from a difént kind of load imbal-
ance. Because calculation of the magnetic field at a poirg aseadaptive integral, each
field point takes a different amount of time to complete. TWasation means that each
block takes a different amount of time to finish. As a resudme processes are finished
sooner than others. These processes remain idle whilesahebusy. Ideally, some work
should be moved from the busy processes to the idle ones seviiy process is being
used. In the case dixt ender, the load imbalance the master slave algorithm incurred
by communication overhead and not usipgis comparable to that incurred under the
block-distribution algorithm by not using all processeigcedntly at all times.

In summary, for the main calculation, using a block-disttibn algorithm did not
have a significant effect on execution time. Nonethelegsattalysis was productive. We
needed to verify that we were using an efficient algorithrtheathan simply accept the
existing one. However, because the block-distributionho@tvas simpler to implement,
it was straightforward to apply it to additional parts of fregram. Setup time was thereby
decreased by a factor of X0 This speedup in the setup phase was, however, offset by the
changes discussed in the next section.

2.2 Optimizing Representation of Plasma Surface

Examining the parallel algorithm i&xt ender did not present opportunities for large
speedups. To identify additional optimization possilast the code was profiled using
gpr of . The process was carried out as follows:

1. Identify a function that represents a significant porbdthe execution time.

Optimizing Extender Richman 5

2. Discern the purpose and method of implementation of thetfon.
3. Try to optimize the function itself.

4. Try to optimize routines that call the function in ordelitoit the number of function
calls.

5. Test any new methods for timing and precision.

In the Ext ender profile, one function stood out:3 Surface_f _c:: operator()
(doubl e consté&, double consté& |ong const& const. This function prototype
indicates the overloaded operafgr for the classSurf ace f .c. An example call to the
function might be fy_surfacef_c (0.1, 0.1, 32)”. This function represented 58%
of the execution time. Therefore, it was an excellent caagifor optimization.

Examination of the function code and comments revealeduhggse of the function.
The surface integral is carried out by iterating over twelinsional coordinate@l, v)
relative to the plasma surface. However, the absolute owatesk(x,y,z) are required
for calculating the field due to each differential sheet entr The function suggested by
profiling performs the coordinate transformation.

The position of the plasma surface is stored using Fourrgesé&ur f ace_f c: :
operator () first computes the cylindrical coordinatésg, z) of a point on the plasma
surface, and then it converts to Cartesian coordinatesthédirst conversion, the expres-
sions

r= _icﬁ cog2m(mu+n;v)]

i
N

z= _%czi sin2r(mu+ V)]

are used, wheréu,v) are the poloidal and toroidal angles over a single periochef t
stellarator, and;, c;, m andn; are Fourier coefficients. Then, usipg= v/ng,, whereng,
is the number of field periods (3 for NCSX), the Cartesian dotates are

X =T COSQ
y=rsing
z=12

Fourier series provide an efficient way to store plasma sasfa However, they are
slow to use during the main calculation. There are too mafly tathe system’si n()

Optimizing Extender Richman 6

andcos() routines. There is no way to achieve a significant speedupbynzing this
function alone. To minimize execution time, an alternatepresentation of the plasma
surface is needed.

The plasma surface can be represented using splines. Ptasfaees are generally
very smooth. Therefore, provided that a sufficiently deneshms used to generate splines,
there should be no significant loss in precision.

It was not difficult to implement these “surface splines”Bxt ender . In fact, they
are generated in much the same manner as the “sheet cuieas3m the original code.
Essentially, an array of values for points in a toroidal gsigassed to a routine that creates
a new spline. Three splines are created this way: on& fprandz. These splines may
thereafter be used in lieu of the Fourier series to obtailCdmtesian coordinates of a point
on the surface.

2.2.1 Results

Error analysis. After introducing the surface splines, the first task was edfy that
no significant errors were introduced by simplifying theresentation of the plasma sur-
face. The original code was used as the given from which thecoele might deviate. In
the error measurements, the most stringent criterion wad: Usr a given set of calcula-
tions done by both the original and new codes, we sought tinmie thegreatest single
deviation between the results of the modified and original code.

First the plasma surface representation itself was examimée results are summa-
rized in FigurdR. It was found that for a toroidal gridddf= 200 points in each dimension,
the greatest error in the position of the surface was enlyx 10" m. Most of the points
were represented even more accurately. This suggesthiehatitface can be represented
very accurately with splines.

After verifying that the surface representation itself wasy accurate, the final results
were examined. The final output, a set of magnetic fiblchlues at the specified locations,
of the new code was compared to that of the original code. &#elts are summarized in
Figure[3. It was found that for a toroidal grid bf = 200 points in each dimension, the
greatest error in thtFI| was only~ 5x 10~’. Again, the values were even more accurate
at most field points. This indicates that representing tiniase with splines does not have
a detrimental effect oBxt ender s output.

Performance data. Using the new code, some things were immediately clearjtqual
tively: Ext ender ran faster; the setup phase took longer because of the tieteddo set
up the surface splines; and the computation phase ran fastause of the use of the sur-
face splines. To quantify these results, the original andcades were modified to output

Optimizing Extender Richman

Figure 2: Greatest residual in surface position vs. splareegation mesh density

le-01 T T T T T
le-02 |
1le-03

le-04 |

Orp . (M)

le-05
le-06

1e-07

1e-08 I I I I I
0 50 100 150 200 250 300

Optimizing Extender Richman 8

Figure 3: Greatest residual in magnetic field vs. spline g mesh density

1e+00 F
le-01 -
le-02 -
le-03 -

le-04

OH, .. (Tesla)

le-05

le-06 ¢

le-07

1e-08 I 1 1 1 1 1
0 50 100 150 200 250 300

timing information including the durations of both the gephase and the computation
phase, and the total execution time.

The total speedup depends strongly on the number of fieldgaimd the number of
processors; a larger number of points per processor res@tiarger speedup factor. Two
types of problems are likely to be handled wiixt ender : finding the magnetic field at
points on one surface in space that surrounds the plasméndind) the magnetic field in a
mesh in the region within the first wall of the vacuum vessets®f points corresponding
to these two applications were used to benchnatlender . Runs were done with 4 and
16 processors. The timing results are summarized in Thbiés 1

Performance analysis. Tabled1E4 verify that the new code improves performance to a
greater extent with more field points per processor. Eadiosecf the code was affected
differently:

Setup In each run, the spline-generation parameters were the. 3erause the surface
splines are generated with relatively dense grids, theg thk longest to set up.

Optimizing Extender Richman 9

Table 1: Timing summary, few (1138) field points, 4 processor

Segment of run tyriginai (S) thew(S) Speedup

Setup 19.2 32.0 .6x
Computation 93.1 7.47 12x
Collection 0.18 0.02 X
Total 112. 39.5 Dx

Table 2: Timing summary, many (35938) field points, 4 process

Segment of run tyriginai (S) thew(S) Speedup

Setup 19.4 32.7 .59x
Computation 3980 310. 12x
Collection 2. 0.46 Bx
Total 4010. 343. 1T

In the new code, some parts of setup were parallelized., iith the additional
splines, setup took aboutSkx as long in each run.

Computation The most significant change in the computation phase wassth®futhe
surface splines. In the four runs, there was an average spe¢d 1x. With lower
Np and highemN,, computation dominates time of execution, so the total diee
approaches 14.

Collection A C++ cl ass with a correspondingyPl : : Dat at ype was created to simplify
inter-process communcation of data. Also, small commuiainaalls in loops were
replaced by bulk communcation calls. As a result, the shavsinthe total output
became nearly instantaneous in every run.

For a dense mesh of field points, the new code approaches nigutation speedup
factor of 11x. For a small number of points, especially when more process® avail-
able, the speedup dissappears. Such small runs take aebiathort time ¢ 1/2 min)
to complete. However, such runs also may be executed thdsisdriimes for different
plasma equilibria. This would warrant optimizing the spligeneration routines in the
setup phase.

A look at the spline constructor it ender reveals that it uses a Cholesky factoriza-
tion to determine the cubic coefficients. Using an originaéxisting parallel routine to

Optimizing Extender Richman 10

Table 3: Timing summary, few (1138) field points, 16 processo

Segment of run tyriginai (S) thew(S) Speedup

Setup 19.3 31.1 .62x
Computation 18.7 2.08 9
Collection 0.85 0.01 > 20x
Total 38.9 33.1 Px

Table 4: Timing summary, many (35938) field points 16 prooess

Segment of run tyriginai (S) thew(S) Speedup

Setup 19.4 31.8 .61x
Computation 796. 7.7 189
Collection 10.8 0.5 2%
Total 826. 110. bx

complete the factorization would decrease the setup tieagljhg to a significant speedup
factor for runs with smalN,. For present-time applicationBxt ender runs fast enough.
However, if Ext ender is to be used in a more real-time situation for analysing NCSX
diagnostics, the spline routines should be optimized.

3 Automation

3.1 Fortran 90 module

In the immediate future, one important application alrealliyded to is to rurixt ender
on thousands of possible plasma equilibria to generate abds¢ that can be used for
subsequent analyses. The output needs to be stored in anzedjastructured and com-
pact way. NetCDF, a platform-independent data format [B)viges mechanisms to do
all of this. It is a highly general I/O library suitable forgiylems of any shape and size.
Therefore a Fortran 90 modul#y_access, was created to facilitate the use of NetCDF in
conjunction withExt ender .

db_access is a small module that allows user code to access one datdberg exe-
cution. Before accessing the database, there is one imtiigin function:db_access_init ().
This ensures that the database file exists and reads the nwhbpeints per equilib-

Optimizing Extender Richman 11

rium and the number of equilibria. Then, to read the three pmments of the mag-
netic field, for each point and each equilibrium into a thraeehsional allocatable array,
db_access_read_raw() is used. For example,

real, allocatable :: H(:,:,:)

call db_access_init ("ny_data.nc")
call db_access read raw (H)

Now the data can be analyzed. In one example progidtangen_Hn, which is included
with the module, an array of normal vectors is read in fromeditd the values dfi - A
are computed. This results in an array of indices (field paaquilibrium). Areal array
of this form can be added to the database with one call:

call db_access_add var ("Hn", ncreal, data_real =Hn)
or ani nt eger array of the same dimensions could be added like this:
call db_access_add var ("Int_Array", ncint, data_int=ny_int_array)

A database can be extended to include additional informaiide function calls and
their purposes are listed in Talile 5. There are additiorils, ¢aut they are used by the in-
cluded programdb_add_poi nt fi | e anddb_append. They should not be required by new
programs, but if necessary, they can be understood fronotirees code of the module and
the include utilities. The exact semantics of any of theetistalls can also be understood
from the source code of the module.

3.2 GeneralizedPBS job scripts

BecauseExt ender is a parallel code, it must be run on a parallel computer systét
PPPL, it is run on a cluster. Parallel jobs are submitted téuater usingPBS [4], a
Portable Batch System widely used on parallel computers. Two generalized jobpseri
were written to simplify the use dixt ender with PBS. These ardat ch-j ob-tenpl at e

(see AppendiX”P) anglob-t enpl at e, and they are used for generating a database with
many equilibria or runnin@xt ender one time, respectivly. There are many advantages to
using these scripts.

¢ Allfiles, directories, andext ender parameters that must be tracked are consistently
named with shell variables. File names are prefixed ®itltE_; directory names are
prefixed withDI R_; andExt ender parameters are prefixed wiARAM.. This makes
it easy to use the same script under different conditions.

Optimizing Extender Richman 12

Table 5: Read / Write calls for data Ext ender output database

Subroutine Summaray
— Reading Data —
db_access_read_raw Read an array of indices (coordinate, field point,
equilibrium).

One value for each dfr, @, z) for each field point,
for each equilibrium.

db_access_read_var Read an array of indices (field point, equilibrium).
One value for each field point, for each equilib-
rium.

db_access_read_profile Read an array of indices (surface, equilibrium).
One value for each plasma surface, for each equi-
librium.

db_access read attribute Read an array of indices (equilibrium).
One value for each equlibirum

db_access_read_var _poi ntwi se Add an array of indices (field point).
One value for each field point.

— Writing Data —
db_access_add_var Add an array of indices (field point, equilibrium).
One value for each field point, for each equilib-
rium.
db_access_add_var profile Add an array of indices (surface, equilibrium).
One value for each plasma surface, for each equi-
librium.

db_access_add_var _attribute Add an array of indices (equilibrium).
One value for each equlibirum

db_access_add_var poi ntwi se Add an array of indices (field point).
One value for each field point.

e A directory structure is set up to store input files and oufpes separately. For
bat ch-j ob-t enpl at e, Ext ender outputs are the final database files are also stored
separately.

e The scripts are organized so that they are easily extendide example, one ex-
tension has already been written f@t ch- j ob- t enpl at e that adjusts the coils for

Optimizing Extender Richman 13

each equilibrium during the main loop.

e batch-j ob-tenpl at e allows the creation of a database from scratch or the exten-
sion of an existing database. There is are simple mecharfi@nspecifying the
equilibria that should be used and for avoiding runniixgender when a given
equilibrium is already in the database. The script initiedi the database at the be-
ginning with db- add- poi ntfil e, adds each run witdb- append, and computes
H - A for the whole database at the end wdth gen- Hn.

The scripts are commented so that it only requires a baswledlge of shell scripting
to understand and modify them. A more detailed descriptioth@® important variables
in bat ch-j ob-tenpl at e is given in theREADME file in the same directory. Because the
batch job script is mostly a generalization of the one-tiofegcript, the information in the
README file applies to the one-time job script as well.

4 Conclusion

Virec generates stellarator plasma equilibria and stores thamg Eeurier serieskxt ender
has been modified so that, prior to computing the magnetid ieleach specified field
point, it recomputes the plasma surface in terms of splim&artesian coordinatel, y, z).
This optimization can be used without compromising the esxmyiof the obtained results.
When the number of field points per processor is large, a sjpeefil2< or more may
be achieved. For a small number of field points per proceiseradditional time spent
setting up the splines decreases the speedup factor.

It may be worthwhile to optimiz&xt ender even further for applications involving a
small number of field points. This would require optimizatiaf the spline routines. One
possibility is to use a parallelized, rather than serialplésky decomposition function
during the spline setup phase. Another, perhaps more iegolpossibility is to replace
completely the spline routines included wiEkt ender with parallel ones from another
package.

Tools were developed to simplify the usekat ender . TemplatePBS job scripts were
written in a very general way so that they can be customizedearcuted quickly for a
particular application. Fortran 90 programs were writtempitovide an interface for cre-
ating and maintaining NetCDF database$xfender outputs. The Fortran 90 module
db_access was written to allow more programs to extract informaticonfrand add anal-
yses to these databases.

Optimizing Extender Richman 14

Acknowledgment

This work was funded by the National Undergraduate Fellgggtogram through the US
Department of Energy. We thank Michael Drevlak for makingBxtender code available
to us.

References

[1] D. Monticello M. Drevlak and A. Reiman. PIES free bounyglatellarator equilibria
with imporoved initial conditionsNucl. Fusion, 45:731-740 (2005).

[2] S. P. Hirshman and J. C. Whitson. Steepest-descent ntomethod for three-
dimensional magnetohydrodynamic equilibrighys. Fluids, 26:3553—-3568 (1983).

[3] NetCDF (Network Common Data Form) is a set of softwaredies and machine-
independent data formats that support the creation, aceesksharing of array-
oriented scientific datént t p: // www. uni dat a. ucar . edu/ sof t war e/ net cdf/

[4] Portable Batch Systeint t p: // www. openpbs. or g/

http://www.unidata.ucar.edu/software/netcdf/
http://www.openpbs.org/

Optimizing Extender Richman 15

A PBS batch job template

Below is the filebat ch- j ob-t enpl at e. For more information on NCSX, see
http://ncsx. pppl . gov.

#!' [bi n/ bash

#PBS - N extender _batch
#PBS -1 nodes=4: ppn=2
#PBS -V

#PBS -m ae

#PBS -q kestrel

#PBS -j oe

#PBS -0 j ob-out

rm-f job-out

f DEFI NI TIONS == - - - e em e e e e e e e e e e e e e s

Options
OPT_REDO | F_ DONE="n" # "y" to redo if done,
"n" to preserve existing

DI RS

Specify here the locations for input, output, and database-editing

prograns.

DI R_START="/ p/ ncsxeqdb/ Ext ender St uf f / nri chman/ ext ender - bat ch”

DI R_EQUI LI BRI A="/ p/ pi es/ Ponphrey/ Ncsx_fi el ds_from dat abase_on_W/ Wut files"
DI R_I NPUT="${ DI R_START}/ ext ender - i nput "

DI R_QUTPUT_RAW" ${ DI R_START}/ db/ r aw'

DI R_OUTPUT_RECORDS="${ DI R_START}/ db/ r ecor ds"

DI R_DB_ACCESS="/p/ ncsxeqdb/ Ext ender St uf f/ nri chman/ src/ db- access”

rm-f ${D R_START}/| ob- out

Equilibrium-- specify a list of valid equlibria to be found in
DI R_EQUI LI BRI A.

FI LE_VALI D_EQUI LI BRI A="${DI R_I NPUT}/ val i d-equi | i bria"

FILE_VALI D_EQU LI BRI A="${DI R_I NPUT}/ redo-equi | i bri a"

http://ncsx.pppl.gov

Optimizing Extender Richman

Extender

Specify Extender executable l[ocation and input file paths.
Paths may be in terms of DIR * variables.

Files may be in terms of DIR * and SUFFI X * vari abl es.

PARAM * variables are passed directly as whole parameters to
Extender.

EXTENDER="/ p/ ncsxeqdb/ Ext ender St uf f / nri chman/ sr ¢/ PC6/ EXTENDER_QS"
SUFFI X_RPH Z="r phi z_poi nts_vv"

SUFFI X_CO LS="coi | s. c08r 00x"

FI LE_RPH Z="${ Dl R_I NPUT}/ ${ SUFFI X_RPHI Z} "

FI'LE_CO LS="${ Dl R_I NPUT}/ ${ SUFFI X_CO LS}"

FI LE_EXTENDER_OQUTPUT="${ DI R_OUTPUT_RAW / ${ SUFFI X_RPH Z}. out put "
PARAM POl NTS="- poi nts ${FI LE_RPH z}"

PARAM NU="-NU 80"

PARAM NV="-NV 80"

PARAM NPS="- NPS 200"

Dat abase

Specify database-handling executables, control files, database
file, and normal vector file.

DB_ADD_PQ NTFI LE="${ DI R_DB_ACCESS}/ db- add- poi ntfile"

DB_APPEND="${ DI R_DB_ACCESS}/ db- append"”

DB_DUWP_NAMES="${ DI R_DB_ACCESS}/ db- dunp- nanes"

DB_GEN_HN="${ DI R_DB_ACCESS}/ db- gen- Hn"

CONTROL_DB_ADD PO NTFI LE="${DI R_QUTPUT_RAW / cont r ol - db- add- poi ntfile"
CONTROL_DB_APPEND="${ DI R_QUTPUT_RAW / cont r ol - db- append"
CONTROL_DB_GEN_HN="${ DI R_OUTPUT_RAW/ contr ol - db- gen- Hn"

FI LE_DB="${ DI R_OUTPUT_RECORDS}/ Ext ender -t est. nc"

FI LE_RPHI Z_NORME" ${ DI R_I NPUT}/ r phi z_nor m vv"

Node count -- nunber of nodes we are using on the cluster
NODE_COUNT=' cat ${PBS_NODEFILE} | wc -I°

Beyond this point, little or no custonization should be necessary
in nost cases.

INITIALI ZE DATABASE - - - - - s e e e e e e e e e e a -
Make control file

rm-f ${CONTROL_DB_ADD PO NTFI LE}
cat > ${ CONTROL_DB_ADD PO NTFILE} <<ECF

Optimizing Extender Richman

${ FI LE_DB}

${FI LE_RPHI Z}

(3E20. 10)

‘cat ${FILERPH Z} | wc -I | awk '{print $1}""
49

ECF

Set up database (all database stuff controlled from ${DI R QUTPUT RAW
cd ${D R_OUTPUT_RAW
${ DB_ADD POl NTFI LE}

BEA N LOOP - - - - mm s e e e e e e e e e e e e e e e e e e eeeeaaa o
for i in ‘cat ${FILE VALID EQU LI BRI A}’
do

| oop- dependent definitions

FI LE_EQUI LI BRI UME" ${ DI R_EQUI LI BRI A}/ $i "

FILE_TMP_LI ST="${DI R_OQUTPUT_RAW/tnp_fi ni shed_|ist"
STDERR="${DI R_QUTPUT_RAW/j ob-err-$i "

rm-f ${STDERR}

cd ${PBS_O WORKDI R}

check if already done

rm-f ${FI LE_TMP_LI ST}

${ DB_DUMP_NAMES} ${FILE_DB} > ${FI LE_TMP_LI ST}
FOUND="n"

for j in ‘cat ${FILE_TMP_LIST}*
do

if test "$i" == "§"

t hen

FOUND="y"

fi

done

if it's already done, don't do it again

if test "${OPT_REDO | F DONE}" == "y"; then FOUND="n"; fi
if test "${FOUND}" == "n"
t hen

ERRORS="n"

Optimizing Extender Richman

for ((j =1, j <5 j++))

do

run Extender!

mpi run -np ${NCDE COUNT} ${EXTENDER} -v2000 ${FILE EQU LI BRI UM \
${ PARAM PO NTS} -s suffix \

${ PARAM NU} ${ PARAM NV} ${ PARAM NPS} \

-outdir ${DIR QUTPUT_RAW >& ${ STDERR}

check for pbs errors

if test "‘grep 'errno = ' ${STDERR} | wc -1 | awk '{print $1}'*" == "0"
t hen

j =6

el se

if test "$" == "5"; then ERRORS="y"; fi

echo "Handling error on try $ for equilibrium$i"

sl eep 10s

fi

done

(coul d add nore error checks here?)

if there are no errors, add to database
if test "${ERRORS}" == "n"

t hen

make control file

rm-f ${ CONTROL_DB_APPEND}

cat > ${CONTROL_DB_APPEND} <<ECF

${ FI LE_EXTENDER QUTPUT}

${FI LE_DB}

‘cat ${FILE_EXTENDER QUTPUT} | wc -I | awk '{print $1}""
i

1

ECF

append to database, kill extender raw output
cd ${D R_OUTPUT_RAW

${ DB_APPEND}

rm ${ FI LE_EXTENDER_OUTPUT}

fi ## ‘end if’ for whether this equilibriumwas done yet

18

Optimizing Extender Richman 19

fi ## ‘end if’ for whether there were errors

done ## end of main |oop

HE RN Shed ------cmmmm e

generate Hn for database
rm-f ${CONTROL_DB GEN_HN}

cat > ${CONTROL_DB GEN HN\} <<ECF
${ FI LE_DB}

${FI LE_RPH Z_NORM

EOF

cd ${D R_OUTPUT_RAW

${DB_GEN_HN}

exit 0

The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract
with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751
e-mail: pppl_info@pppl.gov
Internet Address: http:/www.pppl.gov

	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results

	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template

	report number: 4279
	Title: Optimizing Extender Code for NCSX Analyses
	Date: January 2008
	authors: M. Richman, S. Ethier, and N. Pomphrey

