
Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Princeton Plasma Physics Laboratory

PPPL-

Pamela Hampton
Text Box
PPPL-

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

 http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/bridge

Related Links:

U.S. Department of Energy

Office of Scientific and Technical Information

Fusion Links

Optimizing Extender Code for NCSX Analyses

M. Richman1, S. Ethier2, and N. Pomphrey2

1 The College of New Jersey, Ewing NJ 08628, USA
2 Princeton Plasma Physics Laboratory, Princeton University, Princeton NJ 08543, USA

Abstract

Extender[1] is a parallel C++ code for calculating the magnetic field in the vac-
uum region of a stellarator. The code was optimized for speedand augmented with
tools to maintain a specialized NetCDF database. Two parallel algorithms were ex-
amined. An even-block work-distribution scheme was comparable in performance
to a master-slave scheme. Large speedup factors were achieved by representing the
plasma surface with a spline rather than Fourier series. Theaccuracy of this repre-
sentation and the resulting calculations relied on the density of the spline mesh. The
Fortran 90 moduledb access was written to make it easy to storeExtender output
in a manageable database. New or updated data can be added to existing databases.
A generalized PBS job script handles the generation of a database from scratch.

1 Background

1.1 Extender

Extender[1] is a parallel C++ code, originally written by Michael Drevlak of IPP Garch-
ing, for calculating the magnetic field in the vacuum region of a stellarator device. It op-
erates in two phases; current simplification and field calculation. The plasma equilibrium
is generated byVmec[2] and stored in a file (wout.ext passed toExtender at runtime.
The field contribution due to the plasma could be calculated by integrating over the volu-
metric currents within the plasma, but the computation would be too demanding. Instead,
the internal plasma currents are represented by a single sheet current lying on the outer
surface of the plasma (Figure 1). Because the sheet current is relatively smooth, it can be
represented accurately by a spline. The sheet current is evaluated at points on a mesh on
the plasma surface, and splines are generated.

1

Optimizing Extender Richman 2

After the sheet current splines are prepared, the field due tothe plasma currents at a
field point outside the plasma can be evaluated by adding up the field contributions from
each sheet current element on the plasma surface. The integral is adaptive. For points
closer to the surface,d~a must be smaller in order to achieve numerical accuracy. For
points more distant from the surface, less points are needed.

Figure 1: Schematic diagram of integral with simplified surface current

I

da

H

P

First wall
Simplified Plasma Current

The calculations of~H at each field point are independent of one another. For this
reason,Extender is a prime candidate for parallelization.

1.2 Parallel Algorithms

It is assumed that there areNw independent calculations, or tasks , to be completed, and
there areNp processes running onNp processors available to do the computation. Two
work distribution algorithms were considered:

• master-slave algorithm: One process,p0, is devoted to distributing the work. The
others,p1 . . . pN , request work from and return results top0.

• block-distribution algorithm: The set of calculations are divided into blocks of size
∼ Nw/Np. p0 may be responsible for collecting results for the final output, but the
processes need not communicate during computation.

There are advantages and disadvantages to each algorithm. The correct choice depends
on the nature of the calculations and the parallel computingnetwork being used. In the

Optimizing Extender Richman 3

master-slave scenario, one disadvantage is thatp0 does no useful computation, which ef-
fectively reducesNp by one. Furthermore, at least some inter-process communication is
required for the master process to direct the others. Communication overhead can be espe-
cially significant on a workstation cluster, where communication is done via high-latency
ethernet interconnect and TCP/IP protocol. These penalties are offset by the ability of this
algorithm to handle variable amounts of computational workbetween processors, leading
to an improved load balance forp1 thru pN .

The block-distribution algorithm avoids some of the disadvantages of the master-slave
algorithm. Each process can independently determine the block of calculations it should
work on based on its id. IfNw = Q ·Np + R, thenp0 thru pR−1 take blocks each of size
Q + 1, andpR thru pN take blocks of sizeQ. Therefore, every process does useful com-
putation, and no inter-process communication overhead is introduced during computation.
However, the efficiency of the block-distribution algorithm depends on the blocks taking
equal time to complete. If the blocks are uneven, then some processes finish before others;
this is load imbalance. If there is no way to ensure that the inter-block differences are
negligible, a master-slave algorithm can be more efficient.

2 Speed Optimization

Extender was optimized for speed by two approaches. The first was to ensure that the
code was parallelized efficiently. The second was to represent the plasma surface as splines
rather than the original Fourier series. The latter change,which was suggested by agprof
profile of the code, had a significant effect on performance.

2.1 Efficient Parallelization

Extender originally used a master-slave parallel algorithm. The implementation worked
as follows: Each process computes the surface current splines separately. Then,p0 has a
list of field points, andp1 thru pN stand in a queue waiting for assignments fromp0. When
the process at the head of the queue is assigned a field point, it leaves the queue, computes
the magnetic field at that point, and returns to the tail of thequeue where it waits for its
next assignment.p0 is in a loop, where it assigns one field point at a time to the current
head of the queue during each iteration until the set of points is exhausted. After all the
calculations are done,p0 loops through the slave processes, collecting their results.

Under this master-slave implementation, there are severalinter-process communica-
tions for each field point. It was hypothesized that this leadto some inefficiency that could
be countered by using a block-distribution algorithm. In the new implementation, each

Optimizing Extender Richman 4

process had a copy of the list of points. Each determines independently the block of points
it should work on. When every processes is finished,p0 gathers the results from all the
processes including itself.

Timing the computation phase under each implementation shows that the two algo-
rithms yielded similar performance. The two algorithms experienced different setbacks of
similar total cost to performance.

As discussed above, the master-slave algorithm results in some load imbalance be-
causep0 does not participate in the main calculation. While this wasthe most significant
loss,Extender’s implementation also suffered from excessive inter-process communica-
tion. An efficient master-slave algorithm could instead assign large chunks of work at
the beginning the computation phase, and then assign the rest of the work in blocks of
decreasing size until all work was assigned and completed. The existing implementation
assigns each point one at a time. Not only does this mean that thousands of excessMPI
communcation calls are made, but it is more likely for a slaveprocess to be stuck waiting
in the queue whilep0 assigns work to those processes closer to the beginning of the queue.

The block-distribution implementation suffers from a different kind of load imbal-
ance. Because calculation of the magnetic field at a point uses an adaptive integral, each
field point takes a different amount of time to complete. Thisvariation means that each
block takes a different amount of time to finish. As a result, some processes are finished
sooner than others. These processes remain idle while others are busy. Ideally, some work
should be moved from the busy processes to the idle ones so that every process is being
used. In the case ofExtender, the load imbalance the master slave algorithm incurred
by communication overhead and not usingp0 is comparable to that incurred under the
block-distribution algorithm by not using all processes efficiently at all times.

In summary, for the main calculation, using a block-distribution algorithm did not
have a significant effect on execution time. Nonetheless, the analysis was productive. We
needed to verify that we were using an efficient algorithm, rather than simply accept the
existing one. However, because the block-distribution method was simpler to implement,
it was straightforward to apply it to additional parts of theprogram. Setup time was thereby
decreased by a factor of 10×. This speedup in the setup phase was, however, offset by the
changes discussed in the next section.

2.2 Optimizing Representation of Plasma Surface

Examining the parallel algorithm inExtender did not present opportunities for large
speedups. To identify additional optimization possibilities, the code was profiled using
gprof. The process was carried out as follows:

1. Identify a function that represents a significant portionof the execution time.

Optimizing Extender Richman 5

2. Discern the purpose and method of implementation of the function.

3. Try to optimize the function itself.

4. Try to optimize routines that call the function in order tolimit the number of function
calls.

5. Test any new methods for timing and precision.

In theExtender profile, one function stood out:v3 Surface f c::operator()
(double const&, double const&, long const&) const. This function prototype
indicates the overloaded operator() for the classSurface f c. An example call to the
function might be “my surface f c (0.1, 0.1, 32)”. This function represented 58%
of the execution time. Therefore, it was an excellent candidate for optimization.

Examination of the function code and comments revealed the purpose of the function.
The surface integral is carried out by iterating over two-dimensional coordinates(u,v)
relative to the plasma surface. However, the absolute coordinates(x,y,z) are required
for calculating the field due to each differential sheet current. The function suggested by
profiling performs the coordinate transformation.

The position of the plasma surface is stored using Fourier series.Surface f c::
operator() first computes the cylindrical coordinates(r,φ,z) of a point on the plasma
surface, and then it converts to Cartesian coordinates. Forthe first conversion, the expres-
sions

r =
N

∑
i=0

cri cos[2π(miu+niv)]

z =
N

∑
i=0

czi sin[2π(miu+niv)]

are used, where(u,v) are the poloidal and toroidal angles over a single period of the
stellarator, andcri , czi , mi andni are Fourier coefficients. Then, usingφ = v/nfp, wherenfp
is the number of field periods (3 for NCSX), the Cartesian coordinates are

x = r cosφ
y = r sinφ
z = z.

Fourier series provide an efficient way to store plasma surfaces. However, they are
slow to use during the main calculation. There are too many calls to the system’ssin()

Optimizing Extender Richman 6

andcos() routines. There is no way to achieve a significant speedup by optimizing this
function alone. To minimize execution time, an alternativerepresentation of the plasma
surface is needed.

The plasma surface can be represented using splines. Plasmasurfaces are generally
very smooth. Therefore, provided that a sufficiently dense mesh is used to generate splines,
there should be no significant loss in precision.

It was not difficult to implement these “surface splines” inExtender. In fact, they
are generated in much the same manner as the “sheet current splines” in the original code.
Essentially, an array of values for points in a toroidal gridis passed to a routine that creates
a new spline. Three splines are created this way: one forx, y andz. These splines may
thereafter be used in lieu of the Fourier series to obtain theCartesian coordinates of a point
on the surface.

2.2.1 Results

Error analysis. After introducing the surface splines, the first task was to verify that
no significant errors were introduced by simplifying the representation of the plasma sur-
face. The original code was used as the given from which the new code might deviate. In
the error measurements, the most stringent criterion was used: for a given set of calcula-
tions done by both the original and new codes, we sought to minimize thegreatest single
deviation between the results of the modified and original code.

First the plasma surface representation itself was examined. The results are summa-
rized in Figure 2. It was found that for a toroidal grid ofN = 200 points in each dimension,
the greatest error in the position of the surface was only∼ 1×10−7 m. Most of the points
were represented even more accurately. This suggests that the surface can be represented
very accurately with splines.

After verifying that the surface representation itself wasvery accurate, the final results
were examined. The final output, a set of magnetic field~H values at the specified locations,
of the new code was compared to that of the original code. The results are summarized in
Figure 3. It was found that for a toroidal grid ofN = 200 points in each dimension, the
greatest error in the|~H| was only∼ 5×10−7. Again, the values were even more accurate
at most field points. This indicates that representing the surface with splines does not have
a detrimental effect onExtender’s output.

Performance data. Using the new code, some things were immediately clear, qualita-
tively: Extender ran faster; the setup phase took longer because of the time needed to set
up the surface splines; and the computation phase ran fasterbecause of the use of the sur-
face splines. To quantify these results, the original and new codes were modified to output

Optimizing Extender Richman 7

Figure 2: Greatest residual in surface position vs. spline generation mesh density

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 0 50 100 150 200 250 300

δr
m

a
x
 (

m
)

N

Optimizing Extender Richman 8

Figure 3: Greatest residual in magnetic field vs. spline generation mesh density

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250 300

δH
m

a
x
 (

T
e
sl

a
)

N

timing information including the durations of both the setup phase and the computation
phase, and the total execution time.

The total speedup depends strongly on the number of field points and the number of
processors; a larger number of points per processor resultsin a larger speedup factor. Two
types of problems are likely to be handled withExtender: finding the magnetic field at
points on one surface in space that surrounds the plasma, andfinding the magnetic field in a
mesh in the region within the first wall of the vacuum vessel. Sets of points corresponding
to these two applications were used to benchmarkExtender. Runs were done with 4 and
16 processors. The timing results are summarized in Tables 1–4.

Performance analysis. Tables 1–4 verify that the new code improves performance to a
greater extent with more field points per processor. Each section of the code was affected
differently:

Setup In each run, the spline-generation parameters were the same. Because the surface
splines are generated with relatively dense grids, they take the longest to set up.

Optimizing Extender Richman 9

Table 1: Timing summary, few (1138) field points, 4 processors

Segment of run toriginal (s) tnew (s) Speedup
Setup 19.2 32.0 .6×
Computation 93.1 7.47 12.5×
Collection 0.18 0.02 9.×
Total 112. 39.5 2.9×

Table 2: Timing summary, many (35938) field points, 4 processors

Segment of run toriginal (s) tnew (s) Speedup
Setup 19.4 32.7 .59×
Computation 3980 310. 12.8×
Collection 2. 0.46 4.3×
Total 4010. 343. 11.7×

In the new code, some parts of setup were parallelized. Still, with the additional
splines, setup took about 1.5× as long in each run.

Computation The most significant change in the computation phase was the use of the
surface splines. In the four runs, there was an average speedup of 11×. With lower
Np and higherNw, computation dominates time of execution, so the total speedup
approaches 11×.

Collection A C++ class with a correspondingMPI::Datatype was created to simplify
inter-process communcation of data. Also, small communication calls in loops were
replaced by bulk communcation calls. As a result, the sharing of the total output
became nearly instantaneous in every run.

For a dense mesh of field points, the new code approaches the computation speedup
factor of 11×. For a small number of points, especially when more processors are avail-
able, the speedup dissappears. Such small runs take a relatively short time (∼ 1/2 min)
to complete. However, such runs also may be executed thousands of times for different
plasma equilibria. This would warrant optimizing the spline generation routines in the
setup phase.

A look at the spline constructor inExtender reveals that it uses a Cholesky factoriza-
tion to determine the cubic coefficients. Using an original or existing parallel routine to

Optimizing Extender Richman 10

Table 3: Timing summary, few (1138) field points, 16 processors

Segment of run toriginal (s) tnew (s) Speedup
Setup 19.3 31.1 .62×
Computation 18.7 2.08 9.×
Collection 0.85 0.01 > 20×
Total 38.9 33.1 1.2×

Table 4: Timing summary, many (35938) field points 16 processors

Segment of run toriginal (s) tnew (s) Speedup
Setup 19.4 31.8 .61×
Computation 796. 77.7 10.×
Collection 10.8 0.5 22.×
Total 826. 110. 7.5×

complete the factorization would decrease the setup time, leading to a significant speedup
factor for runs with smallNp. For present-time applications,Extender runs fast enough.
However, if Extender is to be used in a more real-time situation for analysing NCSX
diagnostics, the spline routines should be optimized.

3 Automation

3.1 Fortran 90 module

In the immediate future, one important application alreadyalluded to is to runExtender
on thousands of possible plasma equilibria to generate a database that can be used for
subsequent analyses. The output needs to be stored in an organized, structured and com-
pact way. NetCDF, a platform-independent data format [3], provides mechanisms to do
all of this. It is a highly general I/O library suitable for problems of any shape and size.
Therefore a Fortran 90 module,db access, was created to facilitate the use of NetCDF in
conjunction withExtender.

db access is a small module that allows user code to access one databaseduring exe-
cution. Before accessing the database, there is one initialization function:db access init().
This ensures that the database file exists and reads the number of points per equilib-

Optimizing Extender Richman 11

rium and the number of equilibria. Then, to read the three components of the mag-
netic field, for each point and each equilibrium into a three dimensional allocatable array,
db access read raw() is used. For example,

real, allocatable :: H(:,:,:)
...
call db_access_init ("my_data.nc")
call db_access_read_raw (H)

Now the data can be analyzed. In one example program,db gen Hn, which is included
with the module, an array of normal vectors is read in from a file and the values of~H · n̂
are computed. This results in an array of indices (field point, equilibrium). Areal array
of this form can be added to the database with one call:

call db_access_add_var ("Hn", ncreal, data_real=Hn)

or aninteger array of the same dimensions could be added like this:

call db_access_add_var ("Int_Array", ncint, data_int=my_int_array)

A database can be extended to include additional information. The function calls and
their purposes are listed in Table 5. There are additional calls, but they are used by the in-
cluded programsdb add pointfile anddb append. They should not be required by new
programs, but if necessary, they can be understood from the source code of the module and
the include utilities. The exact semantics of any of the listed calls can also be understood
from the source code of the module.

3.2 GeneralizedPBS job scripts

BecauseExtender is a parallel code, it must be run on a parallel computer system. At
PPPL, it is run on a cluster. Parallel jobs are submitted to a cluster usingPBS [4], a
Portable Batch System widely used on parallel computers. Two generalized job scripts
were written to simplify the use ofExtender with PBS. These arebatch-job-template
(see Appendix A) andjob-template, and they are used for generating a database with
many equilibria or runningExtender one time, respectivly. There are many advantages to
using these scripts.

• All files, directories, andExtender parameters that must be tracked are consistently
named with shell variables. File names are prefixed withFILE ; directory names are
prefixed withDIR ; andExtender parameters are prefixed withPARAM . This makes
it easy to use the same script under different conditions.

Optimizing Extender Richman 12

Table 5: Read / Write calls for data inExtender output database

Subroutine Summaray
— Reading Data —

db access read raw Read an array of indices (coordinate, field point,
equilibrium).
One value for each of(r,φ,z) for each field point,
for each equilibrium.

db access read var Read an array of indices (field point, equilibrium).
One value for each field point, for each equilib-
rium.

db access read profile Read an array of indices (surface, equilibrium).
One value for each plasma surface, for each equi-
librium.

db access read attribute Read an array of indices (equilibrium).
One value for each equlibirum

db access read var pointwise Add an array of indices (field point).
One value for each field point.

— Writing Data —
db access add var Add an array of indices (field point, equilibrium).

One value for each field point, for each equilib-
rium.

db access add var profile Add an array of indices (surface, equilibrium).
One value for each plasma surface, for each equi-
librium.

db access add var attribute Add an array of indices (equilibrium).
One value for each equlibirum

db access add var pointwise Add an array of indices (field point).
One value for each field point.

• A directory structure is set up to store input files and outputfiles separately. For
batch-job-template, Extender outputs are the final database files are also stored
separately.

• The scripts are organized so that they are easily extendible. For example, one ex-
tension has already been written forbatch-job-template that adjusts the coils for

Optimizing Extender Richman 13

each equilibrium during the main loop.

• batch-job-template allows the creation of a database from scratch or the exten-
sion of an existing database. There is are simple mechanismsfor specifying the
equilibria that should be used and for avoiding runningExtender when a given
equilibrium is already in the database. The script initializes the database at the be-
ginning with db-add-pointfile, adds each run withdb-append, and computes
~H · n̂ for the whole database at the end withdb-gen-Hn.

The scripts are commented so that it only requires a basic knowledge of shell scripting
to understand and modify them. A more detailed description of the important variables
in batch-job-template is given in theREADME file in the same directory. Because the
batch job script is mostly a generalization of the one-time job script, the information in the
README file applies to the one-time job script as well.

4 Conclusion

Vmec generates stellarator plasma equilibria and stores them using Fourier series.Extender
has been modified so that, prior to computing the magnetic field at each specified field
point, it recomputes the plasma surface in terms of splines in Cartesian coordinates,(x,y,z).
This optimization can be used without compromising the accuracy of the obtained results.
When the number of field points per processor is large, a speedup of 12× or more may
be achieved. For a small number of field points per processor,the additional time spent
setting up the splines decreases the speedup factor.

It may be worthwhile to optimizeExtender even further for applications involving a
small number of field points. This would require optimization of the spline routines. One
possibility is to use a parallelized, rather than serial, Cholesky decomposition function
during the spline setup phase. Another, perhaps more involved, possibility is to replace
completely the spline routines included withExtender with parallel ones from another
package.

Tools were developed to simplify the use ofExtender. TemplatePBS job scripts were
written in a very general way so that they can be customized and executed quickly for a
particular application. Fortran 90 programs were written to provide an interface for cre-
ating and maintaining NetCDF databases ofExtender outputs. The Fortran 90 module
db access was written to allow more programs to extract information from and add anal-
yses to these databases.

Optimizing Extender Richman 14

Acknowledgment

This work was funded by the National Undergraduate Fellowship program through the US
Department of Energy. We thank Michael Drevlak for making his Extender code available
to us.

References

[1] D. Monticello M. Drevlak and A. Reiman. PIES free boundary stellarator equilibria
with imporoved initial conditions.Nucl. Fusion, 45:731–740 (2005).

[2] S. P. Hirshman and J. C. Whitson. Steepest-descent moment method for three-
dimensional magnetohydrodynamic equilibria.Phys. Fluids, 26:3553–3568 (1983).

[3] NetCDF (Network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data.http://www.unidata.ucar.edu/software/netcdf/

[4] Portable Batch Systemhttp://www.openpbs.org/

http://www.unidata.ucar.edu/software/netcdf/
http://www.openpbs.org/

Optimizing Extender Richman 15

A PBS batch job template

Below is the filebatch-job-template. For more information on NCSX, see
http://ncsx.pppl.gov.

#! /bin/bash

PBS--
#PBS -N extender_batch
#PBS -l nodes=4:ppn=2
#PBS -V
#PBS -m ae
#PBS -q kestrel
#PBS -j oe
#PBS -o job-out
rm -f job-out

DEFINITIONS --

Options
OPT_REDO_IF_DONE="n" # "y" to redo if done,
"n" to preserve existing

DIRS
Specify here the locations for input, output, and database-editing
programs.
DIR_START="/p/ncsxeqdb/ExtenderStuff/mrichman/extender-batch"
DIR_EQUILIBRIA="/p/pies/Pomphrey/Ncsx_fields_from_database_on_VV/Wout_files"
DIR_INPUT="${DIR_START}/extender-input"
DIR_OUTPUT_RAW="${DIR_START}/db/raw"
DIR_OUTPUT_RECORDS="${DIR_START}/db/records"
DIR_DB_ACCESS="/p/ncsxeqdb/ExtenderStuff/mrichman/src/db-access"
rm -f ${DIR_START}/job-out

Equilibrium -- specify a list of valid equlibria to be found in
DIR_EQUILIBRIA.
FILE_VALID_EQUILIBRIA="${DIR_INPUT}/valid-equilibria"
FILE_VALID_EQUILIBRIA="${DIR_INPUT}/redo-equilibria"

http://ncsx.pppl.gov

Optimizing Extender Richman 16

Extender
Specify Extender executable location and input file paths.
Paths may be in terms of DIR_* variables.
Files may be in terms of DIR_* and SUFFIX_* variables.
PARAM_* variables are passed directly as whole parameters to
Extender.
EXTENDER="/p/ncsxeqdb/ExtenderStuff/mrichman/src/PC6/EXTENDER_QS"
SUFFIX_RPHIZ="rphiz_points_vv"
SUFFIX_COILS="coils.c08r00x"
FILE_RPHIZ="${DIR_INPUT}/${SUFFIX_RPHIZ}"
FILE_COILS="${DIR_INPUT}/${SUFFIX_COILS}"
FILE_EXTENDER_OUTPUT="${DIR_OUTPUT_RAW}/${SUFFIX_RPHIZ}.output"
PARAM_POINTS="-points ${FILE_RPHIZ}"
PARAM_NU="-NU 80"
PARAM_NV="-NV 80"
PARAM_NPS="-NPS 200"

Database
Specify database-handling executables, control files, database
file, and normal vector file.
DB_ADD_POINTFILE="${DIR_DB_ACCESS}/db-add-pointfile"
DB_APPEND="${DIR_DB_ACCESS}/db-append"
DB_DUMP_NAMES="${DIR_DB_ACCESS}/db-dump-names"
DB_GEN_HN="${DIR_DB_ACCESS}/db-gen-Hn"
CONTROL_DB_ADD_POINTFILE="${DIR_OUTPUT_RAW}/control-db-add-pointfile"
CONTROL_DB_APPEND="${DIR_OUTPUT_RAW}/control-db-append"
CONTROL_DB_GEN_HN="${DIR_OUTPUT_RAW}/control-db-gen-Hn"
FILE_DB="${DIR_OUTPUT_RECORDS}/Extender-test.nc"
FILE_RPHIZ_NORM="${DIR_INPUT}/rphiz_norm_vv"

Node count -- number of nodes we are using on the cluster
NODE_COUNT=‘cat ${PBS_NODEFILE} | wc -l‘

Beyond this point, little or no customization should be necessary
in most cases.

INITIALIZE DATABASE --

Make control file
rm -f ${CONTROL_DB_ADD_POINTFILE}
cat > ${CONTROL_DB_ADD_POINTFILE} <<EOF

Optimizing Extender Richman 17

${FILE_DB}
${FILE_RPHIZ}
(3E20.10)
‘cat ${FILE_RPHIZ} | wc -l | awk ’{print $1}’‘
49
EOF

Set up database (all database stuff controlled from ${DIR_OUTPUT_RAW}
cd ${DIR_OUTPUT_RAW}
${DB_ADD_POINTFILE}

BEGIN LOOP ---
for i in ‘cat ${FILE_VALID_EQUILIBRIA}‘
do

loop-dependent definitions
FILE_EQUILIBRIUM="${DIR_EQUILIBRIA}/$i"
FILE_TMP_LIST="${DIR_OUTPUT_RAW}/tmp_finished_list"
STDERR="${DIR_OUTPUT_RAW}/job-err-$i"
rm -f ${STDERR}
cd ${PBS_O_WORKDIR}

check if already done
rm -f ${FILE_TMP_LIST}
${DB_DUMP_NAMES} ${FILE_DB} > ${FILE_TMP_LIST}
FOUND="n"
for j in ‘cat ${FILE_TMP_LIST}‘
do
if test "$i" == "$j"
then
FOUND="y"
fi
done

if it’s already done, don’t do it again
if test "${OPT_REDO_IF_DONE}" == "y"; then FOUND="n"; fi
if test "${FOUND}" == "n"
then

ERRORS="n"

Optimizing Extender Richman 18

for ((j = 1; j < 5; j++))
do
run Extender!
mpirun -np ${NODE_COUNT} ${EXTENDER} -v2000 ${FILE_EQUILIBRIUM} \
${PARAM_POINTS} -s suffix \
${PARAM_NU} ${PARAM_NV} ${PARAM_NPS} \
-outdir ${DIR_OUTPUT_RAW} >& ${STDERR}

check for pbs errors
if test "‘grep ’errno = ’ ${STDERR} | wc -l | awk ’{print $1}’‘" == "0"
then
j=6
else
if test "$j" == "5"; then ERRORS="y"; fi
echo "Handling error on try $j for equilibrium $i"
sleep 10s
fi
done

(could add more error checks here?)

if there are no errors, add to database
if test "${ERRORS}" == "n"
then
make control file
rm -f ${CONTROL_DB_APPEND}
cat > ${CONTROL_DB_APPEND} <<EOF
${FILE_EXTENDER_OUTPUT}
${FILE_DB}
‘cat ${FILE_EXTENDER_OUTPUT} | wc -l | awk ’{print $1}’‘
$i
1
EOF

append to database, kill extender raw output
cd ${DIR_OUTPUT_RAW}
${DB_APPEND}
rm ${FILE_EXTENDER_OUTPUT}

fi ## ‘end if’ for whether this equilibrium was done yet

Optimizing Extender Richman 19

fi ## ‘end if’ for whether there were errors

done ## end of main loop

Finished ---

generate Hn for database
rm -f ${CONTROL_DB_GEN_HN}
cat > ${CONTROL_DB_GEN_HN} <<EOF
${FILE_DB}
${FILE_RPHIZ_NORM}
EOF
cd ${DIR_OUTPUT_RAW}
${DB_GEN_HN}

exit 0

The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov

	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results

	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template

	report number: 4279
	Title: Optimizing Extender Code for NCSX Analyses
	Date: January 2008
	authors: M. Richman, S. Ethier, and N. Pomphrey

