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Abstract

Ideal MHD equations employed in the NOVA code are analyzed analytically and numerically in

order to investigate the role of the pressure gradient on global reversed shear Alfvén eigenmodes

(RSAEs) or Alfvén cascades. We confirm both numerically and analytically conclusions obtained

earlier using the ideal MHD code NOVA [1] and analytically [2] that the plasma pressure gradient

plays a key role in the existence condition and in the dispersion relation for the mode. The effect

of the plasma pressure gradient is to shift the mode frequency up at the low part of the RSAE

frequency chirp and downshift the mode frequency when the frequency approaches the TAE gap.

This finding is opposite to predictions in a recent publication [3], where the pressure gradient is

found to be always stabilizing by means of downshifting the RSAE frequency and enhancing its in-

teraction with the continuum. We resolve this discrepancy by showing that neglecting the pressure

gradient effect on the plasma equilibrium (modification of the Shafranov shift and the averaged

curvature) leads to conclusions at variance to the numerical and analytical results presented here.

A new variational approximation of the RSAE is introduced which compares remarkably well with

NOVA solutions. With this new approximation we clearly demonstrate the diagnostic potential

and limitations of the RSAE frequency measurement for MHD spectroscopy.
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I. INTRODUCTION

In this paper we analyze both numerically and analytically the equations employed in

the ideal MHD code NOVA [4, 5] to assess the effect of the pressure gradient on the exis-

tence condition and eigenfrequency of Alfvén cascade modes also known as reversed shear

Alfvén eigenmodes (RSAEs). These modes are observed in many experiments with reversed

magnetic shear [6, 7]. Their characteristics are that they are localized to the region near the

minimum in the magnetic safety factor and typically chirp up in frequency as qmin decreases.

The frequency chirp range is bounded in experiments and is given at the low frequency end,

ωmin, by the geodesic acoustic mode [3] together with a contribution from the pressure

gradient [1] and is limited at the high frequency end by the TAE frequency ωTAE [8].

It was shown numerically [1] that the plasma pressure gradient plays a key role in the

existence condition for the RSAE and results in an upshift of the RSAE frequency (at fixed

qmin) in the low frequency range of the chirp [20]. The pressure gradient is also responsible

for a frequency downshift when the mode begins to transition to the TAE gap, i.e. near the

top of RSAE frequency range. The latter case is associated with the well known stabilization

of TAEs by the pressure gradient [9].

The effect of the finite pressure has been studied analytically recently and was shown to

result in the upshift of the RSAE frequency, with a minimum mode frequency determined

by the Geodestic Acoustic Mode (GAM) [3]. However an increase in the pressure gradient

was predicted to cause a downshift of RSAE frequency and its possible stabilization due

to stronger interaction with the Alfvén continuum. This result is at odds with numerical

analysis presented in Ref. [1]. The reason for the discrepancy was recently idenitified in

Ref. [2] mostly due to the averaged curvature effect. Thus, it seems essential to interpret

the numerical solutions obtained in Ref. [1] by means of analytical analysis of the same

system of equations used in the NOVA code as well as to study the pressure gradient effect

numerically in more detail.

As part of the analysis a new variational principle solution is developed and applied to

the RSAE eigenmode equation which shows better agreement with NOVA computations

than previous analytic results over a wide range of plasma parameters.

In this paper we show that in realistic plasma conditions the pressure gradient can play a

dominant role in the existence condition for the RSAEs. In particular it is interesting to note

2



that the plasma pressure gradient can compete with the effect of the GAM on determining

the minimum RSAE frequency, ωmin. Note that the finite pressure effect associated with

the GAM is implicitly contained in the acoustic mode filtering technique developed in Ref.

[10].

While working on this paper we learned that an analytic insight into the role of the

curvature term in establishing mode criteria was obtained by Fu and Berk [2]. Our derivation

reproduces their main results on the RSAE eigenmode equation and on the pressure gradient

effects. However the basic set of ideal MHD equations we use is the one employed in NOVA

code.

The paper is organized as follows. The derivation of the RSAE eigenmode equation is

given in Section II. Section III is devoted to a comparison of existing approximate analytical

solutions of the RSAE equation with NOVA numerical solutions. We also offer in that

section a new, more accurate variational solution of this equation. Implications for MHD

spectroscopy are presented in Section IV. Discussion and conclusions are presented in Section

V.

II. FORMULATION

To derive the Alfvén eigenmode type equation we introduce flux coordinates by defining

the equilibrium magnetic field vector, B, with nested flux surfaces

B = g∇ϕ+ ∇ϕ×∇ψ, (1)

where 2πψ is the poloidal magnetic field flux, ϕ is the toroidal angle, g = BϕR, Bϕ is the

toroidal component of the equilibrium magnetic field, and R = |∇ϕ|−1 = R0 −∆ + r cos θ+

O (ε3) is the major radius, R0 is the major radius of the magnetic axis, ∆ = ∆ (r) is the

Shafranov shift of the magnetic surface centers and θ is the poloidal angle chosen following

[11]. It is also useful to introduce a generalized toroidal angle, ζ , in which together with the

poloidal angle the magnetic field lines are straight. It is related to ϕ via the equation:

ζ = ϕ− qδ (r, θ) ,

where δ is resolved from

q (1 + ∂δ (r, θ) /∂θ) = gJ /R2ψ′,
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and J is the Jacobian. Together with equilibrium relations from Appendix A we find that

δ = − (ε+ ∆′) sin θ in large aspect ratio plasmas in which ε = r/a ≪ 1 is assumed, where

r is the minor radius of the magnetic surfaces and r = a at the last plasma surface. The

other definitions of equilibrium quantities are given in rationalized MKS units in Appendix

A together with their approximations for the case of low aspect ratio plasma and equal

poloidal arc choice of the poloidal angle.

The system of four general ideal MHD equations is derived in [4, 5] from standard

linearized ideal MHD equations, where four unknown variables are two components of

the plasma displacement vector, ~ξ (namely ξψ = ~ξ · ∇ψ, ξs ≡ ~ξ · [B ×∇ψ] / |∇ψ|2),
δp1 ≡ B · δB + δp and ∇ · ~ξ, with δp being the plasma pressure perturbation and δB

being the perturbed magnetic field vector. It is important to evaluate the effect of the pres-

sure gradient for the case where the ratio of specific heat γ = 0, in order to avoid effects of

the beta induced gap (BAE gap [10]) or GAM (geodesic acoustic mode [3]). In the case of

γ = 0, as can be seen from Eqs.(3.51-3.54) of Ref.[5], the fourth variable ∇ · ~ξ is decoupled

from first three equations, which corresponds to the filtering out the sound waves, and ∇ · ~ξ
can be resolved from Eq.(3.54) of Ref.[5]. The effect of finite γ is shown to introduce the

beta induced gap (BAE) and also shifts the whole Alfvén spectrum up in frequency [10]. It

was brought up in Ref.[3] as the only favorable pressure driven ingredient contributing to

the formation of the minimum of the RSAE frequency and was related to the GAM solution

near the qmin surface.

In the following derivation we do not required δp1 = 0, leading to the coupling of

Eqs.(3.51) and (3.53) in Ref.[5]. In contrast to standard derivations, we eliminate δp1 by

multiplying Eq.(3.51) by (−ks +B−2 [B ×∇ψ] · ∇), Eq.(3.53) by (−kψ + ∇ψ · ∇) and sum-

ming them, so that the resulting equation reads:

(∇ψ · ∇ − kψ)
|∇ψ|2
B2

L∗
‖ξs +

(

ks −
B ×∇ψ
B2

· ∇
)

L‖ξψ − Lpδp1 +

(

ks −
B ×∇ψ
B2

· ∇
)

[

kψ
ψ′
P ′ +

(

B · J − |∇ψ|2 S
) |∇ψ|2

B2
S

]

ξψ +

(

ks −
B ×∇ψ
B2

· ∇
)

(

|∇ψ|2 S − B · J
) |∇ψ|2

B2
B · ∇ξs −

(∇ψ · ∇ − kψ)

[

−ks
ψ′
P ′ + B · ∇

(

|∇ψ|2
B2

S

)

+
|∇ψ|2 S −B · J

B2
B · ∇

]

ξψ = 0 (2)

where L‖ ≡ ω2ρ+ |∇ψ|2 (B · ∇) |∇ψ|−2
B ·∇, L∗

‖ ≡ ω2ρ+B2 |∇ψ|−2 (B · ∇)B−2 |∇ψ|2 B ·∇,
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J is the vector of the equilibrium plasma current,

Lp = (∇ψ · ∇ − kψ)

(

[B ×∇ψ] · ∇
B2

− ks

)

−
(

[B ×∇ψ] · ∇
B2

− ks

)

(∇ψ · ∇ − kψ) (3)

and the rest of definitions are given in Appendix A. Strictly speaking the δp1 term can be

eliminated only for high-n modes or for cylindrical plasma, in which case Eqs.(3.52) of Ref.

[5] should also be invoked.

Equation 2 contains three unknown variables and should be supplemented by Eqs.(3.51-

53) of Ref. [5] for exact solution which couples shear and compressional waves. To decouple

the shear branch we make use of the electrostatic potential, φ, with the gauge A⊥ = 0, so

that

~ξ⊥ =
ic

ω

B ×∇φ
B2

. (4)

From here two components of the plasma displacement are readily expressed

ξs =
ic

ω

∇ψ
|∇ψ|2

· ∇φ,

ξψ = −ic
ω

B ×∇ψ
B2

· ∇φ. (5)

Substituting this into Eq.(2) we find

(∇ψ · ∇ − kψ)
|∇ψ|2
B2

L∗
‖

∇ψ
|∇ψ|2

· ∇φ−
(

ks −
B ×∇ψ
B2

· ∇
)

L‖
B ×∇ψ
B2

· ∇φ+
iω

c
Lpδp −

(

ks −
B ×∇ψ
B2

· ∇
)

[

kψ
ψ′
P ′ +

(

B · J − |∇ψ|2 S
) |∇ψ|2

B2
S

]

B ×∇ψ
B2

· ∇φ +

(

ks −
B×∇ψ
B2

· ∇
)

(

|∇ψ|2 S − B · J
) |∇ψ|2

B2
B · ∇

( ∇ψ
|∇ψ|2

· ∇φ
)

+ (∇ψ · ∇ − kψ) ·
[

−ks
ψ′
P ′ + B · ∇

(

|∇ψ|2
B2

S

)

+
|∇ψ|2 S − B · J

B2
B · ∇

]

B ×∇ψ
B2

· ∇φ = 0.(6)

Eq.(6) is the most general equation for the shear Alfvén modes with the only assumption

given by Eq.(4).

To proceed further we take the high-m (high-n) limit and assume radially localized solu-

tion, which means that Lp = O (m−1), which helps to simplify Eq.(6). We then obtain
[

∇ψ · ∇|∇ψ|2
B2

L∗
‖

∇ψ
|∇ψ|2

· ∇ +
B×∇ψ
B2

· ∇L‖
B ×∇ψ
B2

· ∇
]

φ +

[(

B ×∇ψ
B2

· ∇
)

kψ
ψ′
P ′ − (∇ψ · ∇)

ks
ψ′
P ′

]

B×∇ψ
B2

· ∇φ +
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(∇ψ · ∇)B · ∇
(

|∇ψ|2
B2

S

)

B×∇ψ
B2

· ∇φ+
(

B · J − |∇ψ|2 S
)

×
[

(

B ×∇ψ
B2

· ∇
) |∇ψ|2

B2

(

SB ×∇ψ
B2

+
(B · ∇)∇ψ

|∇ψ|2
)

− (∇ψ · ∇) (B · ∇)

B2

B ×∇ψ
B2

]

∇φ = 0.(7)

We choose the following ansatz for the perturbed quantities

φ =
∑

j

φj−m (r) e−iωt+ijθ−inζ, (8)

where m is the dominant harmonic of the RSAE solution, which is known from numerical

and analytical solutions [1, 12]. With the differential operators in the form described in

Appendix A we further simplify Eq.(7) by multiplying it by e−imθJ /ε |∇ψ|2 and integrating

over θ. Since the effects of ε up to O (ε2) have already been accounted for in [12] (we refer

the reader for the derivation details to that reference, but caution that our derivation is in

a different equilibrium coordinate), we show the derivation by including terms due to the

pressure gradient, some of which were ignored. We find three coupled equations for zero and

first order poloidal harmonics, which have ordering φ0 = O (1) , φ±1 = O (ε):

(

L0
0 + L2

0

)

φ0 + L1
0,+1φ+1 + L1

0,−1φ−1 = 0 (9)

L0
±1φ±1 + L1

±1,0φ0 = 0 (10)

where differential operators are given by

L0
j =

(

ω̄2 − k2
j

) (

∂2
r − (m+ j)2) ,

L2
0 =

αm2

q2

(

3∆′

2
+
r∆′′

2
+
ε

2
− ε

q2

)

,

L1
0,±1 ≡ l1,± ± l2,±, L

1
±1,0 ≡ l1,± ∓ l2,±,

l1,± = ω̄2 (ε− ∆′)
(

∂2
r −m2

)

− 3∆′ + ε

2
k0 (k±1 − k0) ∂

2
r −

∆′ + ε

2
k0m

2 (k±1 − k0) −
αm2

2q2
,

l2,± = −∆′ + r∆′′ + ε

2
m
(

k2
±1 − k2

0

)

∂r +
∆′ + r∆′′ + ε

2q2
m∂r −

αm2

2q2

and ∂r ≡ r∂/∂r. The notations we adopt are the following. The subscript j refers to the

m + j poloidal harmonic of the perturbation (see Eq.(8)). The j superscript denotes the

ordering of differential operators, Lj = O
(

ε|j|
)

. It is important to note that L2
0 is derived

from the second line terms of Eq.(7) due to the magnetic field line curvature. We also
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neglected the effect of the plasma density gradient for simplicity and assume it to be zero.

Finally, in deriving the eigenmode equation we assumed that the mode frequency is close to

the shear Alfvén continuum of the m-th harmonic, i.e. ω̄ ≃ k0, where ω̄ = ωR0/vA, vA is

the Alfvén velocity.

To build the eigenmode equation we multiply Eq.(9) by (∂2
r −m2) and express unknown

(∂2
r −m2)φ±1 using the two Eqs.(10), which result in the following

(

L0
0 + L2

0

) (

∂2
r −m2

)

φ0 + q2
l2l,+ + l21,− − l22,+ − l22,− + 2k0q

(

l21,− − l21,+ − l22,− + l22,+
)

1 − 4k2
0q

2
φ0 = 0,

(11)

where we made use of n,m ≫ 1. Collecting corresponding terms and dividing Eq.(11) by

(∂2
r −m2) we find the eigenmode equation

L0
0φ0 + 2m2ω̄2 ε (ε+ 2∆′) − δm∂ (r∆′′ − ∆′) (r∆′′ + 3∆′ + 2ε− 2α)

1 − 4k2
0q

2
φ0 +

+

[

4m2ω̄2 α∆′

1 − 4k2
0q

2
− m2

2q2

α2

1 − 4k2
0q

2
+
αm2

q2

(

3∆′

2
+
r∆′′

2
+
ε

2
− ε

q2

)]

φ0 = 0, (12)

where we left terms proportional to (r∆′′ − ∆′) = −4∆′ + ε + α, α ≡ −R0q
2β ′, (compare

with [2, 12]), which are nonzero in general as one can see from Eqs.(B7,B8), and introduced

a symbol δm∂ = ∂2
rφ0/ (∂2

r −m2)φ0, which is approximated as equal 1 if ∂2
r ≫ m2 and 0 if

∂2
r ≪ m2, i.e. the only analytically treatable cases. In fact the terms (r∆′′ − ∆′) can be

of importance especially at the threshold conditions of the mode existence when ∂2
r ≫ m2

(in the opposite case m2 ≫ ∂2
r , more typical for the experimental conditions, these terms

are negligible and δm∂ = 0). In a special case of flat plasma current and parabolic pressure

profile (r∆′′ − ∆′) = 0 exactly.

A. Simplified eigenmode equation and qualitative analysis of plasma pressure gra-

dient, α effect

For further analysis it is useful to expand Eq.(12) near q = qmin point to present it in the

form analyzed in Ref.[8]. The localized solution within the ideal MHD theory is possible for

the case k0 > 0, which corresponds to q < m/n and the RSAE frequency then chirps up as

qmin drops below m/n. It was shown that for the downchirp case (q > m/n) and |ω̄| < |k0|
the mode can not exist [12], whereas the downchirp case with |ω̄| > |k0| has been found and

reported in numerical simulations at sufficiently large α [1]. Numerical modeling shows that
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RSAE in this case interact with the continuum, which may require kinetic treatment of the

problem [13].

We make use of the q-profile given by Eq.(B1). Defining the new variable x =

m (r − r0) /r0 one can rewrite Eq.(12) as

−∂x
(

Sω + x2
)

∂xφ0 +
(

Sω + x2
)

φ0 = (Qtor +Qp)φ0 ≡ Qφ0, (13)

where Sω ≡ 2 (ω̄ − k0)mq
2
0/r

2
0q

′′
0 = (ω̄ − k0)mq0w

2/r2
0, and k0 is determined by Eq.(A4),

Qtor = 2m
ω̄0q

2
0

r2
0q

′′
0

ε (ε+ 2∆′) − δm∂ (r∆′′ − ∆′) (3ε− α)

1 − 4k2
0q

2
0

Qp =
mα

r2
0q

′′
0k0

[

4ω̄2
0q

2
0

∆′

1 − 4k2
0q

2
− α/2

1 − 4k2
0q

2
+ ε

(

1 − 1

q2

)

+
α

2

]

, (14)

with q′′0 = 2q0/w
2. In deriving this equation we made use of the equilibrium condition

Eq.(B6). The eigenmode equation (13) in the case of parabolic pressure profile is the same

as Eq.(29) first derived in Ref. [2], where the effect of averaged curvature (two last terms in

Eq.(14)) was identified.

Qualitative analysis of the pressure gradient or finite α effect on RSAEs can be done

based on Eq.(14). The analysis presented here is similar to the one of Ref. [2]. The second

term in the square brackets of the equation for Qp is the only term responsible for α effect

in Ref. [3] and thus it is clear that an erroneous conclusion was made with regards of this

effect. Indeed, that term cancels with the last term in Qp expression (α/2), precisely at the

minimum of the frequency chirp, i.e. when |ω̄0| = |k0| ≪ 1/2. In this case the curvature

driven term (third term in square brackets) leads to the upshift of the RSAE eigenfrequency

if q > 1. Note that this property can be used for RSAE stabilization by lowering qmin below

one, which, however, seems not likely to be achieved experimentally.

In the case of the RSAE frequency approaching the TAE gap, i.e. 4k0q . 1, the first

two first terms in the square bracket of Eq.(14) dominate. The balance of these two terms

determines the effect of the pressure gradient on the RSAE eigenfrequency below (but close

to) the TAE gap, but it is sensitive to the details of the pressure profile (see Eqs(B7, B8)).

Qualitatively, in this case Qp ∼ ∆′ − α/2 helps to form the potential well for the RSAE

for small α and stabilizes the RSAE for large α. However strictly speaking the analysis we

have performed is not applicable at the TAE gap frequency because two harmonics, m and

m− 1, become comparable.
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III. NUMERICAL STUDY OF THE PRESSURE GRADIENT EFFECT ON RSAE

AND COMPARISON WITH THEORIES

A. Existing approximate analytical solutions vs NOVA simulations

The dispersion of equation (13) was given in [8, 14] based on matching appropriate

solutions at different regions for |Q− 1/4| ≪ 1 case

Sω = C2e−2lπ/
√
Q−1/4, (15)

where, C = 43.2 and l is positive integer index of the mode radial number. In the opposite

case |Q− 1/4| ≫ 1 the dispersion was obtained as

Sω = Q− (2l − 1)
√

Q, (16)

with lowest solution corresponding to l = 1. Both Eqs.(15,16) have rather limited practical

application.

In Figure 1 we show the comparison of exact RSAE system solution from NOVA with

different analytical solutions for an n = 10 mode. We chose basic plasma parameters cor-

responding to the tokamak ordering R0 = 10m, R/a = 10, qmin = 1.98 at r/a = 0.5,

β0 = 0.1%, parabolic pressure profile, constant density profile, vA/2πR0 = 233.5kHz, and

ωTAE = 2π58.3rad/sec (at q = 2). Figure 1 (a) shows the difference between the continuum

and the RSAE eigenfrequency with the continuum frequency 23.6kHz. The NOVA-K code

is able to compute the continuum damping in a perturbative manner [15]. The continuum

damping of RSAE computed using NOVA-K is given in Fig. 1 (b).

As expected Eq.(15) gives the correct dispersion near one point on the graph, i.e. at

Q = 1/4, which corresponds to w = 0.8. It quickly diverges from the RSAE eigenfrequency

as Q increases. It is interesting that NOVA shows strong continuum damping for w < 1.15

(Q < 0.5), i.e. when the eigenfrequency from the dispersion relation Eq.(15) in Fig.1(a)

(curve 1) is in agreement with numerical simulations. The strong increase of the damping

near w = 1 is due to the RSAE intersection with the continuum causing strong interaction

with the continuum and strong damping. Such high values of the continuum damping mean

that the perturbation method can not be applied, but it is also clear that the RSAE mode

is strongly damped and thus RSAEs are likely to be stable. Curve 2 in Fig. 1 (a) (as

was claimed in [8]) only asymptotically approaches the numerical eigenfrequency, that is
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Figure 1: (a) Comparison of different RSAE eigenfrequencies for analytical solutions of the eigen-

mode equation (13) with the NOVA predictions for tokamak ordering equilibrium at high aspect

ratio versus the characteristic width of the q-profile as defined in Eq.(B1). ω0 is the continuum

frequency at q = qmin surface. (b) Shows the NOVA computed continuum damping. Shown in

figure (a) are predictions of NOVA as indicated, Eq.(15) - curve 1, Eq.(16) - curve 2, Eq.(20) -

curve WKB2, numerical evaluation of WKB dispersion Eq.(18) - curve WKB1, and variational

principle method Eq.(25) at p = 2 - curve 3.

for Q ≫ 1. In the plasma scenario we have chosen there is a noticeable difference with

numerical simulations even for w > 3, in which case, however, the q profile is already very

flat which is not relevant to typical experimental conditions.

B. WKB dispersion

We now explore other approximate solutions to the RSAE equation. Applying the WKB

technique to Eq.(13) using the ansatz φ0 = φ0k exp
(

−i
∫ x

kxdx
)

with the additional assump-

tions

|∂ lnφ0k/∂x| , |∂ ln kx/∂x| ≪ |kx| , (17)
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Eq.(13) can be transformed into

k2
x =

Q

Sω + x2
− 1. (18)

The solution is localized within x = ±xc ≡ ±
√
Q− Sω and the quantization condition

provides the eigenmode dispersion
∫

kxdx = lπ, where the integral should be taken in

the region of positive kx. We present this dispersion by introducing a new radial variable

x′ = x/xc:

xc

∫ 1

−1

kxdx
′ =

2√
Sω

(

QK

(

i
xc√
Sω

)

− SωE

(

i
xc√
Sω

))

= lπ, (19)

where K and E are full elliptic integrals of the first and second kind, respectively. This

dispersion relation can be written approximately as

2lSpω = (Q− Sω)
p+1/2 , (20)

where we have made use of the approximation 4 [K (iz) (z2 + 1) −E (iz)] = πz2p+1, valid for

1 <
√
z < 10 and p = 1/3 and for

√
z < 1 and p = 1/2, which covers the range of typical

parameters in experiments.

As one can see from Figure 1 (a) the WKB analytical dispersion (curve WKB2), Eq.(20),

is close to an accurate integration of Eq.(18) (curve WKB1) and provides reasonable con-

nection between curves 1 and 2, but diverge from the NOVA frequency otherwise. The

disagreement is mostly because the conditions for the validity of Eq.(17) are not met, as the

expression for kx varies strongly at the boundaries of the localization region.

C. Variational principle RSAE solution

In this method we use the following ansatz for the solution

φ0 = e0 exp (− |x/δ|p /2) . (21)

Substituting Eq.(21) into Eq.(13), multiplying by φ0 and integrating over x we obtain the

following quadratic form or Lagrangian functional

L =
−e20
4pAδ

(

4δ4Γ

(

3

p

)

A + SωAΓ

(

p− 1

p

)

p (p− 1) + δ2π (1 + p− 4 (Q− Sω))

)

, (22)
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where A = Γ ((p− 1) /p) sin (π (p− 1) /p). Taking its variation with respect to δ we find

12δ4Γ

(

3

p

)

A+ δ2π (1 + p− 4 (Q− Sω)) − SωAΓ

(

p− 1

p

)

p (p− 1) = 0, (23)

where the positive root of δ2 = δ2
2 should be taken, which corresponds to the local maximum

of the quadratic form. Finally, we obtain the RSAE dispersion relation by varying L over

e0 and taking into account Eq.(23) to derive two equations:

Sω = 4δ4
2Γ

(

3

p

)

/Γ

(

2p− 1

p

)

p2. (24)

and

Sω = π2 (Q− Sω − (1 + p) /4)2 /4Γ

(

3

p

)

A2Γ

(

2p− 1

p

)

p2. (25)

Note that p can be readily obtained as a function of Sω, Q, δ by making use of the same

variational technique. However we prefer to keep it as a parameter because the formulation

can become less transparent for the analysis. It can be shown, though, that near the thresh-

old of the RSAE existence condition, i.e. Sω = 0, both p and δ tends to go to zero (with

appropriate proportionality coefficient). It follows from Eq.(25), then, that Q > 1/4 is the

condition for Sω to be positive, i.e. the condition for the RSAE to be above the continuum.

This coincides with the criteria derived in [8].

One can make a useful observation from Eq.(24) on the characteristic width of the RSAE

radial structure. Wavevector can be defined in this case as k2
x ≡ − (∂2φ0/∂

2x) /φ0 we find

that kx = δ−1 = S
−1/4
ω

(

4Γ
(

3
p

)

/Γ
(

2p−1
p

)

p2
)1/4

. Since kx = ∂r/m is the ratio of radial

wavevector to poloidal one we conclude that RSAE local wavevector is in radial direction if

kx > 1 or Sω ≪ 1 and in poloidal direction in opposite case Sω ≫ 1.

In Figure 1 the variational principle based solution for p = 2 fits best the NOVA RSAE

frequency dependence. This is because we did not approximate the effective potential for

the solution as is done in Ref.[8], but rather adjusted parameters in the chosen ansatz for

the unknown solution and kept the exact potential. Lowering p helps to fit the numerical

solution only at near threshold both in mode frequency and in mode structure, which is in

agreement with NOVA findings.

Figure 2 shows a comparison of the RSAE radial structure of its electrostatic potential

from NOVA and its variational principle solution for the plasma considered earlier with

w = 2, β0 = 0.1%. It shows that the agreement is good in the region of RSAE localization.
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Figure 2: Variational principle solution (dot-dashed curve) comparison with the numerical NOVA

solution shown as indicated solid curve. Dashed vertical lines indicate the location of the mode

resonances with the continuum.

D. α dependence of the RSAE eigenfrequency beyond the tokamak ordering

It turns out that the variational principle solution is of practical interest even above

the tokamak ordering limits. Let us increase the plasma pressure beyond that limit, which

corresponds to the chosen basic plasma α = 0.04, and compare the results with NOVA

simulations. Figure 3 (a) demonstrates such a comparison, where again the variational

principle solution gives the best fit to the numerical eigenfrequency.

It is important to compare our results with the earlier predictions, which is done in Fig.

3 (b). It shows how critical the effect of the pressure gradient is for the RSAE existence.

For this purpose we assumed that Sw = Q for simplicity. Indeed, if the pressure gradient

contribution in the second term in square brackets of expression (14) for Qp is the only term

kept, the RSAE frequency quickly decreases with α and moves into the continuum, which

shows its stabilizing role. The variational principle solution, on the other hand, elevates

the RSAE eigenfrequency above the continuum in agreement with the NOVA calculations

shown in Figs. 3 (a) and (b). We stress that this is due to the pressure gradient contribution

to the Shafranov shift and to the averaged magnetic field line curvature.

It is straightforward to plot the RSAE frequency chirp predictions as qmin decreases (for

the case of interest, w = 2) from qmin = 2 to (m− 1) /n = 1.95 (see Figure 4). It is clear from

this figure that again the variational principle solution shows the role of α in determining the

13
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Figure 3: α dependence of the RSAE eigenfrequency for w = 2. In figure (a) analytical solutions

are denotes the same way as in Figure 1. For the comparison Q ≃ 1/4 at α = 0 in this plot and

reaches Q = 5.5 at α = 0.2. (b) Shows the comparison of the variational principle solution (dashed

curve) with the dispersion relation prediction from Ref. [3] (solid curve).

mode frequency upshift at the lower part of the chirp, but becomes stabilizing at the high

end of the mode chirp, whereas the expression given in Ref.[3] predicts strong stabilization

of the mode due to the α effect. In the latter case the contribution from fast ions to Q [8]

has to be invoked to account for the mode existence in experiments. We note however that

recent studies show good agreement between NOVA simulated RSAE eigenfrequencies and

experimental measurements [16]. More detailed studies to separate the ideal MHD and fast

ion contributions to Q should be done in the future.

IV. IMPLICATIONS FOR MHD SPECTROSCOPY

In the past it was shown that the RSAE frequency can be used as an accurate diagnostic

of qmin [8]. It has recently been argued that the minimum frequency of the RSAE during the

cycle of chirping can also be used to diagnose the plasma pressure [3], where it was stated

that ωmin = csR
−1
0 (2 + q−2) , with cs the sound speed, which in MHD theory is proportional

to the total plasma beta cs ∼ γβpl. With the results obtained in the present paper we

conclude that the minimum frequency is determined not only by the finite plasma pressure
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Figure 4: Predictions for the frequency chirp of RSAE mode versus qmin for variational principle

solution given by Eq.(25) and shown as dashed lines, and dispersion relation from Ref. [3] (solid

curves) for different values of α. Shown as dotted curve at α = 0 is the RSAE frequency, for which

both model give the same mode frequency, which closely follows the continuum. On this plot TAE

frequency at qmin = 1.95 corresponds to ωTAE = 59kHz.

but also by its gradient. Thus the diagnostic application of RSAE theory predictions as

it was postulated in Ref.[3] should work only for plasmas with zero pressure gradient and

needs revision for realistic plasmas.

Without additional information about the pressure gradient it is not possible to make

use of the ωmin for diagnostic purposes. However, such information can be obtained by

measuring the frequency separation between RSAEs at the same m and n numbers but with

different l radial numbers, such as in dispersions Eqs.(15) and (16). For better accuracy

we extend the variational method for fixed p = 2 (see Eq.(21)) by multiplying the ansatz

function by the Hermite polynomials and, thus, constructing the following ansatz

φ0 = e0 exp
[

− (x/δ)2 /2
]

Hl−1 (x/δ) . (26)

Similar to section IIIC we find

L =
e202

l−1 (l − 1)!
√
π

δ

[(

l (l − 1)

2
+

3

4
+ Sw −Q

)

δ2 +
(

Sω + δ4
)

(

l − 1

2

)]

. (27)
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Taking variation of this form with respect to δ we find

6δ4 (2l − 1) + 4δ2

(

Sω −Q+
l (l − 1)

2
+ 3/4

)

− 2Sω (2l − 1) = 0.

Finally the dispersion relation is reduced to the form Sω = δ4, which we rewrite as a quadratic

equation
√

Sω =
Q− Sω − l (l − 1) /2 − 3/4

2l − 1
, (28)

which appropriate solution is

Sω = Q−
√

2
√

2Q+ l2 − l − 1

(

l − 1

2

)

+
3

2

(

l2 − l − 1

6

)

.

The RSAE dispersion, Eq.(28), at l = 1 is the same as Eq.(25) at p = 2 and is plotted as

curve 3 in figures 1 (a) and 3 (a). It shows the best agreement with NOVA computations

over a wide range of plasma parameters.

It is straightforward then to obtain the value of α from expressions (14) and (28) or from

numerical NOVA modeling, when changing l. Then, at a given l and α one can find the

frequency shift from the continuum and deduce it from the experimentally observed RSAE

frequency in order to find the GAM shift and thus the sound speed of the plasma. We note

that with the theory we present this diagnostic application can be done only for ω > ωmin

as it breaks down for ω = ωmin due to k0 = 0.

V. DISCUSSION AND CONCLUSIONS

We have shown both analytically and numerically that the pressure gradient is responsible

for an upshift of the RSAE frequency (at fixed qmin) in the low frequency range of the chirp.

It is also responsible for the frequency downshift when the mode begins to transition to

the TAE gap, i.e. near the top of RSAE frequency range (this is qualitatively similar to

prediction made in Ref. [9]). These results confirm the numerical findings of Ref. [1] and

analytical insight on the role of pressure gradient first obtained in Ref. [2]. We also showed

that in realistic plasma conditions the pressure gradient can play a dominant role for the

existence of the RSAEs. This is due to the pressure gradient contribution to the Shafranov

shift and due to the averaged magnetic field line curvature effect. As an ingredient of ωmin,

the minimum frequency of the RSAE chirp, the pressure gradient effect can compete with

the finite pressure effect pointed out in Ref. [3] (see also Ref.[10]).
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We have improved the analytical dispersion relation by applying the variational principle

technique to the RSAE eigenmode equation. The obtained eigenfrequency and RSAE mode

structure are in a good agreement with NOVA over a wide range of plasma parameters,

even beyond the tokamak ordering of low beta. With this new variational principle disper-

sion relation we clearly demonstrate the diagnostic potential and limitations of the RSAE

frequency measurement for MHD spectroscopy.

Realistic simulations should be performed with numerical tools as the continuum itself

is strongly affected by the pressure gradient. For investigation of experimental results as

well as the verification and validation of analytical theories it seems critical to make use of

established, validated, and widely available codes such as MISHKA [17], CASTOR [18], and

NOVA [4, 5]. Application of such codes should help to distinguish the role of ideal MHD

effects from fast ion effects in driving and/or creating conditions for the existence of RSAEs.
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Appendix A: EQUILIBRIUM GEOMETRY AND MODEL PLASMA PROFILES

The analytical derivations are performed in a low-β plasma equilibrium [11,

19]. The magnitude of the equilibrium magnetic field is given by B =

B0 (1 − β (r) /2 − (r2 − 2a2) /2q2R2
0) /R, where B0 is the vacuum magnetic field at the

plasma axis and we assume that the magnetic shear is low at the point of interest. We

also note that g = BϕR = B0 (1 − β (r) /2 − (r2 − a2) /q2R2
0), where β is the ratio of the

plasma pressure to the magnetic field pressure.

The flux function ψ depends on the minor radius only and is related to the minor ra-

dius according to ψ′ = gε/q. The Shafranov shift corresponding to the pressure profiles,

Eqs.(B2,B3), is calculated in Appendix B, for which to be valid one has to assume the
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so-called tokamak ordering, α = O (ε) and β = O (ε2). We will show that for higher

beta the numerical solution of MHD equations is required. For the low-β plasma and

equal arc poloidal angle it was found [11] that the Jacobian is J = ([∇r ×∇θ] · ∇ϕ)−1 =

rR0 (1 + (ε− ∆′) cos θ), and ∇r · ∇r = 1 + 2∆′ cos θ, ∇r · ∇θ = ∆′r−1 sin θ, ∇θ · ∇θ = r−2,

∇ϕ · ∇ϕ = R−2 = R−2
0 (1 − 2ε cos θ). We note the following useful relations

B ×∇ψ
B2

· ∇ =
g2ε

J qB2

∂

∂θ
, (A1)

∇ψ · ∇
|∇ψ| |∇r| =

∂

∂r
− sin θ (∆′ + r∆′′ + ε)

r

∂

∂θ
, (A2)

B · ∇ =
gε

J
∂‖ ≡

gε

Jq

(

q
∂

∂ζ
+

∂

∂θ

)

. (A3)

Note, that operating on the perturbed quantities, (Eq.(8)), we define the parallel wavevector

through

(

e−i(mθ+jθ−nζ)∂‖φje
i(mθ+jθ−nζ)

)

= ikjφj = i (m+ j − nq)φj/q = i (k0 + j/q)φj . (A4)

Local negative shear, S, is introduced through the following expression

|∇ψ|2 S ≡ (B×∇ψ) · ∇ × B ×∇ψ
|∇ψ|2

=
|∇r|3 g2

R3q
[−s+ (r∆′′ + ∆′ + ε) cos θ] , (A5)

where s = rq′/q. Equilibrium plasma current is included in the equation in the following

combination

BJ‖−|∇ψ|2 S = −R−2∇g ·∇ψ+g∇
(

R−2∇ψ
)

−|∇ψ|2 S =
2g2

R3
0q

(1 + (∆′ − 3ε) cos θ) (A6)

Curvature components are given via:

kψ ≡ 2∇ψ · k = B−2∇ψ · ∇ (2P +B2) ,

ks ≡ 2B−2 (B ×∇ψ) · k = B−4 (B ×∇ψ) · ∇B2.

Using the tokamak ordering we find

kψ = 2εg (1 + 2∆′ cos θ) q−1R−1
[

∆′ − cos θ − ε
q2

− ∆′ sin2 θ
]

,

ks = 2g2εr sin θ/B2J qR.
(A7)
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Appendix B: SHAFRANOV SHIFT FOR NON-CONSTANT CURRENT DEN-

SITY PROFILE

We define the plasma safety factor profile in the form

q = q(r) = qmin/
(

1 − (r − r0)
2 /w2

)

, (B1)

where qmin is the minimum of the safety factor at r = r0, r is the square root of the

normalized toroidal flux, and w is the characteristic width. Two different pressure profile

will be used, linear:

β = β0 (1 − r/a) , (B2)

and parabolic:

β = β0

(

1 − (r/a)2
)

. (B3)

Equation for the Shafranov shift, defined through R = R0 − ∆ + r cos θ, is:

d

dr

(

rB2
θ∆

′
)

=
r

R0

(

−B2
ϕr
dβ

dr
+B2

θ

)

, (B4)

where ∆′ ≡ d∆/dr, R0 is the magnetic axis radius. Integrating Eq.(B4) from the center to

r, we find:

∆′ =
R0q

2

r

(

r−2

∫ r

0

βdr2 − β

)

+
q2

R0r3

(
∫ r

0

r3

q2
dr

)

. (B5)

It also follows from Eq.(B4) that to the lowest order in ε

3∆′ + r∆′′ = ε+ α. (B6)

For a constant pressure profile the first term in Eq.(B5) is zero and we obtain in the vicinity

of r = r0:

∆′
0 ≡

q2

R0r3

(
∫ r

0

r3

q2
dr

)

≃ r

4R0
−
(

2r0
15

− r

10

)

r2
0

w2R0
,

where we neglected terms with small coefficients to simplify the analytical treatment, which

may change the result by ∼ 1%. In the limit of a flat current profile, i.e. w → ∞, the above

expression is reduced to well known limit ∆′
0 = r/4R0. For a linear pressure profile using

using Eq.(B2), we find

∆′ =
R0q

2
0

3a
β0 + ∆′

0 =
α

3
+ ∆′

0, (B7)

where α ≡ −R0q
2β ′. For a parabolic pressure profile, Eq.(B3), we find

∆′ =
R2

0q
2
0

2a2
β0ε+ ∆′

0 =
α

4
+ ∆′

0. (B8)
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We note that O (β) = εO (α) and that for a linear pressure profile α = const , whereas for

a parabolic profile α ∼ r.
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