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A new method for correcting magnetic field errors in the ITER tokamak is developed using
the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving
islands is shown to be localized to the outboard midplane for three ITER equilibria that represent
the projected range of operational scenarios. The coupling matrices between the poloidal harmonics
of the external magnetic perturbations and the resonant fields on the rational surfaces that drive
islands are combined for different equilibria and used to determine an ordered list of the dominant
errors in the external magnetic field. It is found that efficient and robust error field correction is
possible with a fixed setting of the correction currents relative to the currents in the main coils
across the range of ITER operating scenarios that was considered.

I. INTRODUCTION

Tokamaks are highly sensitive to magnetic perturba-
tions that break toroidal symmetry [1–4]. Such pertur-
bations always exist due to imperfections in magnetic
field coils or the presence of magnetic materials. Locked
modes arise in tokamaks when the external perturb-
ing field has a sufficient amplitude to overcome plasma
shielding effects. Magnetic islands can then abruptly
open on the rational magnetic surfaces ψ = ψmn, where
the safety factor q(ψmn) = m/n with m a poloidal and
n a toroidal mode number of a Fourier component of
the magnetic perturbation. Locking can occur with per-
turbations as small as |δ ~B|/| ~B| ≈ 10−4 and can lead to
the destruction of the plasma equilibrium, called a dis-
ruption. Since locked modes are a direct consequence of
asymmetric magnetic fields, success in error field correc-
tion is often measured by the mitigation of locked modes.

In principle it would be better to eliminate any mag-
netic field error that breaks the toroidal symmetry, but
in practice only parts of the intrinsic error field can be
eliminated directly. Currents in a limited set of error field
correction coils can be used to remove the dominant spa-
tial distributions of the error field on the plasma bound-
ary. In other words, not all magnetic field distributions
that break the toroidal symmetry are equally important
in producing locked modes, and the dominant one can be
removed by currents in an appropriate set of error field
correction coils.

The sensitivity of plasmas to symmetry breaking mag-
netic fields has been studied in the limit of a cylindrical
plasma [5, 6], and this theory has been the basis of a
number of experiments [4, 7–12]. A cylindrical, unlike
a toroidal, plasma has no coupling between the poloidal
harmonics m. To address the mode coupling that arises
in a torus, the three mode coupling method has been
developed [8, 13], but even the coupling of three modes
(m,m±1) does not explain the behavior of a locked mode
at the rational surface q = m/n in a tokamak [14].

A salient feature of mode locking in tokamaks is that

the external field that drives islands is highly localized
near the outboard midplane [14]. This localization gives
a strong coupling of the various poloidal Fourier modes
of the perturbation but actually simplifies the design of
appropriate error field correction coils. The localization
is sufficiently robust that a set of error field correction
coils with settings fixed to the currents in the primary
coils can correct the dominant field errors over a large
range of plasma equilibria.

The resonant magnetic field that drives an island on
a rational surface q = m/n comes not only from exter-
nal currents that break the toroidal symmetry but also
from the perturbed plasma current that arises from the
distortion in the path of the currents associated with
the plasma equilibrium. In other words, the determi-
nation of the resonant field that arises in response to
a given external magnetic field error requires the cal-
culation of the perturbed plasma equilibrium, ~∇δp =
~j × δ ~B + δ~j × ~B. An equilibrium with the magnetic
surfaces perturbed by a distance ~ξ, while preserving the
safety factor q(ψ) and pressure p(ψ) profiles, is found
by letting δ~j = (~∇ × δ ~B)/µ0, δ ~B = ~∇ × (~ξ × ~B) and
δp = −~ξ · ~∇P − γP (~∇ · ~ξ).

This description of perturbations is used in ideal
magnetohydrodynamics (MHD) stability codes such as
DCON [15]. The Ideal Perturbed Equilibrium Code
(IPEC) [16] augments the DCON and VACUUM [17]
code by finding the externally produced field normal
to plasma boundary, δ ~Bx

j · n̂b that is associated with
the jth field perturbation δ ~Bj(~x) and the displacement
~ξj(~x), which satisfy the perturbed equilibrium equations.
DCON finds a set of δ ~Bj(~x), 1 ≤ j ≤ M , that can
describe all the perturbations for each toroidal mode n
within the range of retained poloidal mode number M .
This set is essentially the set of eigenmodes minimizing
plasma potential energy δWp(~ξ). Here one must distin-
guish between the external field, δ ~Bx, produced by ex-
ternal coils and the total field, δ ~B, produced by currents
both in the plasma and external coils. If the actual exter-
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nal field δ ~Bx · n̂b is expanded as δ ~Bx · n̂b =
∑

j cjδ ~Bx
j · n̂b

then the actual field and displacement are δ ~B(~x) =∑
j cjδ ~Bj(~x) and ~ξ(~x) =

∑
j cj

~ξj(~x). In other words,
given the normal magnetic field on the plasma boundary
due to currents external to the plasma, δ ~Bx · n̂b, IPEC
finds the perturbed magnetic field due to both plasma
and external currents δ ~B(~x) throughout the plasma vol-
ume.

When a plasma is perturbed in a way that preserves
the q(ψ) profile, as in ideal MHD, surface currents must
arise on the rational surfaces q = m/n to prevent islands
from opening, for islands would change the q profile. The
constraint of no islands implies that the Fourier compo-
nent (δ ~B · ~∇ψ/ ~B · ~∇ϕ)mn in magnetic angles must vanish,
where ϕ is the toroidal angle. The surface current that
arises on the rational surface q = m/n to ensure that this
Fourier component vanishes produces a discontinuity in
the perturbed tangential field across the rational surface.
Since ~∇ · δ ~B = 0, this discontinuity can be measured by
the dimensionless quantity [18]

∆mn ≡
[

∂

∂ψ

δ ~B · ~∇ψ

~B · ~∇ϕ

]

mn

, (1)

where ψ is the poloidal flux and (θ, ϕ) are magnetic an-
gles. The [· · · ]mn denotes the jump in the resonant com-
ponent. The surface current associated with the discon-
tinuity in the tangential field is

~jsmn = i
∆mnmei(mθ−nϕ)

µ0n2(
∮

dSB2/|~∇ψ|3)
δ(ψ − ψmn) ~B. (2)

The surface current ~jsmn of ideal MHD produces a res-
onant normal field, denoted by −(δ ~B · n̂)mn. This field
would form a magnetic island if the singular current were
dissipated and is a critical measure of the drive for mode
locking and of the magnitude of the toroidal torque that
the perturbation can produce [19]. The total resonant
field (δ ~B · n̂)mn is generally very different from that pro-
duced by the currents external to the plasma alone, or
the external (vacuum) resonant field, (δ ~Bx·n̂)mn. For the
dominant error fields, the distorted path of the plasma
equilibrium currents is a larger contributor to (δ ~B · n̂)mn

than the direct effect of the currents external to the
plasma.

The present design of ITER has a set of slow coils for
error field correction. Such coils are most effective if a
fixed setting of the currents in the correction coils relative
to the currents in the main coils suffices over the expected
range [20] of ITER pressure and current profiles, Fig. 1.
This paper explains how correction coils can be chosen
to have this property.
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FIG. 1: (a) Flux surfaces of the equilibrium in the ITER hy-
brid scenario (Scen3a-bn22) and (b) q profiles of the equilib-
ria of the inductive (Scen2-bn18, red), hybrid (Scen3a-bn22,
green) and advanced (Scen4-bn23, blue) scenarios. The ‘bn’
denotes a βn value.

II. RELATIVE IMPORTANCE OF ERROR
FIELDS

Magnetic fields produced by currents external to the
plasma boundary can be characterized by the spatial dis-
tribution of normal magnetic field they produce on the
plasma boundary. For a given plasma equilibrium, IPEC
together with Singular Value Decomposition (SVD) can
be used to find the unique normalized spatial distribu-
tion of external normal field that dominantly drives the
total resonant field (δ ~B ·n̂)mn, in other words, maximizes
the (δ ~B · n̂)mn at a particular rational surface for a given∮

(δ ~Bx·n̂)2da on the plasma boundary. The procedure for
doing this is explained in this section. When this is done,
one finds this unique distribution of external normal field
is almost the same (1) for all the rational surfaces with a
given toroidal mode number n and (2) for essentially all
plasma equilibria.

The implication of the dominant distribution of exter-
nal normal field of given n being almost independent of
the rational surface and the equilibrium being considered
is that a global error field correction is possible. Given
a collection of equilibria and a set of rational surfaces,
SVD methods can determine a set of normal magnetic
field distributions on a control surface that are ordered
by the efficiency with which they drive (δ ~B ·n̂)mn’s at the
rational surfaces. By designing error field control coils to
null the dominant external magnetic perturbations, one
can greatly reduce the sensitivity of a tokamak to field er-
rors with a simple coil set that has fixed currents relative
to the currents in the primary field coils. This procedure
for designing such coils and quantifying their benefits will
be given in the next section.

An externally produced error field can be decomposed
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FIG. 2: The up-down symmetric part of the dominant exter-
nal field relative to the plasma boundary of the three equi-
libria for (a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4 toroidal
harmonics. Note the localization of the first mode driving the
total resonant field.

on the plasma boundary as

(δ ~Bx · n̂b)(θ, ϕ) = Re

(∑
m

Φx
mnw(θ)ei(mθ−nϕ)

)
, (3)

for each toroidal harmonic n. Here n̂b is the unit vector
normal to the plasma boundary and the weight function
w(θ) = 1/|J ~∇ψ| with J (θ) the Jacobian of (ψ, θ, ϕ) co-
ordinates. The Fourier expansion coefficients Φx

m, which
have units of magnetic flux, constitute a matrix vector
~Φx for each toroidal mode number n. By finding the per-
turbed equilibrium given by each Fourier component Φx

m,
one can obtain the total resonant field at each rational
surface (δ ~B · n̂)mn. This set of Fourier coefficients can
also be represented as a matrix vector ~B, which is related
to the flux matrix vector by

~B = C↔ · ~Φx. (4)

The coupling matrix C↔ has dimensions R × M ,where
R is the number of rational surfaces included and M is
the number of retained poloidal harmonics of the external

(a) The first n=1 modes

    

-4

-2

0

2

4

Z
(m

)

(b) The first n=2 modes

    

 

 

 

 

 

(c) The first n=3 modes

4 6 8 10
R(m)

-4

-2

0

2

4

Z
(m

)

(d) The first n=4 modes

4 6 8 10
R(m)

 

 

 

 

 

Anti-symmetric mode
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FIG. 3: The up-down anti-symmetric part of the dominant
external field relative to the plasma boundary of the three
equilibria for (a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4 toroidal
harmonics. Also note the localization of the first mode driving
the total resonant field.

error field on the boundary. If only one rational surface is
retained R = 1, then an SVD analysis of Eq. (4) gives the
unique distribution of external normal field on the plasma
boundary that drives an island on the rational surface.
Other normal field distributions on the plasma boundary
have no effect on islands at that rational surface in a
linear perturbation analysis.

When Eq. (4) is used to find the distribution of normal
magnetic field that drives the island at a particular ratio-
nal surface, one obtains a very similar answer regardless
of which rational surface is considered–at least for ra-
tional surfaces ψmn that are further from the edge than
ψmn/ψtotal < 0.9. The total resonant fields (δ ~B · n̂)mn

near the edge have small influence on the bulk of the
plasma, so are neglected here. If ~B includes all R ratio-
nal surfaces that lie in the region ψmn/ψtotal < 0.9, then
an SVD analysis gives R distributions of external normal
magnetic field on the plasma surface ranked by their ef-
fectiveness in coupling through the plasma to drive mag-
netic islands at all the rational surfaces in the region,
ψmn/ψtotal < 0.9. In the conventional treatment for lock-
ing, a particular rational surface such as q = 2 is typically
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FIG. 4: Coupling spectrum between the resonant field on ra-
tional surfaces and poloidal harmonics m of the dominant ex-
ternal field on the plasma boundary for three equilibria and
for (a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4 toroidal har-
monics. The poloidal harmonics are decomposed in Hamada
coordinates [21].

considered based on experimental observations. This is
true if plasma has monotonically increasing q-profile with
q > 1, then lowest shear in q = 2 makes the surface more
vulnerable even with the same amount of (δ ~B · n̂)mn.
However, including many rational surfaces enables one
to estimate error field effects in a more conservative way.
Plasmas that represent the three operating scenarios of
ITER are somewhat different from conventional plasmas
since they are heavily optimized for better confinement.
Moreover, the dominant mode for all rational surfaces is
almost the same as the dominant mode for one particular
rational surface in ψmn/ψtotal < 0.9.

Each of the R external field distributions that are an-
alyzed with the R rational surface can be defined as a
ith mode of external normal magnetic field. Each is
a mixture of poloidal harmonics and is very different
from what is expected in cylinder because of the strong
poloidal coupling [14]. Each of these distributions of the
externally produced magnetic field can be described as
δ ~Bx · n̂b = C(θ) cos(nφ) ± S(θ) sin(nφ), where φ is the
cylindrical toroidal angle, not the magnetic angle ϕ. The

spatial structure of external error field corresponding to
each mode can be described by plotting a curve that de-
viates from the plasma boundary by an amount propor-
tional to the up-down symmetric part C(θ) and the anti-
symmetric part S(θ).

The C(θ) of the dominant external field error is plotted
in Fig. 2 and the S(θ) in Fig 3, for three representative
ITER equilibria with the toroidal mode numbers n be-
tween 1 and 4. The localization of the dominant external
field error near the outboard midplane is similar for the
three equilibria though some distinctions can be seen in
the Fourier decompositions, Fig. 4. The broad coupling
spectra over high poloidal harmonics in Fourier space cor-
respond to the highly localized feature in real space as
explained in Appendix. The highly localized feature im-
plies that a set of control coils located near the outboard
section can control the dominant mode effectively and in-
dependently of the equilibria provided the plasma bound-
ary is not markedly changed. In fact, this robustness of
the dominant mode has been found in other tokamaks
such as NSTX and DIII-D, and verified in plasma lock-
ing experiments [14]. In practice, locking can be easily
mitigated with the coils located at the outboard midplane
and slightly off-midplane, which can compensate most ef-
ficiently any part of intrinsic error field overlapped with
the C(θ) and S(θ) of the dominant mode.

The three equilibria used to construct Figures 2 and 3
are defined by the three operating scenarios being con-
sidered for ITER: the inductive, the hybrid and the ad-
vanced scenario, which are designated as scenario 2, 3a
and 4, respectively in Reference [20]. Fig. 1 shows (a) the
flux surfaces of an equilibrium in the hybrid scenario and
(b) the three different q profiles of these scenarios. The
equilibrium in the inductive scenario has three q = 1 sur-
faces, and the equilibrium in the advanced scenario has
two q = 3 surfaces but no q = 2 surface. Each of these
equilibria can be modified by adding a scale factor to the
plasma pressure or current profile. IPEC found that the
dominant external field error has a spatial distribution
that is weakly dependent on such scaling factors. How-
ever, the relative scaling between the external field and
the resonant field on each rational surface is dependent
on the closeness of the equilibrium to the no-wall stabil-
ity limit. This sensitivity of the relative scaling to the
plasma pressure can be parameterized by the normalized
beta, βn ≡ 〈βt〉p/aBt0, where βt is the toroidal β, Ip

is the plasma current, a is the minor radius, and Bt0 is
the toroidal field at the magnetic axis. In Fig. 2, the
normalized beta was chosen so βn = 1.8, 2.2, and 2.3 for
the inductive, the hybrid, and the advanced scenario re-
spectively. With this choice each equilibrium is stable
without a conducting wall, and a comparable energy is
required to drive the least stable perturbation.
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FIG. 5: Singular values of the first five modes (the first col-
umn) and the external field of the first three modes (red) of
the combined coupling matrix between the resonant field and
the external field on a control surface, for (a) n = 1 (b) n = 2
(c) n = 3 (d) n = 4 toroidal harmonics. Only the C(θ) part
is shown. The importance of the first mode can be seen from
the singular values, which give the average number of Gauss
of resonant field on the resonant rational surfaces when the
the external flux of the perturbation |(δ ~Bx ·n̂b)mn| = 1 Gauss.
Note that the lower toroidal modes have the larger singular
values.

III. GLOBAL CONTROL OF ITER ERROR
FIELDS

As discussed in Sec. II, the dominant distribution, or
the first mode for the external magnetic field error, can
be used to mitigate field errors for each scenario. How-
ever, the present design for ITER would require a fixed
setting of the current in the correction coils, which has
to be effective to minimize the first mode in all probable
equilibria in ITER. This global control concept can be
designed by combining each coupling matrix C↔, and the
fact that the first mode is almost independent of the op-
erating scenario makes the global control more effective.

The dominant external field errors in ITER are defined
by finding the combined coupling matrix C↔ that relates
the Fourier coefficients of the external normal field on
a control surface and the resonant field on the rational
surfaces of the three equilibria that represent the three
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FIG. 6: The total resonant field (δ ~B · n̂)mn on all the rational
surfaces in the three ITER equilibria, by each mode having
1 Gauss amplitude in maximum for (a) n = 1 (b) n = 2 (c)
n = 3 (d) n = 4 toroidal harmonics.

ITER scenarios. Figure 3 gives the results of the SVD
analysis of this combined coupling matrix for n = 1 to 4.
Here only the symmetric part C(θ) is shown since S(θ)
is approximated by the derivative of C(θ). The singular
values, which are in the left column of Fig. 4, gives the
average number of Gauss of resonant field on the rational
surfaces when the the external field of the perturbation
|(δ ~Bx · n̂b)mn| = 1 Gauss. For the n = 1 and the n = 2
cases, the largest singular value is 5 to 10 times larger
than the next to the largest. A set of coils that can
null just the error field to which the plasmas are most
sensitive, the dominant n = 1 mode already has a large
effect. Higher order modes are more difficult to control–
both due to their more rapid spatial variation and due
to their greater sensitivity to the details of the plasma
equilibrium, but their small singular values indicate the
insignificance of the higher modes.

To illustrate the benefits of a global error field correc-
tion, the total resonant field (δ ~B · n̂)mn at all rational
surfaces of three equilibria are investigated when each
ith external field is separately applied, for each toroidal
mode number n. Each mode is assumed to have the am-
plitude of 1 Gauss at its maximum. Figure 6 shows all
the total resonant field (δ ~B · n̂)mn included in three equi-
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libria when applying each of the first five ith modes with
1 Gauss amplitude at its maximum on the boundary. In
total, 14, 26, 39 and 52 rational surfaces and (δ ~B · n̂)mn

are estimated for each mode, for n = 1, 2, 3 and 4, re-
spectively. This figure shows that (δ ~B · n̂)mn’s become
negligible quickly when the rank of the mode increases,
even from the second mode for n = 1 and 2. For higher n,
the second mode remains comparable to the first mode,
but overall (δ ~B · n̂)mn’s become smaller. So one can de-
termine what is the largest (δ ~B · n̂)mn that should be
minimized at first, from Fig. 6. In this example, one can
find the maximal (δ ~B · n̂)mn ∼ 0.85 Gauss by the first
n = 1 mode in (a). The large (δ ~B · n̂)mn in this calcu-
lation is typically at a rational surface having positive q
shear in the core region, that is, q = 3 in the advanced
scenario and q = 2 in the inductive and hybrid scenario.

The results can be placed in perspective by consider-
ing that a locked mode might occur when (δ ~B · n̂)mn ∼
10 Gauss ne(1019m−3) with the electron density ne. The
linear scaling with density has been found in many toka-
maks [9–11], and the 10 Gauss factor is based on a recent
study relating the total resonant field and mode lock-
ing in DIII-D [14]. Other parameters for scaling are ne-
glected here since they are not yet systematically studied
in terms of the total resonant field (δ ~B · n̂)mn. When
ne = 1019m−3, the external field at the outboard mid-
plane should be reduced below 10/0.85 ∼ 12 Gauss for
n = 1, 10/0.55 ∼ 18 Gauss for n = 2, where 0.85 and 0.55
is the highest (δ ~B · n̂)mn driven by the 1Gauss n = 1
and n = 2 mode at its maximum, respectively. The max-
imum occurs at the outboard midplane for the C(θ) of
the first mode. This is somewhat conservative since lock-
ing density has been expected to have roughly a linear R,
major radius, scaling. The detailed locking scaling using
(δ ~B · n̂)mn in different machines is required to produce
more precise estimates.

The tolerance for each mode can be defined as the max-
imal allowed external field at its maximum, divided by
the toroidal field at magnetic axis, Bt0 ∼ 5.3T . For
the symmetric part C(θ) of the first mode, this is the
maximal allowed external field at the outboard midplane
divided by Bt0 ∼ 5.3T . With this definition, the toler-
ances are 12/5.3× 10−4 ∼ 2.2× 10−4 for the first n = 1
mode and 18/5.3× 10−4 ∼ 3.6× 10−4 for the first n = 2
mode when ne ∼ 1019m−3, based on the assumed scal-
ing (δ ~B · n̂)mn ∼ 10 Gauss ne(1019m−3). The tolerances
will increase linearly with density. Higher modes will be
difficult to control, but their tolerances are not demand-
ing. Figure 7 shows the tolerances for each mode and for
n = 1 to 4 toroidal harmonics. If the advanced scenario
is not considered, then the expected tolerances are more
optimistic by a factor of 4. Given a set of correction
coils and intrinsic field errors, one can roughly estimate
required currents in correction coils to reduce the ampli-
tude of the first mode at the outboard midplane below
the tolerances. More precise treatment will be investi-
gated by coupling the dominant mode to coil currents

Tolerance

1 2 3 4 5
Mode

10-4

10-3.5

10-3

10-2.5

10-2

M
ax

(δ
B

x )/
B

t0

FIG. 7: Tolerances in a log scale, defined as the maximal
allowed external field at the outboard midplane divided by the
toroidal field at magnetic axis, Bt0 ∼ 5.3T , to avoid locking
for n = 1 (black), n = 2 (red), n = 3 (blue) and n = 4 (light
blue) toroidal harmonics.

when coils and errors are specified.

IV. SUMMARY

The IPEC code shows that the effects of external mag-
netic field errors in ITER can be mitigated by error cor-
rection coils that have currents that are fixed to the cur-
rents in the basic coil set. The basic method is to iden-
tify the distributions of external normal magnetic field
to which ITER is most sensitive in any of its planned
operating scenarios. The use of correction coils that can
ensure that the three most dominant field distributions
has no external drive would greatly reduce the sensitivity
of ITER to error fields. This is illustrated by the size of
of the singular values in Fig. 5 (a) and maximal allowed
field in Fig. 7. These distributions are large near the
outboard midplane, so error field correction coils should
be installed in that region to efficiently produce a com-
pensating external field.
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APPENDIX: LOCALIZATION OF THE
DOMINANT EXTERNAL FIELD

The localization of the dominant mode, or the first
mode, corresponds to a broad poloidal harmonic coupling
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in toroidal plasmas. Although the dominant mode is de-
scribed by the external normal magnetic field (δ ~Bx · n̂b)
in the paper, here the corresponding total normal mag-
netic field (δ ~B · n̂b) will be considered first. The IPEC
computation shows that the plasma is highly perturbed
when the total field on the plasma boundary (δ ~B ·n̂b) has
a large amplitude in a Fourier component (mb, n) corre-
sponding to an effective safety factor qb = mb/n ∼ qedge.
The qedge is the q value at the plasma boundary, which
can be taken by the well-defined last closed flux surface
inside the separatrix. This is typically ψ/ψmax . 0.99
as in stability calculations, since ideal MHD description
in magnetic coordinates becomes inaccurate beyond this
point. This resonant behavior occurs with other poloidal
Fourier components broadly near mb in toroidal plasmas
due to the strong poloidal coupling. So, the dominant
total field on the plasma boundary is given by

δ ~B · n̂b =
∑

m∼mb±δmb

Amnei(mθ−nϕ), (A.1)

in magnetic coordinates. The phases of Amn have to be
almost equal to avoid cancelations. This implies that
the dominant total field has the cosine factor δ ~B · n̂b ∝∑

mb±δmb
cos(mθ) at ϕ = 0. In a toroidal configuration,

δmb is wide enough for phase mixing except the only one
period mbθ = π at a specific location, which is the out-
board midplane when ϕ = 0. Therefore, if one observes
the resulting distribution on a poloidal plane at a fixed
polar toroidal angle φ, the characteristic width can be
defined by

Wc =
∫ π/2mb

−π/2mb

dθ
BP

~B · ~∇θ
, (A.2)

where BP is the poloidal field. The equation shows that
the width Wc is primarily a function of mb or qb = mb/n,
and other geometric parameters.

The width Wc can be evaluated on Hamada coordi-
nates [21] with ψ = V , where V is the enclosed volume,
J = (2π)−2 as

Wc =
∫ π/2mb

−π/2mb

dθ
|~∇V |
4π2R

, (A.3)

since BP = |~∇V |/R and ~B·~∇θ = 1/J , where R is the dis-
tance from the toroidal axis. A simple elongated plasma

with a Shafranov shift ∆s has the volume approximately
as

V (r, η) ∼= 2π2r2R0κ

(1−∆scosη)2(1 + (κ2 − 1)sin2η)
, (A.4)

where κ is the elongation, ∆s is the Shafranov shift nor-
malized by r and (r, η) are the polar coordinates from
the magnetic axis R = R0. Since η is a small parameter
in the outboard region, |~∇V | is approximately

|~∇V | ∼=
∣∣∣∣
dV

dr

∣∣∣∣ =
4π2rR0κ

(1−∆s)2
. (A.5)

Since R ≈ R0 and r ≈ a when θ is small, Eq. (A.3) with
(A.5) gives

Wc ≈ πaκ

mb(1 + ε)(1−∆s)2
, (A.6)

where ε is the inverse aspect ratio. Using a simple scaling
∆s ≈ ε, it is rewritten as

Wc ≈ πaκ

mb(1− ε2)(1− ε)
. (A.7)

The external field that produces the near-resonant
components of the total field has typically higher Fourier
components mx

b
∼= mb + δx due to different propaga-

tions [14, 16]. The shift and broad coupling of Hamada
poloidal harmonics around a high mx

b can be seen in Fig.
3. Using the shift in Hamada coordinates, the character-
istic width of the external field is given by

W x
c ≈

πaκ

mx
b (1− ε2)(1− ε)

. (A.8)

This is a good approximation when the mx
b is sufficiently

high. For instance, the first mode of scenario 4 for (a) n =
1 has the peak at mx

b = 9 which is shifted by δx ≈ 3 from
mb = qbn ≈ 6. Since the ITER equilibrium typically has
a ≈ 2.0m, κ ≈ 1.8 and ε ≈ 0.3, so Eq. A.8 estimates
the width by 2m, as can be roughly read in Fig. 2. The
decrease of the width for higher qb and n can be also seen
in Fig. 2.
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