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Mode conversion of Langmuir to electromagnetic waves with parallel inhomogeneity

in the solar wind and the corona
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(Dated: June 3, 2008)

Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density
gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments,
laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plas-
mas using a numerical electron fluid simulation code with the density gradient parallel to the ambient
magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o-

and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) . 1, contrary to previous ideas. Only o
mode is produced for Ω & 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular
wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized
limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window
narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to
circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The con-
version efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion
efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z
modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation
is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group
speeds for each mode and are of order 50 − 70%. (7) The interference effect and the disappear-
ance of the x mode at Ω & 1 can be accounted for semiquantitatively using a WKB-like analysis.
(8) Constraints on density turbulence are developed for the x mode to be generated and be able
to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1
AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar
and interplanetary radio bursts. It is therefore possible that linear mode conversion under these
conditions might explain the weak total circular polarizations of type II and III solar radio bursts.

PACS numbers: 52.25.Os, 52.35.Hr, 52.35.Fp, 96.60.Tf

I. INTRODUCTION

Standard linear analyses of dispersion equations for ho-
mogeneous plasmas yield wave modes that are uncoupled
and distinct. However, in inhomogeneous plasmas the
wave modes are often coupled to each other. For some
range of frequencies and angles of propagation, the en-
ergy then can be transformed linearly from one mode
to another with constant frequency via processes called
linear mode conversion (LMC) [1].

Magnetoionic theory describes the free-space electro-
magnetic (EM) ordinary (o) and extraordinary (x) modes
with opposite circular polarizations, the mixed Langmuir
and z modes (termed the Langmuir/z mode below), and
the whistler mode. The restricted ranges of wavevector
and frequencies for which LMC can proceed are termed
“radio windows ” [2, 3]. Two are widely discussed for the
o and Langmuir/z modes. The first radio window is for
Langmuir/z waves with frequency just above the local
plasma frequency (fp) and wave vectors close to parallel
to the ambient magnetic field (B0) direction. The second
involves wavevectors almost perpendicular to B0 and fre-
quencies close to the upper hybrid frequency (fuh). This
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paper concentrates on the first radio window for conver-
sion of Langmuir/z waves into radio emission, expanding
in detail on a recent demonstration [4] that both o and
x-mode radiation can be produced. A similar but inverse
mechanism may also partially convert incoming o-mode
and x-mode waves into Langmuir waves [2, 3].

Mode conversion from Langmuir/z waves into EM ra-
diation is illustrated in Figure 1 for both unmagnetized
and magnetized plasmas. In unmagnetized plasmas,
when a Langmuir wave propagates in the direction of
increasing plasma density, it can reach a critical point
(Zmc) where the wave frequency is equal to fp. Near
this mode conversion point the wave is partially reflected
by the density profile and partially converted into EM
waves.

The problem becomes significantly more complex in
magnetized plasmas. When Langmuir/z waves propa-
gate up or down a longitudinal density gradient, they
encounter Zmc. They also encounter the points where
the cutoffs of the o (Zo

cut) and x modes (Zx
cut) occur, lo-

cated on the underdense side and lower down the density
gradient than Zmc, whereas the z-mode cutoff (Zz

cut) oc-
curs on the overdense side higher up the density gradient
than Zmc. A Langmuir/z-mode wave can propagate from
the low density region through Zmc, turn back at Zz

cut,
and then propagate back toward the lower density region.
In principle LMC can occur partially on both the way in
and the way out. The converted EM energy is then ex-
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pected to propagate independently in the o and x modes
out of the coupling region to the underdense side.

LMC from Langmuir/z mode into EM waves is po-
tentially relevant to radiation from foreshock regions up-
stream of Earth’s bowshock [5, 6], type II and III radio
bursts from the solar corona and interplanetary medium
[3, 7], and radiation from the outer heliosphere [8], which
involve the conversion into radio emission near fp and/or
2fp of Langmuir energy extracted from electron beams.
LMC is also believed important in producing auroral roar
emissions [9] and pulsar radiation [10]. LMC of incoming
EM waves into Langmuir/z waves is relevant to heating
of laboratory plasmas [11], ionospheric modification and
radar experiments [12], and laser experiments on surface
plasmon resonance [13].

Nonlinear conversion mechanisms have also been pro-
posed to account for fp and 2fp radiation [3, 14]. For
instance, 2fp radiation in type II and III bursts and from
Earth’s foreshock can be produced by the nonlinear coa-
lescence process L+L′ ↔ T (2fp) [14]. Moreover, nonlin-
ear processes can yield radiation near fp, due to scatter-
ing of Langmuir waves off thermal ions or various three-
way decay and coalescence processes [15]. Early workers
favored nonlinear mechanisms due to the very highly non-
thermal levels of Langmuir waves involved and because
calculations suggested that the efficiency of LMC was in-
adequate. However, subsequent calculations for 1-D lin-
ear density gradients yield (power) conversion efficiencies
ǫ ≈ 50 − 70% in a narrow angular window dependent on
the properties of incoming Langmuir/z waves and density
structures [16–23]. It was found that in magnetized plas-
mas ǫ slightly decreases and the mode conversion window
becomes narrower compared with unmagnetized calcula-
tions [16, 19]. More recently, assuming 2-D and 3-D den-
sity irregularities, Cairns and Willes [25] averaged ǫ over
plausible distributions of the (vector) density gradient
and Langmuir wavevector and showed that the averaged
3-D efficiency is 10−6−10−5 for plausible solar wind and
coronal parameters. These values are similar to the non-
linear conversion efficiencies calculated theoretically and
found to plausibly account for observed type III solar
radio bursts [15, 26]. At present, one major theoretical
issue is thus whether LMC or nonlinear processes dom-
inate in producing solar, interplanetary, foreshock, and
outer heliospheric emissions. Further investigations of
LMC are therefore necessary.

Another unresolved theoretical issue is the partial po-
larization of fp emission in type II and III bursts, which
have degrees of polarization between 0 and 70% and are
never 100% polarized [27] (usually < 10% for type IIs).
The problem is that existing theories for LMC and non-
linear processes predict that fp emission should be 100%
polarized in the sense of the o mode [2, 3, 5, 16, 28].
There are two possibilities for explaining partial polar-
ization of fp: either the lower polarization is intrinsic
to the source region (and so the emission mechanism) or
the radiation is depolarized as a propagation effect. Since
lower intrinsic polarization can occur only if the initial

frequency exceeds the x-mode cutoff frequency (fx
cut), the

previous expectation that LMC and nonlinear processes
would produce only o-mode radiation meant that depo-
larization theories were mainly investigated. These in-
clude mode coupling [29], scattering by low frequency
waves [30, 31], and reflection at density inhomogeneities
[32]. However, Mjølhus [20] showed that an incident x-
mode wave perpendicular to B0 can undergo LMC into
an ES wave and a reflected x-mode wave at ionospheric
density irregularities. Similarly, in laboratory plasmas,
LMC of x mode to ES energy is one method to inject en-
ergy into an overdense plasma [33]. The relevance is that
if LMC can occur from the Langmuir/z mode to both
the x mode and the o mode near fp, then the partial
polarizations of type II and III bursts can potentially be
explained without depolarization theories.

Recently Kim et al. [4] have demonstrated that LMC
can indeed produce x-mode as well as o- mode radiation
from Langmuir/z waves, contrary to earlier expectations
of the o-mode only [2, 3, 5, 16]. They solved the full wave
equations numerically using a fluid simulation code. The
code studies Langmuir/z waves approaching a linear den-
sity gradient from a region with constant density, as well
as the o, x, and Langmuir/z mode waves that leave this
region, extending the approach of Willes and Cairns [21].
Many earlier analyses focused solely on calculating the
total conversion efficiency [18–20, 22, 23], which may be
determined without resorting to a full wave field solu-
tion, or introduced approximate analytic simplifications.
When the waves propagate quasi-parallel to B0 both the
o and x modes have electric components perpendicular
to B0. Thus it is necessary to calculate the full wave field
solution to demonstrate whether outgoing EM waves are
purely o mode or not.

The overall aims of this paper are to demonstrate that
Langmuir/z- mode waves can be converted into x-mode
and o-mode radiation by LMC when the density gradient
L is parallel to B0 and to calculate the mode conversion
efficiency for different angles of propagation, density scale
lengths, and magnetic field strength. This involves ex-
tending and expanding on the work of Ref. [4] using the
same numerical approach. There are multiple subsidiary
aims. First, to show that LMC can be significant and
produce approximately equal amounts of o- and x-mode
waves in the unmagnetized and weakly magnetized limits,
but with only the o mode produced at sufficiently high
magnetization. Second, to show that production of both
o and x radiation should occur for typical solar wind and
coronal parameters, naturally alleviating the depolariza-
tion problem for solar radio bursts. Third, to explore how
the conversion efficiencies into the o and x modes vary
with the properties of the waves and plasma. Fourth, to
show that the oscillations in the o-mode conversion effi-
ciency can be explained semiquantitatively as an inter-
ference phenomenon. Fifth, to calculate the transmission
factor for energy tunneling along various evanescent con-
necting modes in the mode conversion window, so as to
to model semiquantitatively LMC for the o and x modes.
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Sixth, to show that the transmission factors predict that
the x and o modes should have essentially identical con-
version efficiencies under unmagnetized and weakly mag-
netized conditions, with zero x mode at sufficiently high
magnetization. Seventh, to use the transmission factors
to explain semiquantitatively why the x-mode efficiency
decreases monotonically with increasing magnetization
and does not experience interference effects. Eighth, to
predict the net degree of polarization, based on simu-
lations and theoretical transmission factors, as well as
the level of density fluctuations required for the x mode
to propagate. Ninth, to explore possible applications of
LMC to solar radio bursts in the solar wind at 1AU and
the coronal region, finding that the x mode should be
produced under reasonable conditions and that the net
polarization could be consistent with either the o or x
mode depending on the detailed plasma parameters.

This paper is structured as follows: The numerical
simulation code is described in Section II. Section III
contains simulation results such as the dependence of
the electric field and the hodograms on magnetization
and the density gradient. They show direct evidence for
production of both the x and o modes, with efficiencies
that vary with the plasma and inhomogeneity parame-
ters. The mode conversion efficiency ǫ is presented in
Section IV. From the simulation data, we determine the
power of the incoming and reflected Langmuir/z waves
and outgoing EM waves, and calculate the mode conver-
sion efficiency. The dependence of the mode conversion
efficiency on the Langmuir/z wave incidence angle and
the ambient magnetic field strength are also described.
In Section V, the coupling of Langmuir/z waves into EM
waves in an inhomogeneous plasma is calculated numer-
ically using analytic plasma theory. The transmission
factors for the o, x, and evanescent coupling modes are
calculated and discussed, together with the net degree of
polarization of the outgoing EM waves and the level of
density fluctuations required for the x mode to be pro-
duced and propagate from the source. Possible applica-
tions of LMC to solar radio bursts in the solar wind at
1AU and the coronal region are described in some detail
in Section VI. The last section contains a brief discussion
and the conclusions.

II. NUMERICAL MODELING

To investigate LMC between Langmuir and EM waves
in warm magnetized plasmas, we use the numerical fluid
simulation code developed by Kim et al. [4]. It solves
the linearized Maxwell equations, the electron momen-
tum and continuity equations for an electron fluid with

finite mass and thermal pressure, and Ohm’s law:

∇× E = −∂B

∂t
, (1)

∇× B = µ0J +
1

c2

∂E

∂t
, (2)

N0me
∂v

∂t
= −N0e(E + v × B0) − neE0 −∇p, (3)

∂n

∂t
= −N0∇ · v, (4)

J = −N0ev. (5)

Here E, B, v, and J are the perturbed electric and mag-
netic fields, electron velocity, and current density,n and
p are the perturbed electron density and pressure, and
N0, E0, and B0 are the background electron density, and
electric and magnetic fields, respectively. Note that only
linear perturbations are contained in Eqs. (1) - (5). Ac-
cordingly only linear conversion processes are studied and
nonlinear processes are not included.

The plasma is assumed to obey an adiabatic pressure
law with PN−γ =constant, where P and N are the
plasma pressure and density, respectively, and γ is the ra-
tio of specific heats. For small perturbations, P0 = N0T0

and p = γnP0/N0, where T0 and P0 are the background
electron temperature and pressure.The pressure force as-
sociated with the density gradient is balanced by a steady
state ambipolar electric field E0. From the electron mo-
mentum equation, E0 can be calculated as

E0 = −∇P0

N0e
. (6)

In order to solve Eqs. (1) - (5) numerically, the model
of Figure 2 and the following assumptions are adopted:

1. B0 and ∇N0 lie in the Z direction and B0 is con-
stant. We define Xe = f2

p /f2 with

Xe(Z) = X0 for Z ≤ 0 (7)

= X0(1 + Z/L) for Z > 0 . (8)

Here X0 = Xe(0) = f2
p0/f2, L is the dimensionless

density length scale, and f is the wave frequency.
The nominal mode conversion point Zmc is defined
by X(Zmc) = 1 (equivalent to Zo

cut when KX = K).

2. All variables vary as A = A(Z, t) exp(iKXX)
where X , Z, and KX are normalized lengths and
wavenumbers: X = k0x, Z = k0z, KX = kx/k0,
and k0 = 2πf/c = ω/c. Here KX is constant by
Snell’s law and, for simplicity, we assume KY = 0
without loss of generality.

3. Langmuir waves are generated in Region II of Fig-
ure 2 with f and wavevector (KL

X , 0, KL
Z) related

by the dispersion relation in a warm magnetized
plasma.

4. Typical solar wind values for the electron density
(2πfp0 = ωp0 = 2 × 105 s−1) and density scale
length (k0L = 1 × 103) are used.
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5. The temperature dependence on ǫ is very weak. For
instance Figure 1 in Ref [17] showed that reducing
v2

th/c2 from 0.1 to 0.005 changes the peak efficiency
by < 5% and that the maximum difference is less
than 50% for any KX at the same k0L. They also
showed that the cold plasma prediction is essen-
tially equal to the results for v2

th/c2 = 0.005. Thus,
in order to save computing time, we assume that
γv2

th/c2 = 0.01 rather than the more plausible value
of 10−4 − 10−5 for the corona and solar wind.

6. Damping is included in Region I and the leftmost
boundary absorbs all waves.

For k0L ≫ 1 and X0 = 0, ǫ is expected to be primarily a
function of the quantities [17, 19]

q = (k0L)2/3 sin2 θL
in, (9)

Ω = (k0L)1/3
√

Y , (10)

where θL
in is the incidence angle of Langmuir waves,

Y = ωc/ω, and ωc is the electron gyrofrequency. Willes
and Cairns [21] generalized Eq. (9) to X0 6= 0 in the un-
magnetized limit, finding that ǫ is primarily a function
of

q = (k0L)2/3K2
⊥

= (k0L)2/3 Pe

γβ
sin2 θL

in, (11)

where K⊥ is the component of the wavevector perpendic-
ular to B0, Pe = 1 − X0, and β = T0/mec

2. Predictions
for the maximum value of θL

in can be derived as follows,
extending an earlier analysis [21]. The maximum values
of q for mode conversion to the o and x modes are defined
by sin2 θo

out = 1 and sin2 θx
out = 1, where θo

out and θx
out

are angles between B0 and the outgoing o- and x-mode
wavevectors. Under these conditions, the outgoing waves
propagate perpendicular to B0. For small K⊥, the phase
speeds of the o and x modes are much larger than vth,
and the dispersion relations of the o and x modes are
reduced approximately to those for cold plasma theory:

(Ko
⊥)2 ∼= Pe, (12)

(Kx
⊥)2 ∼= ReLe/Se, (13)

where Re = 1 − X0/(1 − Y ), Le = 1 − X0/(1 + Y ),
and Se = (Re +Le)/2. Noting that K⊥ for the incoming
Langmuir/z wave is identical to that for the outgoing EM
wave, Eqs. (11) - (13) impose a maximum angle θL

max be-
tween the Langmuir/z wavevector and B0 for mode con-
version to occur. Specifically, the angles θmax for mode
conversion from Langmuir/z to the o and x modes are
predicted to be

θo
max

∼= sin−1
√

γβ, (14)

θx
max

∼= sin−1

√
γβ

ReLe

SePe
. (15)

The maximum values of q for the o mode and x mode are
also derived from (11) - (13) as

qo
max

∼= (k0L)2/3Pe, (16)

qx
max

∼= (k0L)2/3ReLe/Se. (17)

Figure 3 shows θmax and qmax as a function of Ω for ωp =
2 × 105 s−1, k0L = 1 × 103, γβ = 0.01 and X0 = 0.95.
Since Pe is a constant independent of Ω, θo

max and qo
max

are constant for given constant X0. For the calculated
case θo

max = 5.73◦ and qo
max = 5. However, Kx

⊥ is affected
by B0, so that θx

max and qx
max decrease as Ω increases. If

θL < θx
max (dark shaded region in Figure 3), then both

the o and x modes can be generated, while if θL > θo
max,

then no EM waves are produced by LMC. For θx
max <

θL < θo
max (light shaded region in Figure 3), only the

o mode can be produced from Langmuir/z waves. For
the above parameters, the maximum value of Ω for mode
conversion to the x mode is Ωmax = 2.24, where qx

max = 0
and θx

max = 0.

III. SIMULATIONS: PRODUCTION OF BOTH

THE O AND X MODES

The sizes of each region in Figure 2’s simulation box
are k0lII = 28 for Region II, k0lIII = 104.5 for Region
III, and k0lIV = 218.5 for Region IV. In order to describe
short wavelength Langmuir/z waves as well as long wave-
length EM waves, the spatial grid size dZ is chosen to
be k0dZ = 1/14. The total simulation duration is from
ω0t = 0 to 4×104 and the time step dt = 0.14ω−1

0 . Initial
Langmuir/z waves are generated continuously by driving
the EX and EZ components in Region II of Figure 2
with a wave with specified frequency f and wavevector
(KL

X , 0, KL
Z). Time histories of the electric and magnetic

fields in Region III are then recorded during the sta-
tionary time period, after the initial transients have died
out. In the next subsections, we present the spatial de-
pendence of the electric field and associated hodograms.
The spatial dependence of the electric field shows direct
evidence for LMC from Langmuir/z to EM waves, with
superposition of two different outgoing EM waves for a
wide range of initial conditions, and partial reflection of
the incoming Langmuir/z wave. The hodograms also di-
rectly distinguish the characteristics of the outgoing EM
waves. Indeed, comparing the simulation results to the
theoretical ratios of the semi-major to semi-minor axes of
the wave polarization for the o and x waves allows us to
confirm superposition of two circularly polarized waves
and to estimate the fraction of energy in each mode.

A. Spatial dependence

Figure 4 displays the electric field results for q = 0.5
and (a) Ω = 0.0, (b) Ω = 0.51, and (c) Ω = 2.6. Since we
inject the Langmuir/z mode with KY = 0, in the absence
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of LMC there should be EX and EZ signals correspond-
ing to short wavelength Langmuir/z-mode waves and no
EY signal (since K ‖ E). However, Figure 4 shows strong
evidence for LMC and production of EM waves. Specifi-
cally, EY is not zero for the magnetized case (Ω 6= 0) and
long wavelength signals exist in the EX and EZ compo-
nents in both the unmagnetized (Ω = 0) and magnetized
cases.

Focusing first on the Langmuir/z-mode waves, Figure
4(a)−(c) shows the increased wavelength expected in Re-
gion IV as the waves propagate into the denser region.
Moreover, for the magnetized cases, the polarization of
the Langmuir/z mode changes near Zmc, and between
Zmc and Zz

cut the EX and EY components in Figure 4(c)
show longer wavelength Langmuir/z-mode waves.

Turning to the EM waves, for Ω = 0.51 the EM waves
in Region III show direct evidence for superposition of
two modes. The evidence is that the amplitudes of the
long wavelength EM waves increase in the EX and EZ

components but decrease in the EY component. Since
the plasma density is constant in Region III, there is
no linear energy transfer between different wave modes.
Thus the spatial change of the amplitudes in Figure 4(b)
cannot be due to energy flow but must instead result
from superposition of several waves. However, in Figure
4(a) and (c) for Ω = 0.0 and 2.6, the EM amplitudes
are constant in space, implying either a single EM mode
or else two degenerate EM modes. In these cases the
EX and EZ signals are a mixture of short wavelength
Langmuir/z waves (incoming and reflected) plus a single
EM mode. The hodograms below are consistent with two
degenerate modes for Ω = 0.0 and a single mode (the o
mode) for Ω = 2.6.

B. Hodograms

In order to investigate the characteristics of the outgo-
ing EM waves, in Figure 5(a)-(b) we plot hodograms of
the polarization of the electric field transverse to B0 (i.e.,
EX and EY ) for (a) q = 0.5 and (b) Ω = 0.99, respec-
tively. The hodograms are normalized to the maximum
value in each component so that a circularly polarized
field would appear as a circle. Since the long wavelength
EM modes and short wavelength Langmuir/z waves have
comparable amplitudes in both of EX and EZ , we use
a wavenumber band-pass filter to extract the pure long
wavelength EM waves. Figure 5(a) shows that the EM
waves for Ω = 0.31 are almost purely linearly polarized
and that the polarization changes from linear to ellipti-
cal and then to almost circular as Ω increases: the ratios
b/a of semi-major to semi-minor axes are 0.019, 0.10,
0.67, 0.37, and 0.95 for Ω = 0.51, 0.71, 0.99, 1.2, and
2.6, respectively. The waves have right-handed (RH) po-
larization for Ω < 1 and left-handed (LH) polarization
for Ω > 1. This polarization reversal is discussed below.
We note that the magnetoionic dispersion equation shows
that the o and x modes have LH and RH quasi-circular

polarizations, respectively with b/a ≈ 0.95. Thus the
EM wave for Ω = 2.6 is consistent with the pure o mode,
while the other cases show evidence for both the x mode
and o mode.

If two circularly polarized waves are superposed, then
the resulting signal can have linear or elliptical polar-
ization. In the case of elliptical polarization, the rota-
tion direction corresponds to the mode (RH or LH) that
has higher amplitude. Accordingly the linear and RH el-
liptical polarizations in Figure 5(a) are strong evidence
that (i) mode conversion in weakly magnetized plasmas
directly produces both circularly polarized modes, (ii)
the o- and x-mode amplitudes are almost the same for
Ω ≤ 0.31, (iii) the x mode dominates for 0.5 ≤ Ω ≤ 1.1,
and (iv) the o mode dominates for Ω > 1.2.

In contrast to Figure 5(a), the hodograms in Figure
5(b) are all for Ω = 0.99 but for different q and all show
RH elliptically polarized waves. The ratio of b/a slightly
decreases as q increases, with b/a = 0.72, 0.67, 0.62, and
0.56 for q = 0.3, 0.5, 0.7, and 0.9, respectively. This
variation is due to changes in the fractions of o- and x-
mode signals to the total field as q varies for constant
Ω.

If we assume that the o and x modes are 100% cir-
cularly polarized (|EX | = |EY |), then the relative mode
amplitudes can be calculated from the normalized polar-
ization ellipses found in the simulations: Eo(x) = (a ± b)
for LH and Eo(x) = (a∓b) for RH elliptical polarizations,
with a2 + b2 = 1. From the dielectric tensor, the ratio
eXZ = |EX/EZ | also can be calculated for each wave
mode. Thus the electric field powers are

E2 = E2
X + E2

Y + e2
XZE2

X (18)

= (2 + e2
XZ)E2

X . (19)

Then the power fractions of the o and x modes are

Fo(x) =
|Eo(x)|2

|Eo|2 + |Ex|2 , (20)

as plotted in Figures 5(c)-(d). For q = 0.5 in Figure 5(c),
Fo = Fx = 0.5 in the unmagnetized limit (Ω = 0). For
Ω < 1, as the polarizations change from linear to RH
elliptical, Fx increases as Ω increases. This leads to Fx

having its maximum near Ω = 1. However, for Ω > 1,
Fx decreases rapidly with increasing Ω, with Fx = Fo

near Ω ≈ 1.15, and Fx = 0 near Ω ≈ 1.9. Similarly, for
a single Ω, Fx decreases and Fo increases as q increases.
For example, Fx = 0.99 for q = 0.3 but Fx = 0.9 for
q = 0.90.

The qualitative difference in o and x mode behavior
for Ω & 1 requires explanation. The x mode’s disappear-
ance near Ω = 1 is not a cutoff effect. Instead, as seen
from Figure 3 the maximum value of Ω for which the x
mode is defined for q = 0.5 is about 2.2, not 1.0. Sec-
tion VB demonstrates that the o-mode oscillations can
be explained semiquantitatively in terms of interference
between the incoming and reflected Langmuir/z modes
near Zmc, at least for Ω & 1 where a WKB-like analysis
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appears viable. Similarly, in Section VC the transmis-
sion factors along the evanescent modes connecting the
Langmuir/z mode to the o and x modes are calculated
and shown to explain the disappearance of the x mode
above Ω = 1 and the associated absence of interference
effects.

IV. SIMULATIONS: MODE CONVERSION

EFFICIENCIES

Calculations of the conversion efficiency ǫ require the
wave power in each wave mode, obtained through a
Fourier transform in Region III. In order to distinguish
two different peaks in the Fourier-transformed K do-
main, the resolution δK should be smaller than the dif-
ference of the two wavenumbers (δK ≤ |K1

z − K2
z |),

where δKZ = 2π/(lIIIk0). However, for our simula-
tions of weakly magnetized plasmas, δKz is not suffi-
ciently small to separate o and x modes. For instance,
|Ko

Z − Kx
Z | = 4.16 × 10−2 ≤ δK = 4.46 × 10−2 for

Ω = 0.99, q = 0.5, and lIIIk0 = 104.5. Thus the power in
the o and x modes cannot be determined directly from
the simulation data.

We adopt a wavenumber band-pass filter that covers
both Ko

Z and Kx
Z and then average the electric and mag-

netic field powers according to

UE(t) = 〈Ẽ(K, t)Ẽ∗(K, t)〉, (21)

UB(t) = 〈B̃(K, t)B̃∗(K, t)〉. (22)

Here Ẽj and B̃j are the bandpass-filtered Fourier trans-
forms in space of Ej and Bj , and j represents a spatial
component. Using Eqs. (19)-(20), the EM wave energy
density U is

U =
1

2

(
ǫ0UE +

UB

µ0

)
. (23)

Since we analyze the time stationary period after initial
transients have disappeared, this energy is constant in
time.

The conversion efficiency from one mode to another
can be defined using either wave energy density or wave
power, both having their merits. Here ǫ is defined as the
fraction of incoming Langmuir/z wave energy converted
into EM wave energy:

ǫ =
uEM

out

uL
in

. (24)

Alternatively, the corresponding ratio of wave powers is
defined to be

ǫs = 1 − SL
out

SL
in

= 1 − uL
out

uL
in

= 1 − |RL|2, (25)

where S is the Poynting energy flux and RL is the
reflection coefficient of the Langmuir/z mode. Since

SEM
out = vEM

g uEM
out and SL

out = vL
g uL

out,

ǫ = ǫs

vL
g

vEM
g

(26)

where vL
g and vEM

g are the group speeds of the Lang-
muir/z and EM (o or x) modes. In general, then, ǫ and
ǫs differ by the ratio of the group speeds vL

g and vEM
g .

This ratio is a factor of order 5 in the simulations below.
It is therefore quantitatively important.

Arguably it is preferable to calculate and use the con-
version efficiency for wave energy densities, using Eq.
(24), rather than the conversion efficiency for wave power
via Eq. (25). (Of course Eq. (26) allows these two ap-
proaches to be related provided that the group speeds
can be estimated adequately.) The reasons are, first, that
this procedure allows separate, direct, calculation of the
o- and x-mode conversion efficiencies; second, it involves
directly measurable experimental quantities; and third,
the “energy” conversion efficiencies are directly compa-
rable with those predicted for nonlinear processes (e.g.,
Ref. [26]). In this paper, we primarily use the more gen-
eral “energy” conversion efficiency of Eq. (24), but do
use Eq. (25) for comparisons with previous studies. In
the following subsections, the dependences of ǫ and ǫs on
q, Ω, and polarization are presented in detail.

A. The total conversion efficiency ǫ(q, Ω)

Numerical results for the total conversion efficiency ǫ,
without separation into o and x modes, are shown as
a function of q and Ω in Figure 6. The parameters
are ωp = 2 × 105 s−1, X0 = 0.95, k0L = 1 × 103 and
γβ = 0.01. The results are summarized as follows, with
detailed presentations deferred to the subsections below:

1. The maximum values of ǫ are less than ≈ 8% for
all q and Ω, with peaks of about 5% and 8% near
(q, Ω) = (0.5, 0) and (0.3, 1.3), respectively. These
are smaller than the values of 50 − 70% reported
previously [16, 17, 19–21, 23]; however, these pre-
vious values were calculated from the power fluxes
and so actually correspond to ǫs. Using the same
definition as previous authors, with ǫs = 1 − |RL|2
in Eq. (25), we recover a maximum value of ǫs

near 50%. These values of ǫ are still much higher
than the values 10−6 to 10−5 often calculated for
competing nonlinear processes [26] and, since they
are not averaged over the distributions of Langmuir
wavevectors and gradient vectors for density irreg-
ularities, orders of magnitude higher than the 2-D
and 3-D averaged efficiencies [25]. Of course, using
ǫ instead of ǫs will reduce the 2-D and 3-D averaged
efficiencies by further factors of vEM

g /vL
g ≈ 5 − 10

from those of Ref. [25].

2. For a given q within the mode conversion window,
ǫ oscillates as Ω increases. While there is also a
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tendency for ǫ to decrease as Ω increases, the largest
value of ǫ may occur near Ω = 0 (the first peak) or
at the peak of the second oscillation (near Ω = 1.5
in Figure 6).

3. The values of Ω where ǫ has a local minimum (ǫmin)
or maximum (ǫmax) decrease as q increases. For
instance, ǫmin occurs at Ω ≈ 1.8 for q < 0.2 and
Ω ≈ 1.75 for q = 0.5 for the situation considered.

4. The total conversion efficiency ǫ rises to a peak and
then decreases as q increases, in good agreement
with previous analytical studies.

5. The width △q in q of the mode conversion window
narrows as Ω increases, with △q ∝ Ω−1. The curve
q = 2Ω−1 is overplotted in Figure 6 and shown to
provide a good approximation to △q.

The details of ǫ as a function of q and Ω are shown
in Figure 7(a) for unmagnetized and weakly magnetized
cases, while Figure 7(b) shows strongly magnetized cases.
Several values of Ω are chosen, marked with diamonds at
the top of Figure 6. For Ω > 1, these Ω correspond to
the peaks ǫmax of ǫ so as to avoid the oscillation effects
described in Section IV B and VB below and to allow
each curve to be compared clearly.

For the unmagnetized and weakly magnetized cases in
Figure 7(a), ǫmax decreases monotonically with increas-
ing Ω . 1 from values near 5.0% to 1.1% at q ≈ 0.5. In
contrast, the width △q of the mode conversion window
is essentially constant.

For the cases Ω > 1 in Figure 7(b) the peak efficiency
also decreases with increasing q, although the peak effi-
ciency at Ω = 1.55 exceeds that for Ω = 0. However, in
addition the window narrows and shifts toward smaller
value of q as Ω increases. For instance, ǫmax occurs at
q = 0.25, 0.23, and 0.18 for Ω = 1.55, 2.0, and 2.6, respec-
tively. The narrowing of the window is well described by
the following empirical model for the upper boundary of
the window, q = 2Ω−1 for Ω > 1, as demonstrated in Fig-
ure 6(a). For the inverse problem of incident EM waves
this narrowing was predicted previously by Mjølhus [19].

Progress can also be made on predicting where the
peaks ǫmax should occur. For incident EM waves (rather
than the incident ES waves studied here) and Ω3π ≫ 1
(corresponding to Ω ≫ 0.68), Mjølhus [19] predicted that
the maximum conversion efficiency ǫmax should occur
where

qM = ln 2
2

π
(k0L)−1/3(

Y

1 + Y
)−1/2. (27)

In Figure 6 the predictions of Eq. (27) for qM are over-
plotted onto the simulation results. They agree closely:
from Eq. (27) qM = 0.29, 0.225, and 0.175 for Ω = 1.5,
2.0, and 2.6, while the simulations yield qM = 0.27, 0.25,
and 0.18 for Ω = 1.55, 2.0 and 2.6, respectively.

In summary, the foregoing results demonstrate in de-
tail that including the magnetic field (Ω > 0) leads to

large oscillations in ǫ, with an overall decreasing trend,
as Ω increases (expanding on Ref. [4]). In addition, the
results agree with previous studies that the width △q
narrows as Ω increases [16, 19], obeying △q ≈ 2q−1, and
that the peaks of ǫ with q agree well with the prediction
of Eq. (27) for the inverse problem [19].

B. Conversion efficiencies for the o and x modes

Combining the fractions Fo and Fx of o- and x-mode
power to the total power in Figure 5(b) with the total
efficiencies from Figure 6, we can calculate the separate
conversion efficiencies from the Langmuir/z mode to the
o and x modes, ǫo and ǫx, as functions of q and Ω. Rather
than two such contour plots, Figure 8(a) shows ǫo and ǫx

as functions of Ω for q = 0.5. It is evident that ǫ and ǫo

decrease and oscillate as Ω increases while ǫx decreases
monotonically. Put another way, the o- and x-mode con-
version efficiencies vary in qualitatively different ways for
Ω & 1, with the o mode dominating and determining the
total conversion efficiency for Ω & 1 (for q = 0.5). How-
ever, for Ω . 1, the o- and x-mode efficiencies are very
similar in magnitude and vary in almost identical ways
as Ω increases.

Oscillations of ǫ in Ω are explained in terms of interfer-
ence effects between incoming and reflected Langmuir/z
waves in Section VB. Here we point out only that Figure
8(b) displays the relative phase φ predicted as a function
of Ω and that the interpretation is convincing for Ω & 1:
except for the first maximum centered near Ω = 0, the
maxima and minima in ǫo are located near φ ≈ 2nπ and
(2n + 1)π (for integer n), respectively.

Mjølhus [19] predicted that the maximum conversion
efficiency in a magnetized plasma would be one half of the
unmagnetized result. This is incorrect, based on Figures
6 and 7, if one considers the total conversion efficiency to
EM waves. However, it is clear that in the unmagnetized
and weakly magnetized limits (e.g., Ω . 0.5) approxi-
mately half the radiation comes out in each of the o and
x modes, so that Mjølhus’s statement is correct for each
EM mode separately.

A crucial aspect of Figures 5 and 8(a), examined in
detail in Section V below, is that small variations in Ω
about unity can lead to substantial variations in the net
polarization of the resulting waves. Specifically, the net
polarization can range from near zero to strongly LH to
strongly RH circular polarization.

C. Comparison of the power conversion efficiencies

ǫs vs. q with previous work

This subsection compares the simulation results for the
power conversion efficiency ǫs with previous unmagne-
tized and magnetized studies for various X0. Previous
work includes numerical simulations of the unmagnetized
fluid equations for LMC of incident EM waves in a warm
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plasma [17], numerical solutions of the wave equations
for Langmuir waves with X0 = 0 or X0 = 0.5 inci-
dent on warm unmagnetized [21, 23] or warm magnetized
[16] plasmas, and an analytical solution for incident EM
waves in cold unmagnetized plasma [22]. Figures 9 and
10 compare the simulations with the previous unmagne-
tized and magnetized results, respectively.

Figures 9(a) - (b) demonstrate impressive agreement
between the simulations and analytic results for X0 =
0.95. They also show very good agreement between the
simulations and previous numerical solutions (differences
of only 1 − 10% at q = 0.5). Note firstly that the maxi-
mum values of ǫs are ≈ 50%, obtained at q = 0.5. Second,
although we assumed larger values of γβ = 0.01 than Refs
[17] and [21] (β = 0.005 and 10−5, respectively), the ex-
cellent agreement shows that the effect of β on ǫ is very
small, consistent with statements in Refs [17] and [25].

Ref. [21] predicts that the maximum in ǫs increases
and the range of q with nonzero ǫs decreases as X0 ap-
proaches unity. Figure 9(c) shows these trends. In con-
trast to the results for X0 = 0.95, when X0 = 0.985 the
maximum of ǫs is ∼ 56% at q = 0.4, mode conversion
only occurs for q ≤ qo = 1.5 (qo = 5 for X0 = 0.95), and
the simulation results show the ǫs is zero at q = 1.5. The
simulation results are compared with Ref. [21]’s results
for X0 = 0.5 and 0.995, finding excellent agreement with
the result for X0 = 0.5 and the same trends as the result
for X0 = 0.995. The decrease in the mode conversion
window with increasing X0 comes from the dependence
qmax ∝ (1−X) in Eqs (14) and (15) [21]. The very good
agreement with our simulations confirms the prediction
[21] that the dependence on X0 is very important for
Langmuir/z waves under solar wind conditions (because
X0 ≈ 1.0 there).

Figure 10 compares the simulation results with ap-
proximate numerical solutions of the wave equations for
Ω = 0.99 [16]. Since ǫ is expected to be a function of Ω
rather than k0L or Y alone, the two sets of results have
the same Ω but different k0L and Y : k0L = 1 × 103 and
Y = 9.75 × 10−3 for our simulations and k0L = 192 and
Y = 0.03 for Ref. [16]. The two sets of results do not
agree well, differing by a factor ≈ 5 in ǫs and with dif-
ferent locations for the peak (q = 0.5 for the simulations
but 0.38 in Ref. [16]).

It is believed that the simulation results in Figure 10
are correct. The reasons are the very good agreement be-
tween the simulation results and previous unmagnetized
results, the lack of approximations made in the simula-
tion model, and the agreement of the simulation results
with new analytic theory (see Sections V.A - V.C below).
We speculate that the differences in Figure 10 between
the results of Ref. [16] and the simulations are due to
the approximations made in Ref. [16], which also led to
the neglect of interference effects between the incoming
and outgoing Langmuir/z waves. It is relevant that the
o-mode efficiency varies strongly and interference effects
are large near Ω = 1.0, as seen in Figures 5, 6, and 8 and
discussed in depth in Section V.B below.

Finally, based on Figure 6 we note that for weakly mag-
netized plasmas the mode conversion window △q does
not narrow significantly with increasing Ω, until Ω & 1.
Moreover, Figure 6 shows that the simulations predict
values of q for the peaks in ǫ and ǫs that agree well with
previous results for strongly magnetized plasmas [19].

V. ANALYSIS

This Section explores the evanescent modes connecting
the Langmuir/z, o, and x modes and develops a WKB-
like theory for interference of the Langmuir/z modes near
Zmc, associated oscillations in the conversion efficiency
for the o mode, transmission factors for energy flows
along the evanescent modes, and the associated impli-
cations for the conversion efficiencies into the o and x
modes. In addition, the net polarization of the output
radiation is calculated and constraints placed on the lev-
els of density fluctuations if the x mode is to be generated
and propagate.

A. Dispersion Relations

The coupling of Langmuir/z mode waves into EM
waves in an inhomogeneous plasma occurs due energy
tunneling into evanescent modes that connect propagat-
ing modes in frequency - wavevector and physical space.
These evanescent modes are related to cutoffs (where the
refractive index of a propagating mode goes to zero) and
occur in so-called stop bands in ω − k space and stop
zones in physical space. Here the propagating modes are
the Langmuir/z, o, and x modes, all of which have dis-
tinct cutoffs in a magnetized plasma.

The refractive index curves for the Langmuir/z, o, x,
and connecting evanescent modes are illustrated in Fig-
ure 11 as functions of wavenumber K‖ and frequency X

for K⊥ = 0.07, ωp/ωc = 100, and γβ = 3 × 10−4. View-
ing the wave properties as a function of Xe = f2

p /f2, it is
found that evanescent modes appear in association with
the three stop bands that exist at larger Xe than the x,
o, and z mode cutoffs. The Langmuir/z, o, and x modes
have cutoffs at Xz

cut, Xx
cut, and Xo

cut, respectively, with

Xo
cut = 1 − K2

X , (28)

Xx
cut =

c1 −
√

c2
1 − 4c2

2
, (29)

Xz
cut =

c1 +
√

c2
1 − 4c2

2
, (30)

c1 = 2 − K2
X , (31)

c2 = (1 − Y 2)(1 − K2
X). (32)

In comparison, the nominal mode conversion point occurs
where

Xo
mc = 1. (33)
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The Langmuir/z, o, and x modes are clearly visible in
Figure 11 as real solutions that exist where Xe exceeds
Xz

cut, Xo
cut and Xx

cut, respectively. An imaginary solution
named the x′ mode connects the x mode to the o mode
between Xx

cut and Xo
cut. This x′ solution is purely imag-

inary, corresponding to an evanescent mode. A complex
o′′ mode connects the o mode to the z mode, while an
evanescent o′ mode exists above Xo

cut and an evanescent
z′ mode exists above the z-mode cutoff. Thus near Xo

cut

the dispersion curves for the o, o′′, and x′ modes join each
other, while the o′′ and z-modes encounter each other
near Xmc. This means that energy in the Langmuir/z
mode propagating from higher density regions to Zmc,
for instance via reflection at the z cutoff of Langmuir/z
waves propagating towards higher density regions, can
reach Xo

cut through the o′′ branch and then partially flow
into the o and x′ branches. Accordingly, some wave en-
ergy reaching Xo

cut might tunnel along the x′ mode and
thence reach Xx

cut, where it can appear as x-mode radi-
ation. Note that the imaginary part of the x′ solution
is typically smaller than that of the o′′ mode, suggesting
that the conversion efficiencies into the o and x modes
may be primarily determined by coupling from the z into
the o′′ mode and so be rather similar in magnitude. This
is rather unexpected according to previous work, but is
consistent with the simulation results, as shown in Sec-
tion VC.

In addition, another mechanism potentially exists:
some energy might couple into the o′′ mode via the res-
onance at Zmc, where the Langmuir/z mode becomes
linearly polarized and changes its sense of circular polar-
ization (righthand at smaller Xe and lefthand at larger
Xe), and eventually reach the o and x modes via the
evanescent modes above. This mechanism relates to
Langmuir/z waves propagating both into and out of the
density inhomogeneity. The good agreement shown be-
low between the WKB-like theory and simulations sug-
gests that this mechanism does not occur in practice.

B. Interference Effects

In a magnetized plasma, unlike the unmagnetized case,
Langmuir/z waves can propagate through the Zmc region
twice: as illustrated in Figure 1, once when propagating
into the density gradient and once after reflection at the
z cutoff. Assuming that a WKB style analysis is appro-
priate (meaning that the wavelength is small compared
with the scale lengths for the density gradient), the phase
difference φ at Zmc between the incoming and reflected
Langmuir/z modes is then

φ = π + 2

∫ Zz

cut

Zmc

dZ ′ KL
Z = π + 2

∫ zz

cut

zmc

dz′ kL
z (34)

where the first and second forms of the equation’s right
hand side are written for normalized and physical vari-
ables, respectively. Here Z ′ = k0z

′ denotes distance

along the wave path from Zmc = k0zmc and Zz
cut =

k0z
z
cut. The constant term π comes from assuming a

change in phase of π at the reflection point Zz
cut. The

quantity KZ = kz/k0 is the normalized component of
the (real part of the) wavenumber kz parallel to B0 of
the Langmuir/z mode as a function of Z.

For a 1-D linear density gradient, the two points Zmc

and Zz
cut are separated by a distance

△Z = |Zmc − Zz
cut| =

(
1 − Xmc

Xz
cut

)
k0L ≈ Y k0L. (35)

The final form of Eq. (35) follows from Eqs (30)-(32) in
the limit K2

X ≪ 1. Proceeding from this limit and using
Eq. (10), Eq. (35) may then be rewritten as

△Z = Ω2(k0L)1/3 . (36)

Figure 12 plots △Z as a function of k0L and KX for
Ω = 1.5. The solid curve’s prediction of Eq. (36) agrees
increasingly well with the numerical predictions for △Z
as q = (k0L)2/3K2

X decreases from the value 0.5 to 0.1.
This is consistent with Eq. (36) applying in the limit
K2

X ≪ 1.
The strong dependence of the phase difference φ in Eq.

(34) on △Z thus implies that φ and so ǫs should also vary
with k0L, Ω (and so Y ), and KX . Specifically, in the limit
KX ≪ 1 Eqs (34) and (36) result in the prediction

φ ≈ π + 2Ω2(k0L)1/3〈KL
Z 〉 , (37)

where 〈KL
Z 〉 is the average value of KL

Z over the propa-
gation path. Qualitatively, then, Eq. (37) predicts that
φ should depend on Ω, k0L, KX , and 〈KL

Z 〉. This equa-
tion and its more general form Eq. (34) thus have the
potential to explain the dependence on Ω and q of the
interference effects in Figure 8.

If φ → (2n+1)π for integer n, then the wave amplitude
at Zmc should have a minimum value due to destructive
interference. Figure 8(b) shows the prediction of Eq. (34)
for φ as a function of Ω for X0 = 0.95, ωp0 = 2×105 s−1,
k0L = 1 × 103, and γβ = 0.01. Here the required values
of KL

Z are calculated numerically for a specified q from
the dispersion equation for a spatially uniform but warm
Maxwellian plasma. Clearly the values of Ω correspond-
ing to φ ≈ (2n + 1)π correlate well with minima in ǫo in
Figure 8(a), and so in Figure 6. Similarly φ ≈ 2nπ very
near values of Ω where maxima in ǫo occur, except for
the first maxima centered near Ω = 0.

Now consider the analytic prediction of Eq. (37)
in connection with Figure 8. Choosing Ω = 1.5 and
k0L = 103 yields φ = π + 30〈KL

Z〉. Inspection of Fig-
ure 11 suggests that the value 〈KL

Z 〉 ≈ 0.1 is reasonable,
so that φ ≈ 2π and constructive interference can be ex-
pected. For ω = 1.7 Eqn (37), close to where a min-
imum is found, then predicts φ ≈ 2.8π, so being close
to destructive interference. The approximate analysis of
Eqs (34)-(37) thus provides a good quantitative explana-
tion for the observed oscillations. Thus, these aspects of
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Figure 8 and Eqs (34)-(37) provide strong evidence that
interference between incoming and outgoing Langmuir/z
waves leads to the oscillations observed for Ω & 1 in the
conversion efficiency of the o mode.

According to Figure 8(b) then, the polarization rever-
sal near Ω = 1 in Figure 5 is not due to large ǫx. Instead
this is primarily due to ǫo decreasing via interference and,
to a lesser extent, to numerical errors in separating ǫ0 and
ǫx.

Since φ = φ(KZ ,△Z) via Eqs (32)-(33), φ is also a
function of q as well as Ω. This offers the potential of
explaining Figure 6’s oscillations in Ω and the associated
changes in q. Accordingly Figure 13(a) plots the values
of q as a function of Ω where φ = π and 2π. Clearly
the curves move to slightly smaller q as Ω increases. Put
another way, for sufficiently strongly magnetized plasma,
interference effects cause the maxima and minima in ǫo

to vary with q as well as Ω. Thus the net polarization
of the outgoing EM waves varies with q for a single Ω.
However, variations of ǫo for a single Ω are greater than
for a single q. Figure 13(b) superposes the predicted
pattern of minima for ǫ onto Figure 6’s simulation results.
The agreement is qualitatively convincing and reasonable
quantitatively, though for Ω < 2.2 the simulation results
are shifted to lower Ω than the predicted pattern.

Thus it appears that interference effects can explain
many aspects of the oscillations drifting to lower q with
Ω in the efficiency of mode conversion. Put another way,
the foregoing phase analysis, 8, and Figure 13 quantify
and strongly justify the idea that interference between
Langmuir/z waves is important for LMC. Indeed, this
analysis quantitatively justifies for the first time, albeit
via the inverse process of LMC of Langmuir/z waves into
o-mode waves, an earlier suggestion by Mjøhus [20] that
interference effects might be important in LMC of o-
mode waves into Langmuir/z waves. However, several
questions remain. First, why does the interference pre-
diction break down for Ω ≤ 1, where it clearly misses the
maximum centered near Ω = 0 and wrongly predicts de-
structive interference and small ǫ? Second, why do these
interference effects appear in ǫo only, and apparently not
in ǫx? Third, does φ depend on k0L as well as on Ω and
Y ?

Regarding the first question, note that the WKB ap-
proach requires that the wavelength be small compared
with spatial scales of interest. However, Figure 4 shows
that the spatial size of the region between the o-mode cut-
off and mode conversion point, △Z given by Eq. (35), is
small compared with the wavelength of the Langmuir/z-
mode wavelength in the density irregularity until Ω & 1.
This shows that the WKB analysis is not well justified
for Ω . 1, suggesting that the WKB approach breaks
down and the prediction (34) becomes inaccurate. Put
another way, where Ω ≥ 1 the WKB approach is justifi-
able, Eq. (34) should apply, and the oscillations in ǫo are
well explained in terms of interference of incoming and
outgoing Langmuir/z waves.

Second, the x mode is allowed for Ω ≤ 2.2 accord-

ing to Figure 3. If the x mode is formed by tunneling
into the x′ mode, with energy entering both the o and
x′ modes from the o′ mode, itself fed energy near Zmc

where the z mode experiences interference effects, then
the simplest expectation is that the x mode should show
interference effects if the o mode does and Ω ≤ 2.2. That
is, the x mode should show interference effects where Eq.
(35) applies, meaning 1 . Ω . 2.2. However, analysis
of transmission factors in the next subsection provides a
quantitative explanation for the lack of interference ef-
fects experienced by the x mode while also explaining
why the o mode does experience them.

C. Transmission factors and polarizations

LMC and the coupling between modes may be treated
semiquantitatively by noting that the waves decay spa-
tially in regions where K‖ is complex. This spatial decay
can be described in terms of an transmission factor A for
the wave energy [2, 28], with

A = exp

(
−
∫ Z2

Z1

dZ ′ |ImK‖|
)

. (38)

where Z ′ denotes a spatial distance along the wavepath
from Z1 and Z2 parallel to B0. This distance is related
to the cutoffs in X by equations analogous to Eq. (35).
Note that A = 1 in the limits K‖ → 0 and Z1 → Z2, cor-
responding to perfect transmission and zero attenuation.

Numerical results for the transmission factors
Amo(q, Ω) between Zmc and Zo

cut, Aox(q, Ω) between
Zo

cut and Zx
cut, and Amx(q, Ω) = AmoAox between Zmc

and Zo
cut are shown as contour plots in Figure 14 using

Table 1’s parameters. These are the transmission factors
for the o′′, x′, and combined o′′ − x′ couplings. The
conversion from the o′′ to the o mode corresponds to
Amo while the conversion from o′′ to x corresponds to
Amx. Figure 14s calculations use the typical parameters
in Table I for ωp, ωp/ωc and 〈L〉 in the solar wind at 1
AU and in the corona.

In Figures 14(a)−(b) Amo decreases monotonically as
q and Ω increase, but is primarily affected by q rather
than Ω: Amo is almost zero for q ≥ 1.4. This factor
explains qualitatively why the conversion efficiencies de-
crease with q for large enough q in Figures 6–7, 9–10. In-
deed, the large decrease in Amo to almost zero for q & 1.4
accounts semiquantitatively for the width △q of the con-
version window in q. Moreover, the slow decrease in Amo

with increasing Ω at moderate q is qualitatively consis-
tent with △q decreasing as Ω increases in Figures 6 and
13. Finally, the variations of Amo and Amx with q do
not explain the peak in conversion efficiency occurring at
intermediate q ≈ 0.2 − 0.5 in the above Figures.

Figures 14 (c)−(d) show that Aox decreases mono-
tonically with increasing Ω at constant q, with a very
sudden and dramatic decrease near Ω ≈ 1, while it in-
creases slowly with increasing q at constant Ω. Since
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Amx = AmoAox, Figures 14 (e)−(f) show that Amx de-
creases rapidly with both q and Ω, being closely similar
in magnitude to Amo only for Ω . 1 and significantly
greater than zero only for Ω . 1.5 and q . 1.4.

The very similar magnitudes of Amo and Amx for
Ω . 1 provide a direct semiquantitative explanation for,
first, why the x mode is produced under these condi-
tions (the evanescent damping is essentially all along the
o′′ mode and not along the x′ mode) and, second, why
the o- and x-mode conversion efficiencies are essentially
identical, provided only that ν ≈ 0.5. This first point
and the associated finding of small damping along the
x′ mode for Ω . 1 directly contradict the reasonable
(but incorrect) assumption of large evanescent damping
of the x′-mode by previous workers, which led to their
prediction that LMC would produce only the o mode.
Furthermore, the sudden and large decrease in Amx near
Ω = 1 provides a direct semiquantitative explanation for
why no interference effects (and associated oscillations in
ǫx with increasing Ω) are found for Ω & 1. This behavior
also explains why ǫx ≈ 0 for Ω & 1.5 despite the x mode
existing for Ω . 2.2 (see Figure 3).

One final issue relating to Figure 14 is that Figure
6’s results show the peak conversion efficiencies occur-
ring at intermediate q ≈ 0.2− 0.6 (depending on Ω), and
not near q = 0 as predicted in Figure 14. One possible
explanation, based on Eqs (39)–(41) is that the factor
µ(q, Ω) peaks at intermediate q. This is necessarily true
since zero LMC occurs for q = 0, because the connect-
ing modes do not exist [3], but needs to be quantified.
Another possible problem is that, once again, the WKB-
style analysis of Eq. (34) breaks down for small Ω. Fur-
ther work is thus required to explain why the peak values
of ǫ occur at intermediate values of q.

D. Polarizations

In principle the foregoing results based on Eq. (34) al-
low the net polarization of the radiation to be predicted
analytically. Specifically, the ratios ro(q, Ω) and rx(q, Ω)
of the wave energy reaching the o and x mode, respec-
tively, to the total Langmuir/z-mode energy at Xo

cut are

ro(q, Ω) = µ(q, Ω)ν(q, Ω) [Amo(q, Ω)]2 , (39)

and

rx(q, Ω) = µ [Amo]
2
(1 − ν) (Aox)

2
(40)

= µ(q, Ω) [Amx]
2 − ro(q, Ω) [Aox]

2
. (41)

Here µ(q, Ω) is the ratio of Langmuir/z-mode energy at
Xmc to that entering the o′′ mode while ν(q, Ω) is the
fraction of o′′ mode energy reaching the o-mode cutoff
that enters the o mode. Note that the (1−ν) term in Eq.
(36) assumes that all o′′ energy reaching X0

cut goes into
either the o or x′ modes. Furthermore, based on rx ≈ r0

for Ω . 0.5 in Figures 5 and 8, we expect ν ≈ 0.5.

The net degree of polarization of the emitted radiation
can then be calculated using the predictions ro and rx of
Eqs (39)–(41) and an assumption for ν, or directly from
the simulations, using

P =
ro − rx

ro + rx
(42)

=
ν − (1 − ν)[Aox]2

ν + (1 − ν)[Aox]2
. (43)

For ro = rx, P = 0, and the waves have linear polariza-
tion. On the other hand, when rx = 0, P = 1 and the
waves have LH polarization while if ro = 0 then P = −1
and the waves have RH polarization. More generally, it
is clear from Eqs (35)-(36) that P should be independent
of µ but that the ν terms do not cancel out in general.

Before proceeding, note that in principle the interfer-
ence effect in Section VB could be included via a factor
|1 + eiφ|2, with φ given by Eq. (34). This is not done
here so that the regime Ω . 1, where the WKB analysis
is not well justified and the factor is close to zero, can be
investigated.

E. Effects of Density fluctuations

LMC between the Langmuir/z and x modes requires
two conditions: (1) the wave frequency must exceed the
x mode’s cutoff frequency and (2) the wave energy that
tunnels to the x-mode cutoff is nonzero. The second
condition is already considered above. The first con-
dition f > fx

cut is satisfied when Xe < Xx
cut. Since

Xe ∝ ω2
p ∝ N0, the condition on Xe becomes a constraint

on N0 and the maximum level of density fluctuations δN0

for the x mode to be able to propagate.
Figure 15(a) illustrates the relationship between δN0

and Xe. Consider a Langmuir wave with frequency f0

that is generated at a local maximum in the density
(point Zmax) that propagates toward the mode conver-
sion region through the point Zmin which has minimum
density. At point Zmin, if f0 > fx

cut, then Langmuir/z
energy can mode-convert into the x mode. Thus the
condition f0 = fx

cut provides the condition for x-mode
propagation. In this case, the change in density δN be-
tween points Zmax and Zmin is given by

δÑmin =
N0 − Min [N(z)]

N0
(44)

=
f2

p0 − (fx
cut)

2

f2
p0

(45)

= 1 − (Xx
cut)

2, (46)

with

(Xx
cut)

2 − [2 + r−2
pc + (1 + r−2

pc )K2
X ]Xx

cut

+ 1 − K2
X = 0, (47)

rpc = ωp/ωc. (48)
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Thus if we know KX and rpc, then δN can be estimated
easily.

Figures 15(b)–(c) show the situations δÑ0 > δÑmin

and δÑ0 < δÑmin, respectively, where δÑ0 = △Ñ0/N0.

If δÑ > δÑmin as in Figure 15(b), then the x mode can

be produced by LMC and propagate. However, if δÑ <

δÑmin then only the o mode can be produced by LMC
and propagate in free space.

VI. APPLICATIONS

LMC is a possible mechanism for the electromagnetic
radiation produced just above fp, in type II and III ra-
dio bursts in the corona and solar wind as well as radi-
ation from Earth’s foreshock. (The 2fp components of
these emissions cannot be produced by the LMC process
considered here, although other linear conversion mech-
anisms are possible.) Now consider the implications of
Sections II to IV for these fp radiations.

The nominal values of Ω in the solar wind and corona
are Ωsw = 0.87 and Ωco = 0.98, respectively, based on
the parameters in Table I. These values are shown in
Figures 14(c)−(f) as dotted lines. For q ≤ 1 Amo ≥ 0.4
and Amx ≥ 0.4 for the solar wind while and Amo ≥ 0.3
and Amx ≥ 0.3 for the corona. In both cases, the calcu-
lations imply that Langmuir/z-mode energy can tunnel
effectively into both the o and x modes. Similarly, Fig-
ures 5, 6, 8, and 13 suggest that both o- and x-mode
radiation should be produced for values of Ω, q, and k0L
similar to those for the nominal coronal and solar wind
parameters in Table 1.

The foregoing calculations were for γβ = 0.01, which
corresponds to unrealistically high temperatures for the
corona and solar wind. Figure 16 therefore examines the
effects of temperature on the transmission factors Amo,
Aox, and Amx calculated from Eq. (34) for the solar
wind at 1 AU (Ωsw = 0.87) and the corona (Ωco = 0.98).
We use γβ = 0.0001 and 0.25 for the solar wind and
γβ = 0.01 and 0.25 for the corona. As expected from
Figure 14, in Figure 16 Amo and Amx decrease while
Aox increases with increasing q. The Figure shows that
the temperature effects on Amo are very small (changing
by less than a few percent) while Aox, and Amx change
very little (at most 10%) with different γβ. Finding that
the effects on Amo and Amx of varying γβ is very small
can be understood by noting that Im(K) ≫ vthk0, so
that thermal terms are small. Thus the energy ratio µ at
Zo

cut in (39) is almost the same for different β. This result
is consistent with the work of Refs [17] and [21], which
showed that the mode conversion efficiency changes very
little with thermal speed. Similarly, comparisons of the
simulation results and previous analytical results in Fig-
ure 9 with the simulation results in Figure 6 and analytic
results of Figures 14 and 16 are all consistent with the
effects of β being very weak.

Thus, based on these calculations, LMC can be ex-

pected to produce both o and x-mode radiation for type
II and III bursts in the solar wind near 1 AU and in the
corona, as well as for radiation from Earth’s foreshock.
Previous predictions that LMC should produce only o-
mode radiation in these contexts appear to be incorrect.

The prediction that LMC can produce both o- and x-
mode radiation for type II and III bursts is relevant to
the relatively low degree of circular polarization observed.
Rather than the 100% o-mode polarization expected tra-
ditionally [28], type IIs are almost always less than 10%
polarized, whereas type IIIs are typically less than 30%
polarized and always less than 70% [27]. Figures 5, 8,
14, and 16 suggest a natural resolution to this “depo-
larization problem” provided that LMC is relevant: (i)
almost equal amounts of o and x mode are produced for
Ω . 0.4, yielding radiation with almost zero net circular
polarization, and (ii) when 0.4 . Ω . 1.3 the radiation
has a relatively small net polarization that can be net
righthand or lefthand depending on Ω and q. Only when
Ω & 1.6 is pure o-mode radiation expected from LMC.

Figures 8 and 13 also suggest that the relative fraction
of o- and x-mode radiation is sensitively dependent on
the density turbulence and plasma magnetization near
Ω ≈ 1, just near Table 1’s nominal values for the corona
and solar wind near 1 AU. Specifically, Figure 8 pre-
dicts that the x mode polarization should be dominant
for 0.4 . Ω . 1.1, with the o mode dominant for higher
Ω. Thus the sense of net circular polarization, if it can
be established to definitely be in the sense of the o mode
versus the x mode (which requires knowledge of the coro-
nal magnetic field direction), might provide a sensitive
observational constraint on Ω.

The primary reasons for the net polarization depending
sensitively on Ω near Ω = 1 are the monotonic decrease
in the x-mode conversion efficiency and the interference
effect for the o mode. Section V.D’s analytic formalism
can be employed to assess these two effects. Since the
net degree of polarization P is a function of ν and Aox =
Aox(q) in Eq. (43), for a single Ω P can be predicted as
a function of q and ν using Eqs (38) and (43).

Figure 17 therefore compares P as a function of q and
ν for Ωsw = 0.87 (solar wind) and Ωco = 0.98 (corona),
respectively. Figure 17(a) shows clearly that P changes
very little with q for a single ν: P decreases as q in-
creases, but the differences in P for q = 0.1 and q = 1.5
are only 20% for ν = 0.2 and ν = 0.8. Moreover, just as
found for the transmission factor A in Figure 17, thermal
effects on the degree of polarization are very weak. How-
ever, Figure 17(b) predicts that P increases rapidly from
negative to positive values (changing from net x-mode to
net o-mode polarization) as ν increases from 0 to 1. For
instance, P = −46% at (q, ν) = (0.5, 0.2) and P = +71%
at (q, ν) = (0.5, 0.8).

The quantity ν is constrained by the simulations: since
they yield equal amounts of o and x radiation for small
Ω, it is most likely that ν = 0.5. (However, ν could in
principle be a function of Ω and/or other parameters.)
Thus for ν = 0.5 Figure 17 predicts that P (q) ranges
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from +5 to +41% and +10 to +58% for various q and
the nominal solar wind and coronal parameters, respec-
tively. However, these senses of polarization (positive
corresponds to o mode being dominant) are inconsistent
with Figures 5 and 8. This inconsistency is believed due
to neglect of interference effects and the breakdown of
Eq. (38)’s WKB analysis for Ω . 1. Future develop-
ments should be directed at removing these limitations
of the present theory.

Finally, consider the constraints of Section V.D as to
whether the x mode can plausibly propagate from source
regions in the corona and solar wind. The quantities

Xx
cut and δÑ are calculated using Eq. (47) and plotted

in Figure 18. Values γβ = 10−4 and 10−2 are assumed for
the solar wind at 1 AU and the corona, respectively. In
Figure 18 Xx

cut decreases as q increases and the maximum
values of Xx

cut are 0.99 and 0.90 for the solar wind and
corona at q = 0, respectively. When Xe < Xx

cut the

x mode can propagate. Using Eq. (46), δÑmin can be
calculated from Xx

cut and is 1% and 10% for the solar

wind and corona at q = 0, respectively. Thus, if δÑ0 ≥
1% in the solar wind and δÑ0 ≥ 10% in the corona, then
Langmuir/z waves will have frequencies that exceed fx

cut

and the x mode will be able to propagate out of the mode
conversion region.

Celnikier et al. [35] present data from the ISEE-1 and

-2 spacecraft that show δÑ0 to be 2 − 10% in the solar

wind. Moreover, the relative level of Ñ0 near 1 AU is
often believed to be independent of heliocentric distance
interior to 1 AU [36]. Thus, our calculations of the min-

imum levels of Ñ0 in the solar wind and the corona are
not inconsistent with previous observational and theoret-
ical results. This implies that the x-mode can exist near
and propagate from mode conversion regions in the solar
wind and corona. Thus, it appears as though the simula-
tions, theoretical constraints, and available observational
data all imply that LMC in the source regions of coronal
and interplanetary type II and III bursts, and in Earth’s
foreshock, should result in both o- and x-mode radiation.

VII. DISCUSSION AND CONCLUSION

We have presented numerical simulations of LMC from
Langmuir/z to EM waves and analytical calculations of
mode coupling in warm magnetized plasmas. The simu-
lation results show strong evidence that high levels of x-
and o-mode radiation can be produced from Langmuir/z
wave via LMC, with the relative fraction of energy in
the x and o modes varying with the parameter Ω. They
are supported by new numerical calculations which pre-
dict that significant amounts of Langmuir/z wave energy
should tunnel into both the x and o modes from the nom-
inal mode conversion point Zmc. Moreover, it is shown
that the Langmuir/z-mode waves can have frequencies
above x-mode cutoff frequency fx

cut and that the x-mode
radiation can propagate to the lower density side and

outside the source region if specific constraints on the
level of density turbulence are met. It is found that the
constraints on the density turbulence are not inconsistent
with the levels observed in the solar wind at 1 AU and
inferred for the high solar corona.

Applications of the simulation results and associated
theory to type II and III bursts in the solar wind and
corona, and to radiation from Earth’s foreshock, suggest
that LMC should produce both x- and o-mode radiation
in these sources. Moreover, the production of both x-
and o-mode radiation by LMC leads immediately to rel-
atively weakly circularly polarized radiation, thereby im-
mediately resolving the so-called “depolarization” prob-
lem for type III bursts without recourse to depolarization
mechanisms outside the source. Of course, these may also
operate too, either further depolarizing the radiation or
alternatively (contrary to the standard picture) polariz-
ing the radiation.

We calculated the total mode conversion efficiency ǫ
into EM waves, as well as the separate conversion effi-
ciencies into the o and x modes. The total conversion
efficiencies depend on whether energy densities or power
are considered, differing by the ratio of group speeds for
the Langmuir/z and transverse waves. Total maximum
conversion efficiencies for power are of order 70%, while
those for energy density are of order 10%. Further reduc-
tions in efficiency result from averaging over the distri-
butions of incident Langmuir wavevectors and gradient
vectors of the density turbulence [25].

Both the conversion efficiencies into the o and x modes
and the total conversion efficiency are strong functions
of Ω and q, corresponding to the incidence angle of the
Langmuir/z wave, normalized scale length of the density
irregularity, and the normalized magnetic field strength.
The conversion efficiencies into the o and x modes are
almost equal in the unmagnetized regime (small Ω), only
the o mode is produced at high enough Ω (& 1.5), and
the x mode dominates in an intermediate domain of Ω.

The presence of the magnetic field makes the mode
conversion window’s width in q, △q, narrow with increas-
ing Ω when Ω ≈ 1. A similar narrowing was predicted
previously [19] for the inverse LMC process, in which ra-
diation is converted into Langmuir/z waves. Moreover,
the q-location of the peak efficiency varies with q as pre-
dicted by [19], again for the inverse problem. Interest-
ingly, △q is approximately constant for Ω < 1, contrary
to the previous analytic prediction. It is plausible that
this difference is due to WKB analyses breaking down
for Ω . 1, as found here in connection with interference
effects.

A crucial new result is that the plasma magnetization
causes the total conversion efficiency and the conversion
efficiency into the o mode, but not the x mode, to oscil-
late strongly with increasing Ω & 1. These oscillations
are well described semiquantitatively via a WKB-style
analysis in terms of interference between ingoing and re-
flected Langmuir/z waves near the nominal mode conver-
sion point. Moreover, the transmission factors from the
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Langmuir/z mode to the o and x modes, again calculated
via a WKB-style analysis, can explain semiquantitatively
the almost equal conversion efficiencies into the o and x
modes for small Ω and the rapid, monotonic decrease in
the x-mode conversion efficiency for Ω & 1. In fact, the
WKB-style analysis should break down for Ω . 1, due
to the characteristic distances (e.g., between the x- and
o-mode cutoffs) no longer being large compared with rel-
evant wavelengths, but it does provide results semiquan-
titatively consistent with the simulations. Future work
should be directed at removing this issue.

Interestingly, for the inverse LMC process with inci-
dent o mode perpendicular to B0, Mjølhus [20] argued
that the conversion efficiency should be a function of Ω
and speculated that this might be due to an interference
effect. Our analysis for LMC of incident Langmuir/z
waves demonstrates the existence of such an interference
effect, thereby providing indirect support for Mjølhus’s
speculation. Our simulation results show that LMC
of Langmuir/z waves only produces o-mode waves for
Ω ≫ 1. Thus in sufficiently strongly magnetized plasmas,
such as the ionospheric context considered by Mjølhus,
LMC will not produce x-mode waves.

In general the simulation results agree very well with
previous simulations, numerical solutions, and analytic
work (Figures 9-10 and Section IV.C. An exception is a
discrepancy with approximate numerical solutions of the
magnetized wave equations [16] where the power conver-
sion efficiencies differ by a factor of 5 for the same value
of Ω but different values of k0L and plasma magnetiza-
tion. The reason for the discrepancy is not known and
should be addressed in future work. It may be due to
neglect of interference effects in the numerical analysis
or to approximations made there.

There are several limitations in this study. First, this
paper considers the special case of ∇N0 ‖ B0 with arbi-
trary incidence angles for K relative to B0. However,
preliminary results (not shown) confirm that the case
studied here is not unusual: for oblique angles between
∇N0 and B0, LMC produces x and o radiation with sim-
ilar efficiencies.

Second, since the mode conversion efficiency ǫ is a func-
tion of q and Ω rather than k0L, we use a single k0L.
For unmagnetized plasmas, our simulation results for the
conversion efficiency ǫ show very good agreement with
previous numerical and analytical results with different
k0L but the same q. However, the phase difference φ be-
tween incoming and reflected Langmuir/z waves in mag-
netized plasmas is a function of △Z = |Zmc−Zz

cut|, which
is related to k0L. The interference pattern on Ω−q plane
can thus be changed if k0L varies and further studies of
the effects of k0L on ǫ in magnetized effects is needed.

Third, a higher level of β is assumed in the simulations
than is appropriate to most plasmas. While we assumed
typical parameters of fp, fce, and k0L in the solar wind
at 1AU and the corona, values of γβ ≈ 10−2 were as-
sumed to save computing time. However, comparisons of
the simulations with previous results show that β effects

are relatively unimportant. This was also found for cal-
culations of the transmission factors Amo, Aox, and Amx

and of the radiation’s net polarization.

Fourth, as we mentioned before, a 1-D linear density
gradient is assumed in the simulations and associated
calculations. Other monotonic profiles are likely to yield
semiquantitative differences, as found for instance by pre-
viously comparing LMC for linear versus parabolic pro-
files [24]. Qualitative differences can also occur: combin-
ing a linear density profile with superposed density fluc-
tuations [37] yielded trapped modes and resonant varia-
tions in the conversion efficiency (e.g., increased efficiency
when integer numbers of wavelengths fit within a cavity
formed by the superposed turbulence). Thus, in order to
consider the realistic characteristics of LMC in the solar
wind and the corona, requires further investigation of the
effects of L, β, superposed density fluctuations, and the
angles between the incident wavevector, density gradient,
and magnetic field.

In conclusion, we have presented numerical simulations
of LMC between Langmuir/z and free-space o- and x-
mode waves in warm magnetized plasmas and investi-
gated possible applications of LMC to some solar sys-
tem phenomena. We summarize the results as: (i) LMC
can produce x-mode as well as o-mode radiation from
Langmuir/z-mode waves. (ii) In the unmagnetized limit
equal amounts of o- and x-mode radiation are produced
and the total EM wave field changes from linear to cir-
cular polarization as B0 and the magnetization param-

eter Ω ∝ (k0L)1/3B
1/2
0 increase. The radiation can has

net circular polarization in the sense of the x mode for
0.5 . Ω . 1.2 and in the sense of the o mode for Ω & 1.2.
(iii) The conversion efficiency into the x mode decreases
monotonically as Ω increases while the o-mode conver-
sion efficiency oscillates for Ω & 0.5. These oscillations
are well modeled semiquantitatively for Ω & 1 as an
interference phenomena between incoming and reflected
Langmuir/z waves. (iv) Less than 10% of the incident
Langmuir/z energy can be transformed into EM waves,
although the corresponding power efficiencies differ by
the ratio of the group speeds for each mode and are of
order 50 − 70%. (v) The mode conversion window nar-
rows as Ω increases for Ω & 1 (but is approximately con-
stant for Ω . 1) and the position of the peak agrees
well with an analytic theory of Mjølhus. (vi) The trans-
mission factor for Langmuir/z energy into the o and x
modes is predicted and found to decrease with increasing
q and Ω. Semiquantitative agreement with the simula-
tions is found, explaining the equal transmission factors
in the unmagnetized limit and the monotonic falloff of
the x mode for Ω & 1. (vii) Propagation of the x mode
inside the source region is shown to constrain the level
of density fluctuations there. (viii) Standard parameters
for the corona and the solar wind near 1 AU suggest that
LMC should produce both o- and x- mode radiation for
solar and interplanetary radio bursts and Earth’s fore-
shock radiation. (ix) These results suggest that LMC
can naturally explain the weak total circular polariza-
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tions of coronal type II and III radio bursts in terms of
the emission’s intrinsic properties, resolving the “depo-
larization problem” without appeal to any depolarization
mechanisms.

Acknowledgments

This research was supported at the University
of Sydney by the Australian Research Council and

at Princeton Plasma Physics Laboratory by NASA
grants NNH04AB23I, NNH04AA73I, NNH04AA16I,
NNG07EK69I, and NNH07AF37I), NSF grant
ATM0411392, and DOE Contract No. DE-AC02-
76CH03073.

[1] T. H. Stix, Waves in Plasmas (American Institute of
Physics, New York, 1992).

[2] K. G. Budden, The Propagation of Radio Waves (Cam-
bridge Univ. Press, New York, 1985).

[3] D. B. Melrose, in Solar Radiophysics: Studies of Emis-

sion From the Sun at Metre Wavelengths, edited by D.
J. McLean and N. R. Labrum, (Cambridge Univ. Press,
New York, 1985), p. 177.

[4] E.-H. Kim, I. H. Cairns, and P. A. Robinson, Phys. Rev.
Lett. 99, 015003 (2007).

[5] L. Yin, M. Ashour-Abdalla, M. El-Alaoui, J. M. Bosqued,
and J. L. Bougeret, Geophys. Res. Lett. 25, 2609 (1998).

[6] I.H Cairns, J. Geophys. Res., 93, 3958 (1988).
[7] R. P. Lin et al., Astrophys. J. 251, 364 (1981).
[8] D. A. Gurnett, and W. S. Kurth, Space Sci. Rev. 78, 53

(1996).
[9] P. H. Yoon et al., J. Geophys. Res. 103, 29267 (1998).

[10] I. H. Cairns, S. Johnston, and P. Das, Mon. Not. R. As-
tron. Soc. 343, 512 (2003).

[11] C. Rajyaguru et al., Phys. Rev. E 64, 016403 (2001).
[12] K. L. McAdams, R. E. Ergun, J. LaBelle, Geophys. Res.

Lett. 27, 321 (2000).
[13] C. Rhodes et al., J. Appl. Phys. 100, 054905 (2006).
[14] I. H. Cairns and D. B. Melrose, J. Geophys. Res. 90, 6637

(1985)
[15] P. A. Robinson and I. H. Cairns, Solar Phys. 181, 363

(1998).
[16] L. Yin and M. Ahour-Abdalla, Phys. Plasmas 6, 449

(1999).
[17] D. W. Forslund et al., Phys. Rev. A 11, 679 (1975).
[18] R. W. Means et al., Phys. Fluids 24, 2197 (1981).
[19] E. Mjølhus, J. Plasma Phys. 30, 179 (1983).
[20] E. Mjølhus, Radio Sci. 25, 1321 (1990).
[21] A. J. Willes and I. H. Cairns, Publ. Aston. Soc. Aust.

18, 355 (2001).
[22] K. Kim and D. -H. Lee, Phys. Plasmas 12, 062101 (2005).
[23] D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales,

Phys. Fluids B 4, 559 (1992).
[24] D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales,

Phys. Fluids B 4, 1772 (1992).
[25] I. H. Cairns and A. J. Willes, Phys. Plasmas 12, 052315

(2005).
[26] P. A. Robinson, I. H. Cairns, and A. J. Willes, Astrophys.

J. 422, 870 (1994).
[27] G. A. Dulk and S. Suzuki, Astron. Astrophys. 88, 203

(1980).
[28] D. B. Melrose, Plasma Astrophysics (Gordon and Breach,

New York, 1980).

[29] M. H. Cohen, Astrophys. J. 131, 664 (1960).
[30] D. G. Wentzel, Solar Phys. 90, 130 (1984).
[31] D. B. Melrose, Solar Phys. 119, 143 (1989).
[32] D. B. Melrose, Astrophys. J. 637, 1113 (2006).
[33] A. K. Ram and S. D. Schultz, Phys. Plasmas 7, 4084

(2000).
[34] M. J. Reiner, J. Fainberg, M. L. Kiser, and J.-L.

Bougeret, Solar Phys. 241, 351 (2007).
[35] L. M. Celnikier, L. Muschietti, and M. V. Goldman, As-

tron. Astrophy 181, 138 (1987).
[36] B. R. Bellamy, I. H. Cairns, and C. W. Smith, J.

Geophys. Res. 110, A10104 doi:10.1029/2004JA010952
(2005).

[37] A. J. Willes, S. D. Bale, and I. H. Cairns, J. Geophys.
Res. 107, 1320, 2002.



16

TABLE I: Typical parameters for the solar wind and the
corona: ωp, ωp/ωc, and 〈L〉 are from Ref. [15] while Ω is
calculated from these using Eq. (8).

ωp (s−1) ωp/ωc 〈L〉 Ω

Solar wind at 1AU 1.5 × 105 100 1.3 × 106 0.87
Corona 1.5 × 108 10 60 0.98
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FIG. 1: Schematic illustration of mode conversion from Lang-
muir to electromagnetic waves in a linear density profile for
(a) unmagnetized and (b) magnetized plasmas. Labels Zo

cut,
Zx

cut, Zz
cut, and Zmc represent the position of the cutoffs of

o-, x-, and Langmuir/z-modes, and the nominal mode con-
version point, respectively. Dotted lines show possible con-
necting modes not present in a homogeneous plasma.

FIG. 2: Schematic illustration of simulation. Langmuir waves
generated in Region II approach and encounter an increasing
density gradient in Region III and IV. The plasma is assumed
homogeneous in Region I-III and inhomogeneous in Region
IV. Additional damping is imposed in Region I.

FIG. 3: (Top) The maximum angles θL = θL
max and (bottom)

maximum values of q = qmax for LMC into the o (dashed line)
and x (solid) as functions of Ω for k0L = 1× 103, γβ = 0.01,
and X0 = 0.95. The dark shaded region corresponds to LMC
into both the o and x modes while the lightly shaded region
corresponds to the o mode alone.

FIG. 4: Spatial dependence of the electric field along the di-
rection of the inhomogeneity for q = 0.5, (a) Ω = 0.0, (b)
Ω = 0.51, and (c) Ω = 2.6. Here, the abscissa is the Z di-
rection and the ordinate is the normalized electric amplitude
in arbitrary units. Parameters are X0 = 0.95, ωp0 = 2 × 105

s−1, k0L = 1 × 103, and γβ = 0.01.
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FIG. 5: Hodograms showing the polarization of the electric
field transverse to B0 (i.e., EX and EY ) for (a) q = 0.5 and
Ω = 0.31, 0.51, 0.76, 0.99, 1.2, and 2.6, and (b) Ω = 0.99
and q = 0.3, 0.5, 0.7, and 0.9. (c)-(d) Power fractions F of
the o (solid line) and x (dotted) modes as functions of Ω for
q = 0.5.

FIG. 6: Contour plot of the mode conversion efficiency ǫ in
the q-Ω plane for X0 = 0.95, ωp0 = 2×105 s−1, k0L = 1×103,
and γβ = 0.01. Dotted and dashed lines show the relations
q = 2Ω−1 and Eq. (25), respectively.

FIG. 7: Mode conversion efficiency ǫ versus q for (a) Ω < 1
and (b) Ω > 1. In (a), Ω = 0.0 (solid line), 0.76 (dotted), and
0.99 (dashed). In (b), Ω = 1.55 (solid), 2.0 (dotted), and 2.6
(dashed).

FIG. 8: (a) Conversion efficiency ǫ from Langmuir/z to both
EM modes (solid line), the o mode (dotted), and the x mode
(dashed) for q = 0.5. The values of X0, k0L, and γβ are as in
Fig. 6. (b) Phase difference φ between incoming and reflected
Langmuir/z modes vs Ω.

FIG. 9: Conversion efficiency ǫs given by Eq. (23) as a func-
tion of q in an unmagnetized plasma for various X0. The
parameters are ωp0 = 2× 105 s−1, k0L = 1× 103, Y = 0, and
γβ = 0.01. The simulation results (diamonds) are compared
with the numerical solutions of Ref. [17] and the approximate
analytical results of Refs [16, 21–23].



19

FIG. 10: Conversion efficiency ǫs given by Eq. (25) as a
function of q. The dotted curve shows simulation results for
Ω = 0.99, k0L = 1×103, γβ = 1×10−2, and Y = 9.75×10−3 .
The solid line shows Yin and Ashour-Abdalla’s [16] results for
Ω = 0.99, k0L = 192, and Y = 0.03.

FIG. 11: Normalized squared wavenumber K2

‖ parallel to
B0 for the Langmuir/z, o and x modes as a function of
Xe = ω2

p/ω2. Other parameters are K⊥ = 0.7, ωp/ωc = 100,
and γβ = 0.01. Black and gray solid lines are positive and
negative real solutions, respectively, and dotted lines repre-
sent imaginary solutions.

FIG. 12: Distance △Z between Zmc and Zz
cut for Ω = 1,

X0 = 0.95: diamond and square symbols give the numerical
predictions of Eq. (35) for q = 0.1 and 0.5, respectively, while
the solid curve shows the approximation (36) for KX ≪ 1.

FIG. 13: (a) Values of q predicted by Eq. (35) for φ = 2π (dia-
mond) and φ = π (circle) where φ is phase difference between
incoming and reflected Langmuir/z modes. (b) Superposi-
tion of the predicted pattern of minima in ǫ onto Figure 6’s
simulation results.

FIG. 14: (a)-(b) Transmission factors Amo between Zmc and
Zo

cut, (c)-(d) Aox between Zo
cut and Zx

cut, and (e)-(f) Amx =
AmoAox between Zmc and Zx

cut in the q-Ω plane. Panels (a),
(c), and (e) are calculated for the solar wind at 1AU while
panels (b), (d), and (f) correspond to the corona. Table I’s
values of ωp and k0L are used. Dotted lines represent Ωsw =
0.87 and Ωco = 0.98, respectively.
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FIG. 15: The relationship between δN0 and Xe: (a) δN0 =
δNmin and Xe = Xx

cut and (b) δN0 > δNmin and Xe < Xx
cut,

so x-mode production is possible in a large regime, and (c)
δN0 < δNmin Xe > Xx

cut, so x mode is not produced. The
right arrow represents the incoming Langmuir wave. The solid
and dashed curves are x-mode cutoff and local plasma fre-
quencies, respectively.

FIG. 16: Transmission factor (a) Amo, (b) Aox, and (c) Amx

at Ωsw = 0.87 for γβ = 1×10−4 (solid line) and 0.25 (dotted)
in the solar wind at 1AU and at Ωco = 0.98 for γβ = 0.01
(solid) and 0.25 (dotted) in the solar wind at 1AU.

FIG. 17: Net degree of polarization as a function of (a) q for
ν = 0.2, 0.4, 0.6, and 0.8, and (b) ν for q = 0.0, 0.5, and
1.5, respectively. Left and right panels are for the nominal
values of Ω in the solar wind (at 1 AU) and the corona, re-
spectively. The solid lines are for γβ = 10−4 (solar wind) and
0.01 (corona) and the dotted lines are both for γβ = 0.25.
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FIG. 18: The x-mode cutoff condition Xx
cut for the solar

wind at 1AU and the corresponding constraints on δN0. The
shaded region is where the x mode propagates. The solid and
dotted lines represent the nominal solar wind and corona, re-
spectively.
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