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Abstract

Small non-axisymmetric perturbations of the magnetic field can greatly change the performance

of tokamaks through non-ambipolar transport. A number of theories have been developed, but the

predictions were not consistent with experimental observations in tokamaks. This Letter provides

a resolution, with a generalized analytic treatment of the non-ambipolar transport. It is shown

that the discrepancy between theory and experiment can be greatly reduced by two effects: (1) The

small fraction of trapped particles for which the bounce and precession rates resonate. (2) The non-

axisymmetric variation in the field strength along the perturbed magnetic field lines rather than

along the unperturbed magnetic field lines. The expected sensitivity of ITER to non-axisymmetries

is also discussed.
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Tokamaks, such as ITER [1], are sensitive to small non-axisymmetric magnetic pertur-

bations [2–6]. In order to improve the predictability and the controllability of plasmas in

perturbed tokamaks, it is important to understand the fundamental transport associated

with non-axisymmetric perturbations.

In an axisymmetric tokamak, the turning points of a collisionless trapped particle remain

on a magnetic surface as the turning points precess toroidally. The magnetic field strength

has a periodicity along each magnetic field line, B(l) = B(l + L) with l the distance along

a field line and L a constant, so the action J =
∮

Mv||dl for a particle is a constant on a

magnetic surface. When the axisymmetry is broken so B(l) 6= B(l + L), the action for a

particle becomes dependent on the toroidal location of its turning point. The conservation

of action then implies that the turning point must drift across the magnetic surfaces. The

resulting transport depends on the species. Generally ions diffuse faster and produce a net

radial current until an ambipolar electric field is established [7]. The radial currents of

the non-ambipolar diffusion [8] cause a toroidal torque and viscosity, which is often called

Neoclassical Toroidal Viscosity (NTV).

Non-ambipolar transport has been studied for many years [9–13], and its importance for

tokamaks has been recently appreciated [14–16]. Two main regimes were thought important

in tokamaks, the 1/ν regime [16] when the ~E × ~B precession frequency ωE is low relatively

to the collision frequency ν, and the ν
√

ν regime [17] when ωE is relatively high. There is

a large discrepancy in transport between the two regimes, by several orders of magnitude

depending on parameters, but the smaller transport must be chosen as can be readily verified

by an approximate connection [18]. The expected transport is then too small for present

tokamaks [19], as will be illustrated. The transport may be enhanced by other effects, such

as the resonances among ωE, the magnetic precession ωB, and/or the bounce frequency ωb

[8, 13]. These effects are combined by a generalized analytic treatment in this Letter, which

provides a resolution.

The transport by trapped particles can be studied with the bounce-averaged drift-kinetic

equation for a perturbed distribution function f1(~v, ~x). The gyro-motions are averaged in

the drift-kinetic equation [20], and so particle drift velocity ~v is a function of (E, µ) with

the energy E and the magnetic moment µ = Mv2
⊥/2B. Consider the drift-kinetic equation

v‖b̂ · ~∇f1 + vα
D

∂f1

∂α
+ vψ

D

∂f0

∂ψ
= C[f1], (1)
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in the coordinates ~x(ψ, ϑ, α ≡ qϑ − ϕ). Here (ψ, ϑ, ϕ) are magnetic coordinates with the

Jacobian J for ~B = χ′~∇ψ × ~∇α, where χ′ = ∂χ/∂ψ with the poloidal flux χ. The drift

~vD is decomposed as vα
D ≡ ~vD · ~∇α and vψ

D ≡ ~vD · ~∇ψ. The bounce-average is 〈A〉b ≡∮
(Adl/v‖)/

∮
(dl/v‖) = (ωb/2π)

∮
dϑAJB/v‖χ′ between the turning points with the bounce

frequency ωb ≡ 2π/
∮

dϑ(JB/v‖χ′).

The bounce-average is, however, well defined only when the bouncing orbit is approxi-

mately closed. This is the case when the precession is ignorable, ` = 0 as is assumed in

the conventional 1/ν and ν
√

ν regimes, but also when the particle precesses fast enough to

span ` > 0 times of a full toroidal angle during one bounce. Since the orbit trajectories for

each ` are different, one can separate the perturbed distribution function for the `th class of

particles as

f1 = f1`(~v, ψ, α)e−i2π`h(~v,ϑ), (2)

where h(~v, ϑ) = σ(
∫ ϑ

0
dθvα

DJB/v‖)/(
∮

dθvα
DJB/v‖) with the sign function σ that σ = +1

for co-rotation with plasma current. With the definition of the phase factor P` ≡ ei2π`h(~v,ϑ),

the modified collisional operator C`[f ] ≡ C[fP−`]P`, and f1` ∝ einα in the presence of

non-axisymmetric field, one can obtain

i (`ωb − n〈vα
D〉b) f1` + 〈C`[f1`]〉b = 〈vψ

DP`〉b ∂f0

∂ψ
. (3)

This is a generalized bounce-averaged drift-kinetic equation to be solved for the `th class of

particles.

The generalized equation, Eq. (3), implies that a particle in a resonance `ωb−n〈vα
D〉b = 0

effectively does not precess and would drift out radially except for collisions. The radial

diffusion through this effective 1/ν behavior is very strong in high-temperature plasmas, and

a small fraction of particles that makes the resonance always exists in Maxwellian plasmas.

The dominance of these resonating particles on the transport enables one to ignore non-

resonant particles `ωb−n〈vα
D〉b 6= 0. Since the `th class of particles has different orbits, their

effective radial drifts 〈vψ
DP`〉b and collisions 〈C`[f1`]〉b are also different.

One needs to know the drift motions and collisions to solve Eq. (3) for f1`. In the first

order of gyro-expansion, the drift velocity is ~vD = v‖/B~∇× (v‖ ~B/ωg) [21], where the gyro-

frequency is ωg ≡ eB/M and v‖ ≡ ±(2(U − µB − eφe)/M)1/2 with the total energy U , the

electric potential φe, the charge e and mass M of a species. The non-axisymmetric part of
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the precession (α) and the radial drift (ψ) is [8]

v
(α,ψ)
D = ~v · ~∇(α, ψ) =

v‖
JB

∂

∂(ψ, α)

(
v‖JB2

χ′ωg

)
, (4)

respectively. The bounce-averaged precession becomes

〈vα
D〉b = −dφe

dχ
+

〈
µ

dB

edχ
− (2E − 2µB)

d ln(JB)

edχ

〉

b

, (5)

which includes the electric precession ωE, and magnetic precession ωB. The bounce-

averaged radial drift is proportional to the spatial variation in the action as 〈vψ
DP`〉b =

(1/eχ′)(ωb/2π)(∂J`/∂α). The action for the `th class of particles is J` =
∮

dϑJBMv‖P`/χ′

and its spatial variation becomes

∂J`

∂α
=

2π

ωb

〈(
2E − 3µB

B

)
∂

∂α

(
BP`

)〉

b

. (6)

That is, the radial drift occurs due to the symmetry-breaking in the action, or equivalently

in the effective field strength BP` seen by the `th class of particles.

The perturbed distribution function f1` is not analytically tractable due to the compli-

cated collisional operator. Here the simple Krook operator, C[f1] = −νKf1 with the effective

collision frequency νK [18] is used to combine the regimes. One can see the validity of this

approach in the final solution. Using the drifts and collisions, the solution of Eq. (3) becomes

f1` =
(1/e)(ωb/2π)

i`ωb − in(ωE + ωB)− νK

(
∂J`

∂α

)
∂f0

∂χ
. (7)

The average flux across a magnetic surface is determined by the radial flow as Γ` =

〈N~u` · ~∇ψ〉 [16], where the flux average is 〈A〉 =
∮

dϑdϕJA/
∮

dϑdϕJ . Using Eqs. (1) and

(2), and by changing variables from ~v to (E, µ) for f1`(E, µ, ψ, α), one can obtain

Γ` =
1

J00M2

∫
dE

∫
dµ

∮
dϕ
〈C`[f1`]P−2`〉bf1`

ωb∂f0/∂χ
, (8)

where J00 = 1/(2π)2
∮

dϑdϕJ . This is a general expression that one can use to obtain the

flux when f1` is known. Using Eq. (7),

Γ` =
1

4π2e2M2J00

∫
dE

∫
dµ

∮
dϕ×

〈|P−`|2〉bνKωb

(`ωb − n(ωE + ωB))2 + (νK)2

∣∣∣∣
∂J`

∂α

∣∣∣∣
2
∂f0

∂χ
. (9)

As can be seen, the variation of the field strength through the action and the gradient of

the zeroth-order distribution function drives the non-ambipolar transport.
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The general expressions for f1` and Γ` in Eqs. (7) and Eq. (9) are more tractable if

appropriate models and approximations are used. A model of the field can be given by B =

B0(1−ε cos ϑ)+B0

∑
nm δnmei(m−nq)ϑ+inα, ignoring the higher-order shaping terms. Only the

first order in terms of the inverse-aspect ratio ε will be evaluated, so the differences between

magnetic coordinate systems can be ignored. The zeroth-order distribution function can be

taken by Maxwellian distribution f0 = fM = N/(
√

πvt)
3 × e−v2/v2

t with vt = (2T/M)1/2.

For convenience, normalized variables x ≡ E/T and κ2 ≡ (E − µB0(1 − ε))/2µB0ε will

be used instead of (E, µ). The electric precession is independent of (x, κ2), but the bounce,

the magnetic precession frequency and the action integration over ϕ become

ωb =
π
√

ε

2
√

2
ωt

√
x

K(κ)
≈ π

√
ε

4
√

2
ωt

√
x, (10)

ωB = σ
q3ω2

t

2εωg

x
F
−1/2
010c (κ)

4K(κ)
≈ σ

q3ω2
t

4εωg

x, (11)

∫
dϕ

∣∣∣∣
∂J`

∂α

∣∣∣∣
2

=
π(MvtqR0)

2

2ε
x

∑

nmm′
n2δ2

nmm′F
−1/2
nm` F

−1/2
nm′` (12)

in the first order in ε, using Eqs. (5) and (6). Here the transit frequency ωt = vt/qR0,

the complete elliptic integral of the first kind K, and δ2
nmm′ ≡ Re(δnm)Re(δnm′) +

Im(δnm)Im(δnm′). The function F y
nm` is defined as

F y
nm`(κ) =

∫ ϑt

−ϑt

dϑ(κ2 − sin2(ϑ/2))y cos[Θnm`(ϑ)], (13)

where Θnm`(ϑ) = (m−nq)ϑ− 2π`h(ϑ) and ϑt = 2 arcsin(κ). The approximations K(κ) ≈ 2

and F
−1/2
010 ≈ (1/2)F

−1/2
000 = 2K(κ) are used above. Also, one can approximate the phase

factor h(θ) = σK(κ, (π/2)(ϑ/ϑt))/4K(κ) ≈ σϑ/2π by taking the linear behavior of the

incomplete elliptic integral of the first kind, K(κ, ϑ), so Θnm`(ϑ) ≈ (m − nq − σ`)ϑ and

〈|P−`|2〉b ≈ 1.

The effective collisional frequency νK is valid if it can represent a more accurate collsional

operator such as a pitch-angle operator, that is, νKf1` ≈ 〈Cp[f1`P−`]P`〉b. If a single har-

monic perturbation is applied, it has been shown that [13] νK ≈ (νD/2ε)[1 + (m − nq)2 +

(`/2)2], where the deflection collision frequency νD is νDa ≈ x−3/2νa ≡ x−3/2
∑

b νab for a

species a [20]. Here a further approximation is taken m−nq ≈ 0, so νK ≈ (νD/2ε)[1+(`/2)2].

The transport is predominantly driven by resonating particles in the 1/ν regime where the

perturbations with m− nq ≈ 0 give the dominant contribution. This approximation is very
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accurate for 1/ν regime as illustrated in Fig. 1. For plasmas in a pure ν regime, it becomes

inaccurate in the presence of multi-harmonic perturbations, and the estimation for ν
√

ν

regime [17] should be used. Complications of multi-harmonic perturbations may lead to

stochastic transport [8, 11], which are ignored in our study.

One can use the described approximations and obtain the non-ambipolar flux, and also

the surface-averaged toroidal force by Γ = (1/eqχ′2)〈 ~BT · ~∇ · ↔Π〉 [14]. The toroidal force

produces a rotational damping, so it is convenient to use the flow instead of the radial

derivatives for the pressure and the electric potential. In the first order gyro-expansion,

1/p(dp/dχ)+e/T (dφe/dχ) = −e/T (uϕ−quϑ), and the poloidal rotation can be approximated

as uϑ ≈ (1/eq)dTa/dχ [20]. The general formula is then

〈φ̂ · ~∇ · ↔Π`〉 =
ε1/2puϕ

`√
2π3/2

〈
1

R

〉 ∫ 1

0

dκ2δ2
w`

∫ ∞

0

dxR1`, (14)

where

δ2
w` =

∑

nmm′
δ2
nmm′

F
−1/2
nm` F

−1/2
nm′`

4K(κ)
,

R1` =
1

2

n2(1 + ( `
2
)2)νa

2ε
xe−x

(`ωb − n(ωE + ωB))2 +
(
(1 + ( `

2
)2)νa

2ε

)2
x−3

,

for a species. Note ωb in Eq. (10) and ωB in Eq. (11) are also functions of x. The torque is

proportional to the toroidal flow uϕ with the neoclassical offset by

uϕ
` = uϕ + c`σ

∣∣∣∣
1

e

dTa

dχ

∣∣∣∣ , (15)

where the factor c` = 1+
∫∞
0

dxR2`/
∫∞
0

dxR1` with R2` = (x−5/2)R1`. Since the variation

is moderate, one can approximate c` ≈ 2 between c` = 3.5 when ν →∞ and c` = 0.5 when

ωE →∞. If the transport in ν
√

ν regime [17] is larger than that given by Eq. (14), so the

plasma is purely in ν
√

ν regime, one can take the maximum of these evaluations as Γ =

max{`|Γ`, Γν
√

ν}. The evaluations for each ` and for ν
√

ν regime are done independently

and include all of the particles.

To understand a typical parametric dependency of Eq. (14) on the collisionality, a

set of parameters are chosen: R0 = 2m, r = 0.6m, B0 = 2T , q = 2.2 and the density

N = 5 × 1019m−3. These parameters are relevant for present tokamaks such as NSTX and

DIII-D except the edge region, but also for ITER by a scaling Γ ∝ B0/R0. The temperature

is scanned over T = 0.01keV to 100keV , and two rotations are examined, ωE/2π = 1kHz

6



(a) fφ = 10 KHz

       
10-2

100

102

104

106

ν d
am

p
 [

/s
] 

∝
 D

 / 
T

 Observation

(b) fφ = 1 KHz

101 102 103 104 105 106 107

νii [/s]

10-2

100

102

104

106

ν d
am

p
 [

/s
] 

∝
 D

 / 
T

1/ν regime
ν_ν1/2 regime
Resonance_0
Resonance
General

General
Co-rotation

Counter-rotation

FIG. 1: The typical rotational damping rate (/s), which is proportional to diffusivity divided

temperature, as a function of ion-ion collision frequency for two different rotations. Each evaluation

uses Γ1/ν (1/ν regime), Γν
√

ν (ν ν1/2 regime), Γ0 (Resonance 0), ` > 0 Γ` (Resonance), and

Γ = max{`|Γ`, Γν
√

ν} (General).

relevant for ohmic plasmas, ωE/2π = 10kHz relevant for NBI-heated plasmas. The diamag-

netic and neoclassical flow are ignored, so ωE/2π = fφ. For perturbations, multi-poloidal

harmonics δnm = 10−3e−(m−5)2/50 are applied with −10 ≤ m ≤ 20 and n = 3. This spectrum

models the actual field from the coils on the outboard side.

Fig. 1 shows rotational damping rates νdamp = 〈φ̂ · ~∇ · ↔Π`〉/2πfφR0MN as a function of

ion-ion collision frequency ν = νii. The 1/ν [16] and ν
√

ν [17] calculations are also shown

for comparison. Note that ` = 0 follows almost exactly the 1/ν result for high ν, indicating

the accuracy of νK . Also, note that there is large discrepancy up to 6 orders of magnitude at

low ν between the 1/ν and ν
√

ν evaluations. One can see from (a) that the smaller of the

two gives the damping rate νdamp . 1/s. However, experiments have shown that plasmas

with the given parameters (a) have νdamp = 10 ∼ 100/s in a range of νii = 103 ∼ 104/s, as

roughly marked by a box in Fig. 1 (a). Also, a 1/ν behavior has been often observed in this

range of the collisionality [4, 6], although a simple criteria ωE >> ν/ε implies that plasmas

must be in ν
√

ν regime.

The inconsistency can be resolved by the generalized evaluation of Eq. (14). Fig. 1

(a) shows that the successive ` bounce-harmonic resonances strongly enhance the transport
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FIG. 2: Comparison between the non-ambipolar (DNA) and ambipolar (DA) diffusions as a function

of ion-ion collision frequency for two different rotations.

for νii = 103 ∼ 104/s and give νdamp = 10 ∼ 100/s with a broad 1/ν behavior as all

consistent with observations. Note that variations in the field strength must be as large as

δ ∼ 10−3. This is a relevant value when evaluated along the perturbed (displaced by ~ξ)

magnetic field lines as δ = δE + (~ξ · ~∇B)/B0 [22]. If it is evaluated along the unperturbed

field lines as in vacuum superposition [19], typically δE ∼ 10−4 in practice. The δ/δE gives

another enhancement by factor of ∼ 102, which is essential in addition to bounce-harmonic

resonances to reach the experimental values. The effects of other parameters are weak

compared to these two effects. One can also see the case with a low rotation from Fig. 1

(b), where only the ` = 1 resonance occurs for νii = 103 ∼ 104/s. When ν becomes lower, the

plasma enters the ν
√

ν regime for the co-rotating case, but another resonance between the

electric and magnetic precession can occur for the counter-rotating case. This may degrade

the benefit of the counter-rotation by the neoclassical flow [6] in ITER.

It is worthwhile to compare the non-ambipolar diffusion DNA with the neoclassical am-

bipolar diffusion DA ≈ ε−3/2q2ρ2
eνei, where ρe is the electron gyro-radius and νei is the

electron-ion collisional frequency. The comparison with δ ∼ 10−3 in Fig. 2 shows that DNA

can be much larger than DA, and can be comparable to the Bohm-like diffusion in the low

collisionality. Also note that the rotation dependency of the non-ambipolar transport differs

by the collisionality. One can find roughly DNA ∝ 1/ωE for νii > 103, but DNA ∝ ωE for

νii < 103, which implies that the rotational stability in the presence of non-axisymmetry

can greatly change along with the collisionality.

In summary, non-ambipolar transport in perturbed tokamaks is discussed with a gen-

eralized analytic treatment. The strong enhancement of transport is predicted by the `

bounce-harmonic resonances and by the actual variations in the field strength, and signifi-
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cantly improves the consistency between theory and experiment. Non-ambipolar transport

can be dominant in ITER-relevant regimes, indicating that a strong control of particle and

momentum can be utilized, but must be carefully designed not to degrade the energy con-

finement.
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