
Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Princeton Plasma Physics Laboratory

PPPL- 

Pamela Hampton
Text Box
PPPL-



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 

Trademark Disclaimer 

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  

 
 

PPPL Report Availability 
 

Princeton Plasma Physics Laboratory: 
 

 http://www.pppl.gov/techreports.cfm  
 
Office of Scientific and Technical Information (OSTI): 

http://www.osti.gov/bridge 

 

Related Links: 
 

U.S. Department of Energy 
 
Office of Scientific and Technical Information 
 
Fusion Links 



Noise-Sustained Convective Instability in a Magnetized

Taylor-Couette Flow

Wei Liu1

Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasma, Princeton

Plasma Physics Laboratory, Princeton, NJ, USA 08543

wliu@lanl.gov

ABSTRACT

The helical magnetorotational instability of the magnetized Taylor-Couette

flow is studied numerically in a finite cylinder. A distant upstream insulating

boundary is shown to stabilize the convective instability entirely while reducing

the growth rate of the absolute instability. The reduction is less severe with larger

height. After modeling the boundary conditions properly, the wave patterns

observed in the experiment turn out to be a noise-sustained convective instability.

After the source of the noise resulted from unstable Ekman and Stewartson layers

is switched off, a slowly-decaying inertial oscillation is observed in the simulation.

We reach the conclusion that the experiments completed to date have not yet

reached the regime of absolute instability.

Subject headings: accretion, accretion disk—instability—(magnetohydrodynamics:)

MHD —methods: numerical

1. Introduction

The magnetorotational instability (MRI) is probably the main source of turbulence and

accretion in sufficiently ionized astrophysical disks (Balbus & Hawley 1998). Due to this

crucial role in astrophysics, substantial efforts have been spent worldwide to observe MRI in

a laboratory setting (Ji et al. 2001; Goodman & Ji 2002; Noguchi et al. 2002; Sisan et al. 2004;

Velikhov et al. 2006), but MRI has never been conclusively demonstrated in the laboratory.

1Current address: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA 87545
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Most experiments have been done in cylindrical geometry with a background flow that

approximates the ideal Couette rotating profile:

Ω = a + b/r2 , (1)

where a = (Ω2r
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), Ω1 and Ω2 are the rotation

speed of the inner and outer cylinder and r1 and r2 are the radius of the inner and outer

cylinder, respectively (see Fig. 1). For axially periodic or infinite magnetized Taylor-Couette

flow, MRI-like modes have been shown theoretically to grow at much reduced magnetic

Reynolds number Rem ≡ Ω1r1(r2 − r1)/η and Lundquist number S ≡ VA,0r1(r2 − r1)/η in

the presence of a combination of axial and current-free toroidal field

B
0 = B0

z (ez + βr1/reϕ) (2)

than the standard MRI (SMRI) with purely axial magnetic field (Hollerbach & Rüdiger

2005; Rüdiger et al. 2005). Here the cylindrical coordinates (r, ϕ, z) are used. B0

z and β

are constants. The Alfvén speed is defined as VA,0 ≡ B0

z/
√

4πρ. η and ρ are the magnetic

diffusivity and density of the fluid, respectively (see Fig. 1).

The Potsdam ROssendorf Magnetic Instability Experiment (PROMISE) group claimed

to have observed this kind of helical MRI (HMRI) experimentally (Stefani et al. 2006; Rüdiger

et al. 2006; Stefani et al. 2007). However we have shown that the wave pattern observed in

PROMISE is not a global instability, but rather a transient disturbance somehow excited by

the Ekman circulation and then transiently amplified as it propagates along the background

axial Poynting flux with nonzero group and phase velocities, but is then absorbed once it

reaches the jet formed at midheight between two neighboring Ekman cells (Liu et al. 2007).

PROMISE group have accordingly updated the experimental facility to PROMISE II to allow

for two split rings at both endcaps: the inner ring attached to the inner cylinder and outer

ring attached to the outer cylinder. If the width of the inner ring is chosen appropriately

∼ 0.4(r2 − r1), the magnetized Ekman circulation could be significantly reduced, therefore

removing one of the possible disturbance sources, i.e. the unsteady jet (Szklarski 2007).

As with other examples in the literatures, such as drifting dynamo waves (Tobias et al.

1998; Proctor et al. 2000), it is of vital importance to distinguish absolute instability from

convective instability in a traveling wave experiment like PROMISE. It is also an essential

ingredient of the threshold prediction for the Riga dynamo (Gailitis et al. 2008). For a

traveling wave the positivity of the growth rate implies only an amplification of the per-

turbation as it moves downstream. In one case, despite the movement of the wave packet,

the perturbation increases without limit in the course of time at any point fixed in space;

this kind of instability with respect to any infinitesimal perturbations will be called absolute

instability. In the other case, the packet is carried away so swiftly that at any point fixed in
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space the perturbation tends to zero as t → ∞; this kind will be called convective instability

(Landau & Lifshitz 1987) (see the details of §2). For PROMISE II, it appears that under

the experimental conditions the second kind occurs. A recent preprint also highlights the

importance of the distinction between absolute and convective instabilities in the context of

the HMRI (Priede & Gerbeth 2008).

In a Taylor-Couette experiment bounded by insulating endcaps, Tobias et al. (1998)

have pointed out that without any external disturbances except a small initial disturbance

needed as a seed for the instability, the distant upstream insulating boundary acts as an

“absorbing” boundary while the characteristics of the downstream endcap is unimportant.

Due to this absorption the convective unstable state cannot be sustained by a uniform driving

force, therefore this unstable mode eventually decays (Tobias et al. 1998). This driving force

is not the noise mentioned before, but the power to drive the instability, which in the usual

Taylor-Couette experiments can be quantified by the magnetic Reynolds number Rem. This

conclusion has been rigorously demonstrated in the very resistive limit in §II.C of Liu et al.

(2006a) using a perturbative approach and §II.D of Liu et al. (2006a) using a modified WKB

analysis, showing that the insulating endcap entirely stabilizes the HMRI mode, which is a

convective unstable mode given the parameters of the PROMISE experiment.

The absorbing boundary is essential to the development, regardless of how distant it may

be. The larger height only defers the time when we have to wait for the boundary-induced

dissipation to dominate (Tobias et al. 1998). On the other hand, if Rem exceeds a higher

threshold Rem,f , the driving force of the system overcomes the dissipation and a globally

unstable mode appears (Tobias et al. 1998). Therefore in a bounded system the unstable

mode appears at Rem,f rather than Rem,c, where Rem,c is the critical magnetic Reynolds

number for the onset of the convective unstable mode without the “absorbing” boundary.

Tobias et al. (1998) has showed that in the presence of an “absorbing” boundary and large

h, a global unstable mode appears when

Rem > Rem,f ≡ Rem,a + O(h−2) ,

where Rem,a is the critical magnetic Reynolds number corresponding to the onset of the

absolute instability without the “absorbing” boundary.

This has raised a big obstacle for people to observe absolutely unstable HMRI in the

laboratory. The advantage of HMRI itself, i.e., unstable with a low critical Reynolds number

(3 orders lower than the SMRI) conflicts with the necessarily high threshold of the onset of an

absolute HMRI mode, i.e., excited at a reasonably high critical magnetic Reynolds number,

thus high Reynolds number, which would result in much more severe end-effects than people

had expected. Moreover the fact that the critical Lundquist number must usually increase
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together with the magnetic Reynolds number and high ratio of toroidal-to-poloidal magnetic

field requirement (β > 1) would even worsen the situation.

We also find that by nonlinear numerical simulation the insulating endcap reduces the

growth rate of the absolute instability somewhat. The higher the height h is, the less the

growth rate is reduced (Table 1).

In a typical experiment, the experiment is, however, highly likely affected by small exter-

nal noise either from a physical cause or experimental imperfection such as the misalignment

of the cylinders. If the system is convectively unstable, i.e., disturbances grow as they move

downstream, noise would sustain structures in the system even if no global mode is unstable

(Deissler 1987; Proctor et al. 2000). In the present paper, we show by numerical simulations

that the perturbations from the unstable magnetized residual Ekman layer and Stewartson

layer at the upper endcap would play the role of “noise” generator, though this perturba-

tion level is reduced with increased axial magnetic field (Liu 2008a). What is observed in

PROMISE II turns out to be a noise-sustained convective traveling wave, not the absolute

unstable mode.

This paper is organized as follows: §2 presents the wave packet analysis in a unbounded

cylinder, which is the basis of the following sections. We report the nonlinear simulation

results with partially conducting boundary conditions of PROMISE II experiment in §3. The

final conclusions and implications to the HMRI experiments are given in §4.

2. Wave Packet Analysis in an Unbounded Cylinder

Assuming a cylinder of infinite height h, kz is a continuous variable. Let the gap width

be fixed and finite, so kr
∼= π/(r2 − r1). We define the total wavenumber K =

√
k2

r + k2
z and

the growth rate γ.

Since the fast growing mode is the dominant mode, here we focus on waves with vertical

wavenumber kz close to that of the fastest growing mode, k0
z . The range of values of kz lies

near the point for which γ(kz) is a maximum, i.e. dγ/dkz = 0 at kz = k0

z [as seen from Fig. 2

(a)]. Let a slight perturbation occurs near the middle of the flow (z ∼ 0) in the format of a

wave packet as follows:

Br(z, t = 0) = b0 exp

(
− z2

2L2

)
exp(ik0

zz) , (3)

where we have used the envelope exp(−z2/2L2) to confine the perturbation around the

central part of the cylinder, where L ∼ O(h). In the course of time, the components for
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which γ(kz) > 0 will be amplified, while the remainder will be damped. The amplified

wave packet thus formed will also be carried downstream with a velocity equal to the group

velocity dω/dkz of the packet, where ω = Rω + iγ and Rω is the real part of the frequency;

since we are now considering waves whose wave numbers lie in a small range near the point

where dγ/dkz = 0, the quantity

Vg = dω/dkz
∼= d(Rω)dkz (4)

is real, and is therefore the actual propagation velocity of the packet. This downstream

displacement of the perturbations is very important, and causes the complications of absolute

instability v.s. convective instability.

We can approximate the dispersion relation like (Fig. 2):

Rω = Rω(kz) = κ
kz

K
; (5)

γ = γ(kz) = γ0 − σ

2
(kz − k0

z)
2 , (6)

in which κ2 = (1/r3)d(r2Ω)2/dr = 4(1 + Ro)Ω2 and Ro ≡ 1/2d lnΩ/d ln r = a/Ω − 1 is

the Rossby number. We know γ = 0 when kz = 0. Thus σ = 2γ0/k02

z . And in order to

simplify the derivation, we assume K ≈ constant from now on (though this is not a good

approximation, we can get some insightful results from this simple approximation). From

Eq. 5, we get Vg = κ/K.

At later time t > 0

B̃r(kz, t) = B̃r(kz, 0) exp(γ(kz)t + iRω(kz)t)

= B̃r(kz, 0) exp{[γ0 − σ
2
(kz − k0

z)
2]t + iκkz

K
t} . (7)

If we define D =
√

L2 + σt, the result can be expressed as:

Br(z, t) = b0

L

D
exp(γ0t) exp

[
−(z + Vgt)

2

2D2

]
exp[ik0

z(z + Vgt)] . (8)

In Eq. 8, as t → 0, Eq. 8 can be simplified as:

Br(z, t) = b0 exp(γ0t) exp[ik0

z(z + Vgt)] , (9)

which is a “transiently” growing phase. As t → ∞,

Br(z, t) = b0

L√
σt

exp

[(
γ0 −

V 2

g

2σ

)
t

]
exp[ik0

z(z + Vgt)] . (10)

Obviously if γ0 < γa = V 2
g /2σ, we will get convective instability, which starts with a tran-

siently growing phase (Eq. 9) followed by a phase asymptotically decaying to zero (Eq. 10).

If γ0 > γa, we will get absolute instability.
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3. Noise-Sustained Convective Instability in PROMISE II Experiment

In order to reduce the undesirable effects induced by the endcaps and also the accompa-

nying hydromagnetic asymmetries, Szklarski (2007) has proposed to split both endcaps into

two rings which are attached to both cylinders and found that if the width of the inner ring

is chosen to be 0.4D (see Fig. 1), where D = r2 − r1 is the gap between the inner and outer

cylinder, the magnetic energy in term of bϕ, where bϕ is the perturbed azimuthal magnetic

field, is minimized. Therefore the magnetized Ekman circulation is significantly reduced,

leading to a satisfactory ideal Couette state (Eq. 1) in the bulk flow. PROMISE has been

accordingly updated to PROMISE II adopting this idea.

While we have confirmed their conclusions (Fig. 3) (Please note that in Szklarski (2007),

this conclusion is derived with β = 0, i.e., no background toroidal magnetic field, while our

simulation results show that this conclusion is also valid with nonzero β), here we report

nonlinear simulations with the ZEUS-MP 2.0 code (Hayes et al. 2006; Liu 2008b), which is

a time-explicit, compressible, astrophysical ideal MHD parallel 3D code, to which we have

added viscosity, resistivity (with subcycling to reduce the cost of the induction equation),

and partially conducting boundary conditions (Liu et al. 2007), for axisymmetric flows in

cylindrical coordinates (r, ϕ, z). It has been demonstrated that the finite conductivity (ηCu =

1.335 × 102 cm2s−1) and thickness of the copper vessel are important, and this noticeably

improves agreement with the measurements compared to previous much simplified boundary

condition (Liu et al. 2007). Please note that in this paper µ = Ω2/Ω1 = 0.26, rather than

µ = 0.27 reported in previous work. The parameters of PROMISE II as reported in or

inferred from Stefani et al. (2008) are used: gallium density ρ = 6.35 g cm−3, magnetic

diffusivity η = 2.43 × 103 cm2 s−1, magnetic Prandtl number Prm ≡ ν/η = 1.40 × 10−6;

Reynolds number Re ≡ Ω1r1(r2 − r1)/ν = 1775; axial current Iz = 6000 A; toroidal-coil

currents Iϕ = 0, 50, 75, 120 A; and dimensions as in Fig. 1.

For comparison, we start with purely hydrodynamic (unmagnetized) simulations (Fig. 4).

From Fig. 4 (a), after splitting the endcaps into two rings, the two big Ekman cells are di-

vided into four smaller cells and localized near the endcaps. Compared to the simulation

results of PROMISE (Liu et al. 2007), there is not an flapping “jet” near the mid-plane as

in the usual Ekman circulations. This removes the possible noise from this unsteadiness.

However from Fig. 4 (b), there are some perturbations near both endcaps, which supply

the possible sources of noise in the system. These perturbations are resulted from unsta-

ble Ekman layer and Stewartson layer (Liu 2008a). The magnitude of this noise is around

±0.2 mm s−1. As we will see later (Fig. 5), this unsteadiness is reduced by increasing axial

magnetic field (Gilman 1971; Liu 2008a).

Figure. 5 displays vertical velocities near the outer cylinder in simulations corresponding
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to the experimental runs of Stefani et al. (2008) for several values of the toroidal current,

Iϕ. A wave pattern very similar to that in the experimental data (Stefani et al. 2008) is

seen. Since now there is no jet, the traveling wave is propagating to the bottom endcap and

absorbed there while in the old PROMISE experiment, the traveling wave disappears at the

jet (Liu et al. 2007). We also notice that the perturbation near the upper endcap weakens

with strong axial magnetic field. This could be explained by a more stable magnetized

residual Ekman layer and Stewartson layer (Liu 2008a). Both the weakening of the noise

sources and disappearance of the amplifying mechanism leads to a rather steady state with

Iϕ = 120 A.

It is highly possible that there is much noise in the real experiment due to some experi-

mental imperfection such as misalignment and in the numerical simulation such as numerical

noise. Also the noise could result from physical causes such as the unsteady Ekman layer or

Stewartson layer. These noises would cause a noise-sustained convective instability in the

system as in Proctor et al. (2000). The continuous impulse from the noise sources would

have the system always in the state of “transiently growing” phase (Eq. 9). This results

in similar wave patterns as the ones from the primary instability without noise, which are

observed in PROMISE and PROMISE II experiments and simulations (Liu et al. 2007). The

noise-induced wave pattern is always susceptible to noise-induced disruption as discussed by

Deissler (1987). That is exactly what we found here and in Liu et al. (2007). We can see

this point more clearly by following Liu et al. (2007): performing a simulation that begins

with the experimental boundary conditions until the traveling waves are well established,

and then switches abruptly to ideal-Couette endcaps (Fig. 6). After the switch, the traveling

waves disappear after one axial propagation time and slowly decaying inertial oscillations

(asymptotically to zero) result. The main differences in results between Liu et al. (2007) and

the present simulation are: (1) there is no jet, thus the traveling waves are absorbed near

the bottom endcap both before and after the switch; (2) there is no change of wave speed

associated with the switch since the background state does not change much before and after

the switch. We reach the conclusion that even after the endcaps are split into two rings as

in PROMISE II, the wave patterns observed in the experiment are not global instability,

but rather noised-sustained convective instability. The similarity between these “inertial-

oscillation-induced waves” after the switch and the earlier noise-sustained “MRI waves” in

the simulation or “MRI-type waves” observed in the various versions of PROMISE stems

from the physical nature of HMRI that HMRI is a weakly destabilized inertial oscillation

(Liu et al. 2006a). More importantly, this similarity supports our conclusion in another

aspect: the frequency and wavenumber selection mechanism for a noise-sustained structure

is determined by a linear mechanism, thus resembling the properties of the primary instabil-

ity. In contrast in the globally unstable regime, a nonlinear eigenvalue problem selects the
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frequency (Proctor et al. 2000).

4. Discussion

In this paper, nonlinear simulations of the helical magnetorotational instability in a

magnetized Taylor-Couette flow are performed. The geometry mimics PROMISE II ex-

periment with endcaps split into two rings. The partially conducting boundary condition

introduced in Liu et al. (2007) is used. The waves patters change with applied magnetic field

as in the experiment. However via numerical tests, we find that the wave patterns observed

in PROMISE II experiment are not due to a global instability, but rather a noise-sustained

convective instability.

The importance of the distinction between absolute and convective instability in a

bounded system with broken reflection symmetry is discussed. The addition of the toroidal

magnetic field breaks the axial symmetry of the system. In such cases, the effects of distant

upstream insulating boundaries on the absolute instability differs remarkably from the ones

on the convective instability. The insulating endcap would only reduce the growth rate of the

absolute instability, but would stabilize the convective instability entirely, however distant

it may be. For the absolute instability, the more distant insulating endcap would less reduce

the growth rate, while for the convective instability the more distant endcap would only have

the system wait longer for the dissipation due to the “absorption” boundary to dominate.

These discoveries cast great obstacles for people to observe the helical magnetorotational

instability in the laboratory: An absolute HMRI is needed to observe the global unstable

mode in the experiment.

Unfortunately it is not easy to derive the critical magnetic Reynolds number Rem,f of

the absolute HMRI analytically in a bounded system. However we can get a rough estimate

of Rem,a, i.e., the critical magnetic Reynolds number of the absolute HMRI in an unbounded

system, by wave packet analysis (§2) and the approximate dispersion relation from Fig. 2.

From Fig. 2, we derive the group velocity Vg ∼ 1.08 cm s−1, γ0 ∼ 0.31 s−1, k0

z ∼ 0.52 cm−1

and σ ∼ 2.29 cm2 s−1. Therefore γ0 − V 2
g /2σ ∼ 0.05 s−1 > 0, which corresponds to an

absolute HMRI instability with Rem,a ∼ 0.07. We therefore conjecture that Rem,f ≡ Rem,a +

O(h−2) & 0.07 in PROMISE II. The critical magnetic Reynolds number is somehow one order

of magnitude lower than the standard MRI, but still requires Reynolds number Re ∼ 105.

Therefore we need to rotate the cylinder typically with more than one hundred rpm. Such

rotation rates are of course achievable, however with such a Reynolds number the advantage

of HMRI with much lower Reynolds number, thus much lower end-effects, is not so great

as people had expected. Moreover in most HMRI unstable modes β > 1 is preferred, this
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suggests a toroidal magnetic field typically at ∼ 1, 000 G, which requires axial currents

> 104 A inside the inner cylinder. This is a big engineering challenge in itself. The technical

constraints prevent us to try to find the threshold by nonlinear numerical simulations such

as: (1) the current code can not afford large Reynolds number (∼ 105), which is required

for HMRI to enter the absolutely unstable regime; (2) from the global linear calculation, the

HMRI mode is stabilized if an artificially low Reynolds number like ∼ 103, which could be

afforded by the current code, is employed.

The nonaxisymmetric m = 1 modes are observed in the experiments (Stefani et al. 2006;

Rüdiger et al. 2006; Stefani et al. 2007). Unfortunately since the simulations presented in

this paper are all axisymmetric, the possibility to study this important mode is excluded.

The extension of the current work to 3D will be the subject of the future study. Rüdiger

et al have already done some excellent work on this issue and found that given PROMISE

parameters the nonaxisymmetric HMRI modes are always harder to be excited than the

symmetric mode (Rüdiger et al. 2005; Rüdiger & Schultz 2008).
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Rüdiger, G. & Schultz, M. 2008, Astron. Nachr., 329, 659

Sisan, D. R., Mujica, N., Tillotson, W. A., Huang, Y., Dorland, W., Hassam, A. B., Anton-

sen, T. M., & Lathrop, D. P. 2004, Phys. Rev. Lett., 93, 114502

Stefani, F., Gailitis, A., & Gerbeth, G. 2008, arXiv:0807.0299
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Ω1h/VA,0 20.3 40.6 81.2 periodic

Growth Rate γ s−1 0.27 0.58 0.82 1.06

Table 1: Influence of the height h upon the growth rate γ of the absolute instability in a

bounded cylinder. r1 = 7.1 cm, r2 = 20.3 cm, Ω1 = 400 rpm, Ω2 = 53.3 rpm, Bz = 500 G,

Bθ(r1) = 1 kG, the height h = 27.9 cm, 55.8 cm and 111.6 cm; the material properties are

based on gallium: η ≈ 2000 cm2 s−1 and ρ ≈ 6 g cm−3, which give Rem = 2 and S = 2.7,

no explicit viscosity present. The simulations are performed using a modified version of the

astrophysical code ZEUS2D (Stone & Norman 1992a,b; Liu et al. 2006b). The boundary

conditions adopt the one introduced in §II.D of Liu et al. (2006a). Please note that no-

slip boundary conditions are employed on all applicable boundaries and ideal Couette state

(Eq. 1) is enforced at both endcaps in order to remove the Ekman circulation and possible

disturbances induced by this boundary layer effect. The one labeled “periodic” uses vertically

periodic boundary conditions with periodicity length h = 27.9 cm.
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Fig. 1.— Computational domain for simulations of PROMISE II experiment. Region (I):

inner copper cylinder, angular velocity Ω1. (II): outer copper cylinder, Ω2. (III): liquid

gallium; (IV): vacuum. Thick dashed line: insulating inner ring, corotating with the inner

cylinder. Thick dash-dot line: insulating outer ring, corotating with the outer cylinder. The

junction of these two rings lies at 40% of the gap (D = r2 − r1) between the inner and outer

cylinder (Szklarski 2007). Dimensions: r1 = 4.0 cm; r2 = 8.0 cm; h = 40.0 cm; dwI = 1.0 cm;

dwII = 1.5 cm; Ω1/2π = 3.6 rpm; Ω2/2π = 0.936 rpm. Note that µ = Ω2/Ω1 = 0.26, rather

than µ = 0.27 used in previous work (Stefani et al. 2006; Rüdiger et al. 2006; Liu et al. 2007;

Stefani et al. 2007). The exact configuration of the toroidal coils being unavailable to us,

six coils (black rectangles) with dimensions as shown were used, with 67 turns in the two

coils nearest the midplane and 72 in the rest. Currents Iϕ were adjusted to reproduce the

reported Hartmann numbers Ha ≡ B0
zr1/

√
ρµ0ην.
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Fig. 2.— (a) Growth Rate γ; (b) Real Frequency Rω. * Linear Calculation, - Approximation

by Eq. 5 and Eq. 6. r1 = 4.0 cm, r2 = 8.0 cm, Ω1 = 101.25 rpm, Ω2 = 26.325 rpm, Bz =

220.5 G, β = 4.0; the material properties are based on gallium: η = 2.43 × 103 cm2 s−1,

ν = 3.4 × 10−3 cm2 s−1 and ρ = 6.35 g cm−3. The calculations are performed using a code

(Goodman & Ji 2002) adapted to allow for a helical field. Vertical periodicity is assumed,

but the radial equations are solved directly by finite differences with perfectly conducting

boundary conditions (§II.B of Liu et al. (2006a)).
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Fig. 3.— Azimuthal velocity v.s. Radius r. Re = 1775, β = 3.81 and Iϕ = 75 A. Solid

line, ideal Couette state; +, 1.31 cm; ∗, 2.72 cm; 2, 13.95 cm.
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Fig. 4.— Purely hydrodynamic (unmagnetized) simulations. Left : Time-averaged poloidal

flow stream function Ψ; Right : (color) Axial velocities [ mm s−1] versus time and depth

sampled at r = 6.5 cm, for the parameters of the PROMISE II experiment without any

magnetic field. Note height increases upward from the bottom endcap. No-slip velocity

boundary conditions are imposed at the rigidly rotating endcaps. The steady part of the

resulting Ekman circulation is suppressed in right panel by subtracting the time average at

each height.
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Fig. 5.— (color). Axial velocities [ mm s−1] versus time and depth sampled at r = 6.5 cm, for

the parameters of the PROMISE II experiment with toroidal currents Iϕ as marked. No-slip

velocity boundary conditions are imposed at the rigidly rotating endcaps. The steady part of

the resulting Ekman circulation is suppressed in these plots by subtracting the time average

at each height. The waves appear to be absorbed near the bottom endcap.
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Fig. 6.— (color). An extended version of the case Iϕ = 75 A shown in Fig. 5 but without

subtraction of the time average. After t = 360 s, the no-slip boundary condition at both

endcaps is switched to an ideal Couette profile (Eq. 1). A slowly decayed inertial oscillation

results.
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