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Abstract

Tokamaks are sensitive to deviations from axisymmetry as small as δB/B0 ∼ 10−4. These

non-axisymmetric perturbations greatly modify plasma confinement and performance by either

destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with asso-

ciated non-ambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal

perturbed equilibria and provides important basis for understanding the sensitivity of tokamak

plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equiva-

lently the effect by ideally perturbed plasma currents, is essential to explain locking experiments

on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also

important for Neoclassical Toroidal Viscosity (NTV) in non-ambipolar transport. The consistency

between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved

when the variation in the field strength in IPEC is coupled with generalized NTV theory. These

plasma response effects will be compared with the previous vacuum superpositions to illustrate the

importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently

accurate to predict the details of NTV transport, and can be inconsistent when currents associated

with a toroidal torque become comparable to ideal perturbed currents.
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I. INTRODUCTION

Tokamaks confine toroidal plasmas in a magnetic field that is almost axisymmetric. How-

ever, a significant degradation of performance in tokamak plasmas are observed for non-

axisymmetric magnetic perturbations as small as δB/B0 ∼ 10−4. [1–6]. Tokamaks are

difficult to build without such small errors. Interestingly, such a small magnetic asymme-

tries can be beneficial. Recent experiments on Edge Localized Modes (ELMs) have shown

that non-axisymmetry as small as δB/B0 ∼ 10−4 can eliminate or modify ELMs [7–9], which

is critical for avoiding severe damages to plasma-facing components. These observations in-

dicate that tokamaks are very sensitive to small non-axisymmetric perturbations, and thus

must be controlled at the δB/B0 ∼ 10−4 level for optimal tokamak plasma performance.

A standard approximation is to superpose a non-axisymmetric external field δ ~Bx onto

the ~B0 of an axisymmetric tokamak equilibrium. This approximation essentially assumes

that the plasma response, or equivalently the field δ ~Bp from perturbed plasma currents, is

much smaller or at most comparable to the external field δ ~Bx driven by external currents.

This assumption often fails and thus the field due to perturbed plasma currents δ ~Bp must

be included in the total field, δ ~B = δ ~Bx + δ ~Bp. The magnetic field due to the plasma

response can either amplify or shield the external field, and is essential for understanding

the sensitivity of tokamaks to small non-axisymmetric perturbations.

The plasma response to external perturbations can be understood based on three dimen-

sional plasma equilibria. The external perturbations change for slower Alfvén time, which is

time scale for the relaxation to an equilibrium. In three dimensional equilibria, the nested

magnetic surfaces are non-axisymmetrically deformed, or destroyed by the opening of mag-

netic islands near the rational surfaces. If islands exist, however, plasma rotation slows

and can lock to the islands via multiple mechanisms [10–14], which often leads to a plasma

disruption. The destruction of magnetic surfaces by external magnetic perturbations must

be negligibly small in the bulk of the plasma. Before the onset of the significant islands

and plasma locking, the distortion of the plasma by external magnetic perturbations can be

effectively described by ignoring the islands at the rational surfaces. This is consistent with

the constraints in ideal MagnetoHydroDynamics (MHD), which does not allow topological

changes in magnetic field such as magnetic islands. Therefore, the fundamental and the

practically important level of understanding for the plasma response can be achieved by
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studying ideal perturbed equilibria.

In ideal perturbed equilibria, there are two important consequences [15, 16]: (1) Parallel

currents shield the normal resonant field δBmn at the rational surfaces, which is driving the

opening of an island, and (2) the deformation of magnetic surfaces causes non-ambipolar

transport [17–22] due to the symmetry-breaking of the magnetic field strength |B|. In par-

ticular, toroidal torque by non-ambipolar transport is associated with Neoclassical Toroidal

Viscosity (NTV) [14, 23–25].

This paper will describe the calculations of ideal perturbed equilibria (Sec. II), give

a brief review of its applications to plasma locking through δBmn (Sec. III), and to the

NTV torque through non-axisymmetries in |B| (Sec. IV). Comparisons will be made with

the vacuum superposition approximations to show the importance of the plasma response.

The plasma response based on ideal perturbed equilibria, however, is valid only for an-

order-of-magnitude prediction for NTV torque and is not fully self-consistent. Both δBmn

and non-axisymmetries in |B| cause a toroidal torque, but the currents associated with a

toroidal torque are not included in ideal perturbed equilibria. This will be briefly discussed

(Sec. V).

II. IDEAL PERTURBED EQUILIBRIUM

The Ideal Perturbed Equilibrium Code (IPEC) [26], which is based on the DCON [27] and

the VACUUM [28] stability codes, solves free-boundary ideal perturbed equilibria preserving

the pressure p(ψ) and the safety factor q(ψ) profiles. The fixed q(ψ) profile means that

no topological changes in magnetic field lines are allowed, so magnetic islands are always

shielded. IPEC solves the perturbed force balance equation

~F = ~0 = ~∇δp− δ~j × ~B0 −~j0 × δ ~B, (1)

with the constraint at each q = m/n rational surface that the resonant magnetic perturbation

vanish,

Φmn =
1

(2π)2

∮
dϑ

∮
dϕJ δ ~B · ~∇ψe−i(mϑ−nϕ) = 0, (2)

where J is the Jacobian of magnetic coordinates (ψ, ϑ, ϕ). This constraint eliminates mag-

netic islands at the rational surfaces, and produces a jump in the tangential field across the
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rational surfaces. The surface current associated with this jump gives, within a sign, the

resonant magnetic perturbation that is trying to drive an island.

The external boundary conditions are given by the external perturbation, δ ~Bx ·n̂b, normal

to a control surface, or equivalently to the plasma boundary. As described in detail in [26],

the total normal field on the plasma boundary can be determined as δ ~B · n̂b = P̂ [δ ~Bx ·
n̂b] with a permeability operator P̂ . IPEC uses virtual surface currents to construct the

permeability operator, and gives the total normal field on the boundary surface as well

as all the components of the total perturbed field and displacement, (δ ~B(~x), ~ξ(~x)), which

include the plasma response throughout the plasma volume.

Perturbed plasma currents including shielding currents at the rational surfaces can often

significantly modify the penetration of the field. This can be easily illustrated with a cylin-

drical and force-free (or zero pressure, p = 0) example. Consider a cylindrical plasma with

the q = 2 resonant surface at r/a ∼ 0.8 with a minor radius. The plasma is enclosed by a

conformal wall located at r/a = 1.2, and the external perturbations are specified by external

currents in this wall. A perturbed equilibrium without the plasma can be obtained using

vacuum superposition, and a perturbed equilibrium with the plasma can be obtained using

IPEC. Also, one can obtain a perturbed equilibrium with the plasma using the cylindrical

force-free equilibrium equation. The perturbed magnetic field for the cylindrical plasma

is written as δ ~B = ~∇δA‖ × ẑ = r̂(1/r)(∂δA‖/∂θ) − θ̂(∂δA‖/∂r). With a perturbation

δA‖ = δA‖ cos(mθ − nz/R), the perturbed equilibrium is [29]

1

r

d

dr

(
r
dδA‖
dr

)
− m2δA‖

r2
=

q

r

m

m− nq

d

dr
(K)δA‖, (3)

given a current profile K(r) = µ0j‖(r)/B0. A simple numerical routine, Cylinder forcefree,

was developed to solve Eq. (3).

Fig. 1 shows each (m = 2, n = 1) perturbed equilibrium in terms of the normal field,

using vacuum superposition, IPEC and Cylinder force-free. The IPEC case is obtained for a

near cylindrical (ε ≡ a/R = 0.1) and near force-free (βN ≡ βt/(aBT0/Ip) = 0.1, where βt is

the toroidal β, BT0 is the toroidal field at the magnetic axis, and Ip is the plasma current)

plasma. From Fig. 1, one can see that the IPEC solution using virtual surface currents is

almost identical to the Cylinder force-free solution inside the plasma. The benchmark of the

IPEC solution in the cylindrical limit has been done in this way. Compared to the vacuum

superposition, the ideally perturbed equilibrium (by either of the IPEC or the Cylinder force-
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free solution) shows a fundamental difference in the penetration of the field. The normal

field is completely shielded inside the resonant surface, and the jump in the derivative of

normal field implies the existence of currents shielding the resonant magnetic field. Also,

perturbed plasma currents including these shielding currents significantly change the profile

of the magnetic field compared with the vacuum magnetic field.

Amplification instead of shielding also can be easily found in the cylindrical force-free

example. Fig. 2 illustrates the solutions for this case using vacuum superposition, IPEC,

and Cylinder force-free by applying (m = 3, n = 1) external currents at the wall. Since the

resonant q = 3 surface is close to, but outside the plasma boundary (r/a ∼ 1.04), plasma

is close to instabilities associated with (m = 3, n = 1) and the energy required to perturb

plasma is very small [30]. In addition to shielding and amplification, tokamak plasmas

have strong toroidicity, and thus strong poloidal harmonic coupling. This coupling can also

greatly change the perturbed field and displacement from what would be expected from

vacuum superposition.

III. DESTRUCTION OF FLUX SURFACES AND PLASMA LOCKING

The inclusion of plasma response gives a correct physical interpretation for a locking.

When plasma is almost ideal before the onset of a locking, magnetic islands are suppressed by

shielding currents at the rational surfaces. However, there is an upper limit of perturbation

amplitudes, where the electromagnetic torque becomes too strong for a rotating plasma to

maintain the shielding currents. This is often called error field penetration [10–13]. The

balance between the electromagnetic torque by shielding currents and the viscous torque

by plasma rotation is determined by the inner-layer dynamics, but shielding currents must

be determined from the outer-layer, or equivalently a perturbed equilibrium. IPEC gives

shielding currents before the balance is lost and thus when islands can be ignored.

The shielding currents give the resonant field driving magnetic islands, which can be

called the total resonant field, δBmn at q = m/n, compared to the external resonant field,

δBx
mn obtained by vacuum superposition. The total resonant field can be obtained using

~∇× ~B = µ0
~js with the shielding current ~js, which suppresses the total resonant field. The

external resonant field penetrates without distortions by perturbed plasma currents and thus

can be directly obtained by the resonant component of the field at the rational surfaces.
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The total and external resonant field would be linear if the applied field spectrum is

fixed, and even can be very similar in the cylindrical force-free plasmas. However, the

relation is more complicated in tokamak plasmas, because of shielding or amplification, and

poloidal harmonic coupling. Experiments have found that the critical amplitudes of the

external field or the external current are approximately linear with locking densities [1–6],

and also some theories have expected the positive correlation between the critical field and

the locking density [10–13]. However, the approximation of the external resonant field for

the resonant field driving islands has been often unsuccessful to find the correlation. An

alternative method such as three-mode coupling scheme [3, 4] has been proposed to account

for poloidal harmonic coupling, but recent error field correction experiments in National

Spherical Torus eXperiment (NSTX) [31] and DIII-D [32] have shown the irrelevance of

such vacuum approximations [33].

IPEC applications to the intrinsic error correction have highlighted the importance of the

total resonant field, and thus in general the importance of the plasma response. As shown in

[33] and Figs. 3 and 4, consistent correlations were restored between the total resonant field

and the locking density, for the cases where the external resonant field showed no correlations

or even opposite results in both NSTX and DIII-D. Also, the strong correlations among the

total resonant resonant field δBmn (δB21 and δB31 in Fig. 4) at different rational surfaces

imply that the plasma response is sensitive to a particular external field [33, 34]. However,

the estimations of the total resonant field have been improved from [33] as explained in the

following paragraphes.

The first issue comes from the magnitude of the resonant field δBmn or δBx
mn depending

on the choice of magnetic coordinates. The difference can often be large as shown in [35],

but a physical quantity such as the size of magnetic islands must be invariant. Nevertheless,

it is still useful to represent a physical quantity by a relevant number of Gauss, and so one

can be define the weighted total (external) resonant field as

δB(x)
mn =

∮
e−i(mϑ−nϕ)δ ~B · d~a∮

da
, (4)

where d~a is the surface area vector normal to the rational surface and d~a = dϑdϕJ ~∇ψ. This

definition makes the resonant component, m/n = q, independent of the choice of magnetic

coordinates. Even though the number of Gauss of the weighted resonant field is not an

amplitude of an actual magnetic field, the weighted resonant field is directly proportional to
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∆2, where ∆ is the size of an island [29, 35]. If one uses Fourier decomposition for the total

(external) resonant field in magnetic coordinates as,

δB(x),Coord
mn =

1

(2π)2

∮ ∮
e−i(mϑ−nϕ)(δ ~B · n̂)dϑdϕ, (5)

then this quantity can include non-resonant components that are irrelevant for islands.

Here the superscript Coord indicates a set of magnetic coordinates, and here so-called PEST

coordinates [36] will be used for comparison. PEST coordinates are easy in practice since

they are based on an ordinary toroidal angle ϕ = φ.

Fig. 3 shows the revised analysis of NSTX n = 1 corrections in [33] using the weighted

δB21, δBx
21 and δBx,PEST

21 . The blue box indicates the empirically determined optimal

toroidal phase of n = 1 correction field by Error Field Correction (EFC) coils to miti-

gate a locking [37], and thus one would expect the reduced resonant field at the optimal

phase. However, the external resonant field in PEST magnetic coordinates δBx,PEST
21 can

give the opposite results as shown in [33]. When one calculates the weighted external and

total resonant field, δBx
21 and δB21, the results become consistent. The total resonant field

was consistent in [33], where the results were based on Hamada coordinates [38] δBHamada
21 ,

even without the weighting factor since it used the shielding currents ~js that are independent

of magnetic coordinates. Nonetheless, the total resonant field given by ~∇× δ ~B = µ0
~js also

must be represented by the weighted form as shown in Fig. 3.

The NSTX examples show that the weighted δBx
mn may approximate the weighted δBmn.

However, DIII-D n = 1 corrections showed that the weighted δBx
mn can differ greatly from

the weighted δBmn in Fig. 4. Here the same experiments in [33] are presented, but with

the weighted δBmn. In addition, Fig. 4 has more corrections. IPEC calculation uses

δ ~B · n̂b =
↔
P [δ ~Bx · n̂b] on the plasma boundary in a chosen system of magnetic coordinates

based on Eq. (5), but the previous analysis [33] used the spectrum of the weighted external

field on the boundary based on Eq. (4) in PEST coordinates. This weighted spectral analysis

has been used in DIII-D since 2004 to obtain the invariant resonant field for islands [39].

Although the weighted resonant field is invariant, other weighted components depend on

the choice of magnetic coordinates [35]. The revised calculations in Fig. 4 removed the

weighting factor on the boundary to have the correct interface through δ ~B · n̂b =
↔
P [δ ~Bx · n̂b]

in IPEC. Also, it is found that IPEC results can be unreliable when an internally unstable

q = 1 surface exists, so the q = 1 surfaces close to the magnetic axis are ignored by enforcing
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q0 & 1 at the magnetic axis in the given axisymmetric equilibria. Note that amplification is

not as strong as the previous report in [33].

The confusion between the spectra of the field in Eqs. (4) and (5) occurred since they

become identical in a cylinder for all the components in any set of magnetic coordinates.

However, the differences are large in tokamak plasmas, so it is important to use the weighted

form to obtain the correct resonant component of the field. The weighted external resonant

field δBx
mn includes some of geometrical poloidal coupling, so it can improve the prediction

based on vacuum approximation, as shown in Fig. 3. It may be similar to the previ-

ous method using three-mode coupling scheme [3, 4] based on the external resonant field

δBx,PEST
mn . However, these vacuum approximations can be still inaccurate by neglecting the

plasma response, that is, the contribution of the field by perturbed plasma currents δ ~Bp, as

demonstrated in Fig. 4. The plasma response can be given by ideal perturbed equilibria, but

one must ensure no internal instabilities to trust the results. The internal instabilities can

be avoided by better reconstruction of axisymmetric equilibria, but it should be resolved

in the future how to treat the intrinsically unstable surfaces such as q = 1 in perturbed

equilibria.

IV. DEFORMATION OF FLUX SURFACES AND NTV TRANSPORT

As another important consequence by non-axisymmetric perturbations, the deformed

magnetic surfaces and the distorted trajectories of particle orbits produce so-called non-

ambipolar transport [17–22]. Ions typically diffuse faster, and resulting net radial currents

produce toroidal torques which relax the ~E × ~B rotation to an ambipolar level. Therefore,

the non-ambipolar transport causes rotational damping, and the associated viscosity is often

called Neoclassical Toroidal Viscosity (NTV) [14, 23–25]. When non-axisymmetric magnetic

perturbations are applied to change the toroidal rotation, it is called NTV magnetic braking

[40, 41] of rotation in experiments.

A. Variation of field strength

There are various theoretical predictions for NTV that can be compared with experimen-

tal damping rates of rotation. Any evaluation requires knowledge of the variation in the field
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strength B = |B| and thus the calculation of perturbed equilibrium. This can be understood

by considering the action of a trapped particle with given energy H and magnetic moment

µ as

J =

∮
Mv‖dl ∝

∮ √
H − µ|B|dl, (6)

where M is the mass of a particle. The action must be conserved for a particle, but the

action depends on the toroidal location of the turning points of a trapped particle if B is

not axisymmetric. Hence, a trapped particle must drift radially to conserve the action while

it precesses toroidally.

The non-axisymmetry in B must be evaluated along the true magnetic field lines dl,

which means along perturbed magnetic field lines. The variation in B along the perturbed

magnetic field lines is called Lagrangian variation in the field strength and is given by [16]

δLB = δEB + ~ξ · ~∇B0. (7)

On the other hand, the Eulerian variation at fixed points in space is

δEB = δ ~B · b̂. (8)

The vacuum approximation uses the Eulerian variation, but based on the external field

instead of the total field, that is,

δEBx = δ ~Bx · b̂. (9)

The difference of two Eulerian evaluations, δEB and δEBx, depends on plasma response.

When plasma response is weak, the two estimations may give roughly similar variations even

though the actual field structure will be largely distorted by perturbed plasma currents, as

can be seen Figs. 1 and 2. However, the correct variation in the field strength for Eq. (6)

is not either of them, but is the Lagrangian variation given by Eq. (7).

The Lagrangian δLB is typically larger than Eulerian variation since it is dominantly

determined by spatial variations of B0 ∝ 1/R seen in displaced magnetic field lines by ~ξ.

The example is shown in Fig. 5, where n = 1 field with a typical current ∼ 1kA using

EFC coils (or called Resistive Wall Mode (RWM) coils) is applied to a NSTX plasma. A

moderate βN = 1.0 case is chosen to suppress a large amplification, as one can see from that

δEB is roughly similar to vacuum approximation δEBx. Although plasma amplification can

be ignored in this example, one can still find that the Lagrangian variation is larger than the

9



vacuum approximation by an order of magnitude. In practice, vacuum approximation gives

δEBx/B0 ∼ 10−4 and the Lagrangian evaluation including plasma response gives δLB/B0 ∼
10−3. If the applied field is close to a marginally stable mode, the Lagrangian evaluation

can give even larger amplitudes. NTV transport is proportional to δLB2
mn, so an order of

magnitude change in δLBmn gives a two order of magnitude change in the NTV.

The Lagrangian δLB in IPEC can provide relevant prediction for the variation in the field

strength, however, a singularity exists in the narrow region around the rational surfaces.

This arises because the tangential displacement is determined by ~∇ · ~ξ = 0 and gives ξ‖ ∝
~∇ · ~ξ⊥/(m − nq). This is the feature of ideal perturbed equilibria and can be kept if the

evaluation for only a local torque is desired. However, the singularity needs to be removed

for the evaluation of the total toroidal torque. IPEC alters the tangential displacement as

[42]

ξ‖ ∝ m− nq

(m− nq)2 + σ2
~∇ · ~ξ⊥, (10)

introducing a small parameter σ, which can be reasonably taken as σg ≈ −n(dq/dψ)∆ψg

with ∆ψg given by an ion gyro-radius. The integration and the total torque are not sensitive

to variations of σ, if σ ∼ σg within an order of magnitude, since only the very narrow region

around the rational surfaces is affected by the small parameter. Although the singularity

can be removed with the small parameter, the peaks around the rational surfaces as seen

in Fig. 5 may be nonphysical. This is the consequence of the non-self-consistency in ideal

perturbed equilibria, which will be briefly discussed later.

B. Theoretical prediction of NTV braking

The variation in the field strength δLB given by IPEC can be used to evaluate NTV

torques and rotational damping rates. NTV transport has been studied by a number of

authors. In particular, Shaing has calculated various asymptotic limits in perturbed toka-

maks including multi-harmonic perturbations [14, 23–25]. It has been known that there

are two main regimes, the 1/ν regime [24] when ωE << ν and the ν
√

ν regime [25] when

ωE >> ν, where ωE is the toroidal precession angular frequency and ν is the collisional

frequency. Although the calculations are more realistic than the previous calculations with

a single harmonic perturbation, it is still difficult to apply the results to tokamaks since

the calculations in different asymptotic limits differ by several orders of magnitude as they
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switch from one regime to another. Also, the precession rates are strong enough for Neutral

Beam Injection (NBI)-heated tokamaks to give resonances with bouncing motion of trapped

particles. Therefore, a generalized formula has been derived to include precession and reso-

nance effects and combine different regimes [22]. The resonance effects between the electric

precession and the bouncing orbits have been calculated in [21] for a single harmonic pertur-

bation, but the generalization in [22] includes multi-harmonic perturbations and combines

different regimes using an effective collisional operator. Including the general formula, here

two evaluations in the asymptotic limits for the 1/ν regime and the ν
√

ν regime, are also

summarized for comparison.

The NTV torque can be conveniently expressed by the flux-averaged toroidal force density,

τϕ ≡ ~τ · ~∇ϕ ≡ 〈φ̂ · ~∇· ↔Πa〉 for species a, where φ̂ is the unit vector of ordinary toroidal angle.

Dropping the species a subscripts, each evaluation gives

τϕ
1/ν =

ε3/2puϕ
1/ν√

2π3/2R0

λi

ν

∫ 1

0

dκ2δ2
w,1/ν (11)

τϕ
ν
√

ν
=

ε−1/2puϕ
ν
√

ν√
2π3/2R0

ηi

ω2
E

∫ 1

0

dκ2δ2
w,ν

√
ν (12)

τϕ
` =

ε1/2puϕ
`√

2π3/2R0

∫ 1

0

dκ2δ2
w,`

∫ ∞

0

dxR1,`, (13)

for the 1/ν, the ν
√

ν the and general formula, respectively. The R0 is the major radius at

the magnetic axis, and the parameters are λi = 13.718 and ηi = 0.354 [24]. The δ2
w is the

square of variation in the field strength with different weighting factor for different harmonic

perturbations.

δ2
w,1/ν ≡

∑

nmm′
δ2
nmm′

n2F
1/2
nm0F

1/2
nm′0

E(κ)− (1− κ2)K(κ)
(14)

δ2
w,ν

√
ν ≡

∑

nmm′
δ2
nmm′(E(κ)− (1− κ2)K(κ)) (15)

×
(

∂Lnmc

∂κ2

∂Lnm′c

∂κ2
+

∂Lnms

∂κ2

∂Lnm′s

∂κ2

)
(16)

δ2
w,` ≡

∑

nmm′
δ2
nmm′

n2F
−1/2
nm` F

−1/2
nm′`

4K(κ)
, (17)

where K(κ) is the elliptic integral of the first kind, E(κ) of the second kind and

δ2
nmm′ = Re(δnm)Re(δnm′) + Im(δnm)Im(δnm′), (18)
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with the field model

B = B0(1− ε cos ϑ) + B0

(∑
nm

δnmei(mϑ−nφ)

)
. (19)

Each function is defined as

F y
nm` ≡

∫ ϑt

−ϑt

dϑ(κ2 − sin2(ϑ/2))y cos(m− nq − σ`)ϑ (20)

Lnmc ≡ F
−1/2
nm0

2K(κ)

(
1− cos(

√
nς)e−

√
nς

)
(21)

Lnms ≡ F
−1/2
nm0

2K(κ)

(
sin(

√
nς)e−

√
nς

)
, (22)

with the turning point ϑt ≡ 2 arcsin(κ), the sign function σ that +1 for co-rotating case,

and the stretch variable related to the width of layer for
√

ν regime [25]

ς = (1− κ2)

(
ln(16/

√
4ν/εωE)

4ν/εωE

)1/2

. (23)

The resonant term in Eq. (13) is given by

R1,` =
1

2

(1 + ( `
2
)2) ν

2ε
xe−x

(`ωb − n(ωE + ωB))2 +
(
(1 + ( `

2
)2) ν

2ε

)2
x−3

. (24)

Here the normalized variables (x, κ2) are used instead of (E, µ) as x ≡ E/T and κ2 ≡
(E − µB0(1 − ε))/2µB0ε. The bounce frequency ωb and the magnetic precession ωB are

functions of (x, κ2), but one can use further approximations by making them as functions

only of x. The approximations are

ωb =
π
√

ε

2
√

2
ωt

√
x

K(κ)
≈ π

√
ε

4
√

2
ωt

√
x, (25)

ωB = σ
q3ω2

t

2εωg

x
F
−1/2
010 (κ)

4K(κ)
≈ σ

q3ω2
t

4εωg

x, (26)

where the transit frequency ωt = vt/qR0 with the thermal velocity vt = (2T/M)1/2, and the

gyrofrequency ωg = eB/M . The torque is proportional to the toroidal flow uϕ = ~u · ~∇ϕ with

an offset by the neoclassical flow

uϕ
N ≡ uϕ + CNσ

∣∣∣∣
1

e

dT

dχ

∣∣∣∣ , (27)

where the χ is the poloidal flux function. The constants for each regime are C1/ν ≈ 3.5,

Cν
√

ν ≈ 0.92, and C` ≈ 2.0.
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The general formula in Eq. (13) with ` = 0 approximates well the 1/ν asymptotic

limit in Eq. (11) when ωE + ωB → 0, and also roughly approximate ν
√

ν asymptotic

limit in Eq. (12) when ν → 0, although it can underestimates the effects of non-resonant

harmonic perturbations. In order to correct the underestimation, one take a maximum

τϕ = max{`|τϕ
` , τϕ

ν
√

ν
}. However, the present formula for ν

√
ν in Eq. (11) is highly sensitive

to the width of the layer in Eq. (23), which largely changes throughout the plasma volume.

The underestimation is not so large unless ν is smaller than 103/s [22], so here the general

formula in Eq. (13) with ` = 0 is used to approximate ν
√

ν. Since ` = 0 means the rough

connection between the 1/ν and the ν
√

ν regime, it can be called 1/ν ν evaluation. Also,

the inclusion of all ` bounce harmonics dominates ν
√

ν in most cases, the evaluation using

the general formula can be made by τϕ = max{`|τϕ
` } on each flux surface, or simply by

τϕ =
∑

τϕ
` since only one of τϕ

` is largely dominant on a flux surface.

The Eqs. (11) to (27) can be used only for approximations due to the following limitations

: (1) The evaluations take only trapped particles into account since the effects by passing

particles are expected to be weaker than trapped particles. This can be checked by comparing

the 1/ν evaluation for trapped particles and the collisional [23] or plateau [43] evaluations

for passing particles [40], when precession or resonance are ignored. However, a systematic

evaluation for the effects of passing particles in the presence of the precessions has not been

done yet. (2) The field model in Eq. (19) ignores a high-order shaping terms of plasmas

assuming a high aspect-ratio circular tokamak. Although the model can describe effectively

the width and the depth of magnetic wells, present tokamaks typically have strong shaping

and so NTV evaluations can be inaccurate especially in the edge. Also, the use of the

simplified ωb or ωB as only a function of the energy x can be inaccurate for the resonant term

in Eq. (24). These simplifications are used for an order of magnitude estimation without

computationally demanding process, since (3) the analytic treatment anyway cannot exactly

describe complicated dynamics of trapped particles that may lead to stochastic transport

[19]. These limitations have to be resolved by numerical evaluations, for instance, using δf

code, in the future.
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C. Experimental measurement of NTV braking

The Eqs. (11) to (27) give various expressions for the toroidal torque, which can be

compared with experiments. While making comparisons between theory and experiment, it

is convenient to use rotational damping rates as

νdamp
∼= τϕ

uϕR0MN
, (28)

where N is the density of a species.

Fig. 6. shows n = 3 magnetic braking experiments performed in NSTX. The two shots

have almost identical plasmas, run in lower single null configuration, with elongatation as

high as κ = 2.3, with Ip = 800kA (Fig. 6 (a)) and BT0 = 0.45T . The electron densities

are similar to each other (Fig. 6 (b)). For one of these shots, n = 3 braking field is

applied using EF/RWM coils in NSTX with currents 600A for each (Fig. 6 (c)). One can

see from (b) that the amplitude of the braking is low enough not to significantly change

the particle confinement. However, a clear change was made in momentum confinement

[44]. The plasma rotation reached up to 20 ∼ 30kHz in the early period by 6MW NBI

and settled down to similar rotational equilibrium as shown in Fig. 6 (d). However, when

the braking field is fully applied at t = 500ms, the toroidal rotation starts to damp and

relaxes to a different rotational equilibrium. This example indicates the non-ambipolar

transport by non-axisymmetric field can produce a strong momentum transport, but the

particle confinement is not significantly modified.

The use of a reference shot in magnetic braking is important to discriminate the effects

by the non-ambipolar transport. The change of toroidal rotation is determined not only by

the non-ambipolar transport with perturbations, but also by various sources including the

turbulence-driven momentum transport [45] and the input torque by NBI. The momentum

balance equation can be roughly written as

MN
∂uφ

∂t
= 〈φ̂ · δ~j × δ ~B〉 − 〈φ̂ · ~∇ · ↔Π〉 (29)

+
∂

∂ρ

(
MNχφ

∂uφ

∂ρ
−MNupinchuφ

)
+ S, (30)

for the time evolution of the toroidal rotation uφ = ~u · φ̂, where ρ is an effective minor

radius. The first term in the right hand side is the torque at the rational surfaces due to the

shielding currents, and is related to locking. The second term is the non-ambipolar torque
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given by magnetic braking. The third term includes a diffusive process (χφ) of the transport

and a pinch (upinch) [45], both of which can include classical, neoclassical and turbulence

driven momentum transport. The last term represents the torque due to heating sources

by NBI. The best way to discriminate the second term in experiments is to use a reference

shot that can be subtracted from a magnetic braking shot. The plasma condition must be

almost identical, and one must determine the damping in a short time period, otherwise the

different rotation rate can modify other terms in Eq. (30). When the time period is short,

the exponential decay of the rotation to a new rotational equilibrium can be linearized.

In NSTX, the experimental rotational damping rates are measured in this way. The time

period is as short as ∼ 50ms, beyond which the linear behavior can not be assumed.

Fig. 7 shows the evolutions of the rotation mapped on the flux surfaces, with and without

n = 3 magnetic braking. One can see the profile of the toroidal rotation is almost identical

before the magnetic braking (t = 500ms), but evolves differently after the magnetic braking,

so one can subtract (a) from (b) to obtain the damping purely driven by the braking. In

this example, the rotation does not evolve very much without the braking, but this is not

seen for all the cases, and it is better to find and use an identical reference shot.

There are other issues in the comparison with the observed damping rates. The toroidal

rotation in NSTX (and DIII-D) is measured by CHarge Exchange Recombination Spec-

troscopy (CHERS) based on the Carbon impurities. Here it will be assumed that the

CHERS measurement represents the toroidal rotation of the main ions, as is commonly as-

sumed in experiments. However, since a certain amount of time is required to achieve the

equilibration between carbon ions and main (deuterium) ions, a damping seen by CHERS

can have smoother profiles than the immediate response of the main ions. These effects are

ignored in our study, but should be addressed.

D. Comparison between theory and experiment

The measured damping rates purely by the magnetic braking can be compared with the

NTV calculations using the IPEC field. There have been different methods, for instance,

using a 1/ν regime and the external (vacuum) field, which have been often successful to

approximate the observed damping rates in NSTX [40]. Here three additional physics are

included to improve the consistency between theory and experiment :
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(a) Toroidal precession rates (ωp = ωE + ωB), which are often faster than the collisional

rates (ν).

(b) The bouncing orbits of trapped particles can resonate with the precessions, that is,

`ωb ∼ nωp.

(c) Variation of field strength along the perturbed magnetic field lines, that is, δLB,

including plasma response is substantially different from vacuum approximation δEBx.

As in the Fig. 8, one can obtain different results if

(1) (a), (b) and (c) are all ignored : vacuum 1/ν

(2) (a) is only included : vacuum 1/ν ν (` = 0)

(3) (a) and (b) are included : vacuum general (all `)

(4) (a), (b) and (c) are all included : IPEC general (all `)

The evaluation assuming 1/ν regime based on vacuum approximation can be close to mea-

surement (vacuum 1/ν) as presented in [40]. However, the inclusion of the strong precession

gives too small damping rates (vacuum 1/ν ν) even if the method is more consistent with

theory, unless the bounce-harmonic resonances (vacuum general) and the true variation in

the field strength are considered (IPEC general).

Fig. 8 shows that the general NTV including bounce-harmonic resonances coupled with

δLB can significantly improve the consistency between theory and experiment, but also

shows that the accuracy is still not sufficient to predict the detailed profile of damping rates.

Fig. 9 showed other comparisons for the damping rates between measurements and NTV

calculations, in NSTX and DIII-D experiments. One can see that predictions are valid only

within an order of magnitude. The investigated shots in Fig. 9 are not so different from each

other in both devices, but the predictions can show easily an-order-of-magnitude difference,

as is obviously seen in Fig. 9 (b).

As is known in ideal stability analysis, ideal perturbed equilibria can be sensitive to the

p and q profiles [30], especially in high βN plasmas. The application of ideal perturbed

equilibria to NTV transport provides indeed a rigorous test on the sensitivity, since the dif-

ference in the perturbed field and the displacement δLB is amplified through τϕ ∝ (δLB)2.
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Although the investigated cases are based on the reasonably accurate equilibrium recon-

structions, with the q profiles using Motional Stark Effect (MSE) measurements in both

NSTX and DIII-D, a nontrivial sensitivity still exists in the results. This sensitivity of ideal

perturbed equilibria on the equilibrium reconstruction must be carefully investigated in the

future. Also, one can notice that the predictions are particularly inaccurate in the edge.

Although the large damping rates in the predictions are partially due to uϕ ≈ 0 in the edge,

the overestimated damping rates compared to the experiments are mainly due to the large

Lagrangian variation in the field strength. The results indicate that the ideal constraints

may not hold in the edge, and non-ideal effects such as the destroyed flux surfaces by is-

lands and the currents associated with the large torques should be included in perturbed

equilibria.

V. NON-SELF-CONSISTENCY IN IDEAL PERTURBED EQUILIBRIA

Ideal perturbed equilibria describe perturbed plasmas with shielded islands by parallel

currents and with deformed magnetic surfaces. An inconsistency occurs when ideal per-

turbed equilibria are used to describe torque effects, since there is no toroidal torque in

scalar pressure equilibria. A mathematical identity implies that the torque between any

two constant pressure surfaces vanishes
∫

(~x× ~∇p)d3x = 0. For consistency, one must solve

tensor pressure perturbed equilibria ~∇p + ~∇ · ↔Π = ~j × ~B [15]. However, if the torques are

sufficiently small, ideal perturbed equilibria can be a valid approximation.

The validity can be theoretically argued by estimating the total energy δW and the total

torque Tφ =
∫

(~x × τϕ)d3x, produced by non-axisymmetric perturbations. It is convenient

to use the dimensionless quantities

s ≡ − δW

δWv

and α ≡ − Tφ

2δWv

, (31)

where δWv is the required energy to produce the same perturbation, but without plasma

[46]. The comparison between s and α gives the importance of the toroidal torque when

calculating perturbed equilibria. An ideal perturbed equilibria can be valid when |s| > |α|.
The s is automatically given by IPEC, and the α can be approximately given by estimating

the generalized NTV torque using Eq. (13). When islands are ignorable, the NTV torque

dominates the drive for the rotational damping [40]. The n = 3 application shown in Fig.
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8 has |s| ∼ 0.3 < |α| ∼ 0.5. This example implies that the effects by torque on perturbed

equilibria are substantial, as can be seen by the largely overestimated damping rates in the

edge. The n = 3 applications shown in Fig. 9 have |s| > 0.5 and |α| < 0.2, which indicate

that ideal perturbed equilibria can be valid in principle. However, these estimations based

on the (s, α) model only give the importance of the torque in total, but not for a local torque.

The nonphysical peaks in the δLB in Fig. 5 and the NTV torques in Figs. 8 and 9 still

imply the importance of local torques in the calculations of perturbed equilibria. Also, the

inclusion of the currents associated with the torque would improve the largely overestimated

damping rates in the edge, which can change the penetration of the field throughout the

plasma.

The apparent breakdown in ideal approximation can occur when the plasma approaches

to a marginally stable point, since then s → 0, which makes amplification easier and thus

increases α. The large torque up to |α| ∼ |s| implies the phase shift of the plasma response

[46], and then the perturbation can no longer tap the energy from the plasma. When

|α| ∼ |s|, the shielding by currents associated with the torque has been theoretically expected

[46–48], and also from recent NSTX observations based on the single (s, α) model [49]. This

is important for n = 1 feedback control of Resistive Wall Mode in high βN plasmas. The

higher n has the higher marginal βN , so IPEC results are expected to be better for many of

the higher n ≥ 2 applications. However, tensor pressure perturbed equilibria are necessary

to improve the predictions for more accurate plasma response effects.

VI. CONCLUDING REMARKS

The characteristics of perturbed tokamak equilibria and the importance of ideal plasma

response are described. The Ideal Perturbed Equilibrium Code (IPEC) solves perturbed

tokamak equilibria with deformed magnetic surfaces but no magnetic islands. IPEC has

shown that the effects by perturbed plasma currents can significantly alter the penetration

of magnetic perturbations through shielding, amplification and poloidal coupling. The ap-

plications to locking experiments in both NSTX and DIII-D have shown the importance

of plasma response to understand the observations, and an improved approach using the

weighted resonant field including ideal plasma response. This method could be used to give

more reliable correction of the intrinsic error field and the prediction of error field threshold
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in International Thermonuclear Energy Reactor (ITER) [34].

The importance of plasma response effects is also illustrated with the non-axisymmetric

variation of the field strength and consequent non-ambipolar transport and NTV braking.

The actual Lagrangian variation in the field strength evaluated along perturbed magnetic

field lines is different and typically larger than Eulerian variation along the unperturbed

magnetic field lines. When the Lagrangian variation in the field strength in IPEC is coupled

with generalized theory of non-ambipolar transport, the consistency between experiment

and theory can be improved. However, various unresolved issues remain in both theory and

experiment as described.

The present IPEC uses the same method to calculate plasma perturbation as the ideal

MHD stability analysis, so the sensitivity also exists to the same extent in the ideal stability

of tokamak plasmas. In particular, the result can be sensitive to p and q profiles given by the

reconstruction of the experimental equilibrium, so the systematic investigations are required

in the future to improve the predictions of plasma response. This sensitivity may be intrinsic

since ideal perturbed equilibria ignore the currents associated with tensor pressure, as is ob-

vious when the plasma is close to marginally stable limit. Also, the effects of tensor pressure

are important especially in the edge where islands may exist and the currents associated

with the torque can be significant. Islands and the NTV transport are the important causes

of the toroidal torque, and so the inclusion of a tensor pressure in perturbed equilibria would

give a more self-consistent calculation.
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cylindrical force-free plasma. Each solution is obtained using vacuum super-

position (Vacuum), cylindrical force-free equation (Cylinder force-free), and

IPEC with virtual surface currents (IPEC). Cylinder force-free and IPEC give

the almost identical solution inside the plasma and show significant shielding.
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2 (COLOR) The normal field δB31 as a function of the radius in a perturbed

cylindrical force-free plasma. As Fig. 1, each solution is obtained using vac-

uum superposition (Vacuum), cylindrical force-free equation (Cylinder force-

free), and IPEC with virtual surface currents (IPEC). Cylinder force-free and

IPEC give the almost identical solution for plasma and show substantial am-

plification throughout plasma. r/a ∼ 1.04 is the q = 3 resonant surface
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3 (COLOR) The expected resonant field using EFC n = 1 correction (300A)

for NSTX intrinsic error field as a function of different toroidal phases of the

correction field (#116132, βN ∼ 0.4). The blue region indicates the exper-

imentally known optimal phase of n = 1 correction. The external resonant

field in magnetic coordinates with an ordinary toroidal angle (PEST δBx
21),

the weighted external resonant field (δBx
21), the weighted total resonant field

(δB21) are shown and compared. Note that the opposite results by the PEST
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4 (COLOR) The revised figure from Fig.3 in [33] for the critical field versus

locking density with the various n = 1 DIII-D error field corrections, based
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m=2,n=1 perturbation in a cylinder
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FIG. 1: (COLOR) The normal field δB21 as a function of the radius in a perturbed cylindrical

force-free plasma. Each solution is obtained using vacuum superposition (Vacuum), cylindrical

force-free equation (Cylinder force-free), and IPEC with virtual surface currents (IPEC). Cylinder

force-free and IPEC give the almost identical solution inside the plasma and show significant

shielding. r/a ∼ 0.83 is the q = 2 resonant surface (dash), r/a ∼ 1.2 is the wall.
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FIG. 2: (COLOR) The normal field δB31 as a function of the radius in a perturbed cylindrical force-

free plasma. As Fig. 1, each solution is obtained using vacuum superposition (Vacuum), cylindrical

force-free equation (Cylinder force-free), and IPEC with virtual surface currents (IPEC). Cylinder

force-free and IPEC give the almost identical solution for plasma and show substantial amplification

throughout plasma. r/a ∼ 1.04 is the q = 3 resonant surface (dash), r/a ∼ 1.2 is the wall.
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2006 NSTX EFC n=1 correction
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FIG. 3: (COLOR) The expected resonant field using EFC n = 1 correction (300A) for NSTX

intrinsic error field as a function of different toroidal phases of the correction field (#116132,

βN ∼ 0.4). The blue region indicates the experimentally known optimal phase of n = 1 correction.

The external resonant field in magnetic coordinates with an ordinary toroidal angle (PEST δBx
21),

the weighted external resonant field (δBx
21), the weighted total resonant field (δB21) are shown and

compared. Note that the opposite results by the PEST δBx
21.
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FIG. 4: (COLOR) The revised figure from Fig.3 in [33] for the critical field versus locking density

with the various n = 1 DIII-D error field corrections, based on the weighted total (external)

resonant field δB
(x)
mn. From the left, it is shown that I+M, C+M, M (#124995, βN ∼ 0.5) in 2006

DIII-D experiments, and M, I+C+M, I+M in 2004 DIII-D experiments (#117380, βN ∼ 0.5),

respectively. I is I-coil correction, C is C-coil correction, and M is Machine error, which is different

for 2006 and 2004. The unstable q = 1 surface close to the magnetic axis is ignored. The weighted

external resonant field δBx
mn is compared with the weighted total resonant field δBmn at q = 2/1

and q = 3/1 rational surfaces. Note the roughly linear correlation of locking density is restored

with δBmn compared to almost no correlated data with δBx
mn.
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δB comparison
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FIG. 5: (COLOR) Comparison for the radial profiles of one component (m=1,n=1) of the non-

axisymmetric variation in the field strength between Eulerian vacuum (δEBx), Eulerian IPEC

(δEB) and Lagrangian IPEC (δLB) evaluations. The calculation is done with a typical n = 1

Error Field and Resistive Wall Mode (EF/RWM) coil current (∼ 1kA) to a moderate βN = 1.0

NSTX plasma, so plasma amplifications are not strong in this example. However, Lagrangian

variation is still larger than other two Eulerian variations.
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FIG. 6: (COLOR) Magnetic braking experiments in NSTX. Time evolutions for (a) Plasma current,

(b) Electron density, (c) n=3 EF/RWM coil current, and (d) Toroidal rotation are shown for

plasmas with (red) and without (black) magnetic braking.
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(a) No braking
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(b) n=3 braking
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FIG. 7: (COLOR) Comparison of the evolution of the rotational profile mapped on the flux surfaces

(a) without magnetic braking and (b) with n = 3 magnetic braking, for the plasmas in Fig. 6
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FIG. 8: (COLOR) Comparisons between measured damping rates (NSTX #124439) and different

methods of NTV calculations. (1) 1/ν evaluation using Eq. (11) and vacuum field (δEBx), (2)

1/ν ν evaluation using ` = 0 Eq. (13) and vacuum field, (3) general evaluation using all ` Eq. (13)

and vacuum field, and (4) general evaluation using all ` Eq. (13) and IPEC field (δLB).
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(a) NSTX n=3 NTV comparison
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(b) DIII-D n=3 NTV comparison
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FIG. 9: (COLOR) Comparisons of the damping rates as functions of ψN between measurements

(¤) and general IPEC NTV calculations in (a) NSTX and (b) DIII-D. Each number indicates each

shot in experiments.
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