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ABSTRACT

This paper presents a theoretical framework for understgmdasma turbulence in astrophysical plasmas. It
is motivated by observations of electromagnetic and dgfisittuations in the solar wind, interstellar medium
and galaxy clusters, as well as by models of particle heatimgcretion disks. All of these plasmas and many
others have turbulent motions at weakly collisional andisiohless scales. The paper focuses on turbulence in
a strong mean magnetic field. The key assumptions are thatrthdent fluctuations are small compared to the
mean field, spatially anisotropic with respect to it and thatr frequency is low compared to the ion cyclotron
frequency. The turbulence is assumed to be forced at sontensygpecific outer scale. The energy injected at
this scale has to be dissipated into heat, which ultimatehnot be accomplished without collisionskiketic
cascadedevelops that brings the energy to collisional scales botspiace and velocity. The nature of the
kinetic cascade in various scale ranges depends on thecplofgilasma fluctuations that exist there. There are
four special scales that separate physically distinctmegi the electron and ion gyroscales, the mean free path
and the electron diffusion scale. In each of the scale rasgesrated by these scales, the fully kinetic problem
is systematically reduced to a more physically transpaaedtcomputationally tractable system of equations,
which are derived in a rigorous way. In thimertial range” above the ion gyroscale, the kinetic cascade
separates into two parts: a cascade of Alfvénic fluctuatoisa passive cascade of density and magnetic-field-
strength fluctuations. The former are governed by the RetiMagnetohydrodynamic (RMHD) equations at
both the collisional and collisionless scales; the lattegyoa linear kinetic equation along the (moving) field
lines associated with the Alfvénic component (in the cahsl limit, these compressive fluctuations become
the slow and entropy modes of the conventional MHD). In“tissipation range” below ion gyroscale, there
are again two cascades: the kinetic-Alfvén-wave (KAW) edscgoverned by two fluid-like Electron Reduced
Magnetohydrodynamic (ERMHD) equations and a passive daschion entropy fluctuations both in space
and velocity. The latter cascade brings the energy of théigt@ange fluctuations that was Landau-damped at
the ion gyroscale to collisional scales in the phase spagéeans to ion heating. The KAW energy is similarly
damped at the electron gyroscale and converted into efetteat. Kolmogorov-style scaling relations are
derived for all of these cascades. The relationship betileeitheoretical models proposed in this paper and
astrophysical applications and observations is discussgetail.

Subject headingsmagnetic fields—methods: analytical—MHD—plasmas—tuehak

1. INTRODUCTION

As observations of velocity, density and magnetic fields in
astrophysical plasmas probe ever smaller scales, turdeH#en
i.e., broad-band disordered fluctuations usually charaei

guent observations, e.g., Marsch & Tu 1990a; t al.
1996;/ Leamon et al. 1998; Bale etlal. 2005; see [Hig. 1). An-
other famous example in which the Kolmogorov power law
appears to hold is the electron density spectrum in the-inter
by power-law energy spectra—emerges as a fundamental angté!lar medium (ISM)—in this case it emerges from observa-

tions by various methods in several scale intervals andnwhe

ubiquitous feature. h aced h h law £ I q

One of the earliest examples of observed turbulence ingveesreagrrﬁaﬂsges 1?32::5:1%5 0‘? gé)wer aw tamously ethegsf
space was the detection of a Kolmogorkv/® spectrum ) : dles (Armstronglet al. '
of magnetic fluctuations in the solar wind over a fre- %%‘ﬁi@?ﬂr?ﬁgg;S?ﬂﬁ;g?gﬂg%&teﬁeggge

quency range_of at;ic])_litg_éhlzr.eaeazd{aescsaad:e:si I(fEIrIStﬂ grggc;rrtlzdcobny_surements in space and astrophysical plasmas, from the mag-
netosphere to galaxy clusters, result in Kolmogorov (or-con

firmed to high degree of accuracy by a multitude of subse-
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sistent with Kolmogorov) spectra but also show steeper powe
laws at very small (microphysical) scales (these obsermati
are discussed in more detail if18 8).

Power law spectra spanning broad bands of scales are
symptomatic of the fundamental role of turbulence as a mech-
anism of transferring energy from tloaiter scale(sYhence-
forth denotedL), where the energy is injected to tlmner
scale(s) where it is dissipated. As these scales tend to be
widely separated in astrophysical systems, one way for the
system to bridge this scale gap is to fill it with fluctuatiotie
power-law spectra then arise due to scale invariance ahthe i
termediate scales. Besides being one of the more easily mea-
surable characteristics of the multiscale nature of tutce,
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power-law (and, particularly, Kolmogorov) spectra evoke a 0* -
number of fundamental physical ideas that lie at the heart of s
the turbulence theory: universality of small-scale physén- S S G .
ergy cascade, locality of interactions, etc. In this paper, 10 k—SB\
shall revisit and generalize these ideas for the probleki-of N
neticplasma turbulencgso it is perhaps useful to remind the ~ o
reader how they emerge in a standard argument that leads to ~ § %
thek™>/2 spectrum[(Kolmogordv 1941; Obukhbv 1941). v
E
o -2
1.1. Kolmogorov Turbulence ol [P electric
Suppose the average energy per unit time per unit volume e
that the system dissipatesds This energy has to be trans- 107
ferred from some (large) outer scdleat which it is injected
to some (small) inner scale(s) at which the dissipation mccu
(see &€1.b). Itis assumed that in the range of scales interme- 107 . :
diate between the outer and the inner (thertial range), the 0.001 0.010 0-“2 1.000 10.000

statistical properties of the turbulence are universaldpen-
dent of the macrophysics of injection or of the microphysics
of dissipation), spatially homogeneous and isotropic dued t
energy transfer is local in scale space. The flux of kinetic en
ergy through any inertial-range scalés independent ok:

FiG. 1.— Spectra of electric and magnetic fluctuations in tharsaind
at 1 AU (see Tabl€]1 for the solar wind parameters correspgntti this
plot). This figure is adapted with permission from Fig. 3 ofeBet al. [2005)
(copyright 2005 by the American Physical Society). We hastded the
reference slopes for Alfvén-wave and kinetic-Alfvén-wattgbulence in
bold dashed (red) lines and labeled “KRMHD,” “GK ions,” anRMHD”

ui the wave-number intervals where these analytical desmnipiare valid (see
— ~ g =const (1) 83, €5 and EI7).
D)

where the (constant) density of the medium is absorbed into
g, Uy is the typical velocity fluctuation associated with the
scale), andr, is the cascade time.Since interactions are
assumed localr, must be expressed in terms of quantities
associated with scalg. It is then dimensionally inevitable
that 7y ~ \/uy (the nonlinear interaction time, or turnover
time), so we get

and especially the observational (see references at the end
of this subsection) and experimental (Robinson & Rushridge
[1971;[Zweben et &l. 19179) evidence of anisotropy of MHD
fluctuations led to the isotropy assumption being discarded
(Montgomery & Turner 1981).

The modern form of MHD turbulence theory is commonly
associated with the names bf Goldreich & Sridhar (1995,
[1997, henceforth, GS). It can be summarized as follows. As-
sume that (a) all electromagnetic perturbations are slyong
anisotropic, so that their characteristic scales alongrtean
- field are much smaller than those acrosd g, > A, or, in

1.2. MHD Turbulence and Critical Balance terms of wave numberky <k ; (b) the interactions between

That astronomical data appears to point to a ubiquitous na-the Alfvén-wave packets are strong and the turbulence at suf
ture of what, in its origin, is a dimensional result for thebtur ficiently small scales always arranges itself in such a way th
lence in a neutral fluid, might appear surprising. Indeed, th the Alfvén time scale and the perpendicular nonlinear ater
astrophysical plasmas in question are highly conductiry an tion time scale are comparable to each other, i.e.,
support magnetic fields whose energy is at least comparable 3)
to the kinetic energy of the motions. Let us consider a situa-
tion where the plasma is threaded by a uniform dynamically wherew is the typical frequency of the fluctuations and
strong magnetic field, (the mean or guide, field see §I.B  is the velocity fluctuation perpendicular to the mean field.
for a brief discussion of the validity of this assumptionj | Taken scale by scale, this assumption, known a<tliieal
the presence of such a field, there is no dimensionally uniquebalance removes the dimensional ambiguity of the MHD tur-
way of determining the cascade timg because besides the bulence theory. Thus, the cascade timg\is- I, /va~ A/uy,
nonlinear interaction time /u,, there is a second character- whence

Uy ~ (eN)Y3.

This corresponds to kr®3 spectrum of kinetic energy.

(2)

kaHVAN kJ_UJ_,

istic time associated with the fluctuation of sixenamely the 1/2 1/3
Alfvén time |}, /va, wherev, is the Alfvén speed anli, is Ux~ (ela/Va) = ~ (), (4)
the typical scale of the fluctuation along the magnetic field. L ~ |1/ N3, (5)

The first theones of magnetohydrodynamic (MHD) turbu-
lence 3. Kraichnan 1965; Dobrowolny et al.
(1980) calculated, by assuming an isotropic cascadg, (~

wherelp = V3 /e. The scaling relatior({4) is equivalent to a

K 53 spectrum of kinetic energy, while Edq] (5) quantifies the
A) of weakly interacting Alfvén-wave packetsy(>> | /va) amsotropy by establishing the relationship between the pe
and obtained &2 spectrum. The failure of the ob- pendicularand parallel scales. Note that ER. (4) impliesith
served spectra to conform to this law (see references aboveerms of tl?e parallel wave numbers, the kinetic-energy-spec
trum is~ k;2

[

8 An outline of a Kolmogorov-style approach to kinetic turante was The above considerations app|y to Alfvénic fluctuations,
ty Schekochihin &

given in a recent paper tlal. (2008b). Itlmamead as a

conceptual introduction to the present paper, which is nmohe detailed
and covers a much broader set of topics.
9 This is the version of Kolmogorov's theory due_ to Obukhov 194

i.e.,perpendiculavelocities and magnetic-field perturbations
from the mean given (at each scale) 88, ~ u,/4mpo,
where po is the mean mass density of the plasma (see
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Fig. 1 and discussion in[§8.1.1). Other low-frequency 1.3. MHD Turbulence with and without a Mean Field

MHD modes—slow waves and the entropy mode—urn |, yhe giscussion above, treating MHD turbulence as tur-
g;ﬂtgg ?uerb%?esr?é:veeI%th?gv%?rgv?/sb%/rotrzetr?;fvaegig:otﬁgg]ypogggt bulence of Alfvénic fluctuations depended on assuming the
e _ o ’ presence of a mean (guide) fiddd that is strong compared to

Lithwick & Goldreich 2001, and §§2H4-2.6[§5.5, anl §6.3 o magnetic fluctuationgB/By ~ u/va < 1. We will also
for further discussion of the compressive fluctuations). —  negq this assumption in the formal developments to follow
As we have mentioned above, the anisotropy was, in(see g7 E31). Is it legitimate to expect that such aafati
fact, incorporated into MHD turbulence theory alreagy_by regular field will be generically prese an (1965)
Montgomery & Turner/(1981). However, these authors’ View g e that in a generic situation in which all magnetic fields a
differed from the GS theory in that they thought of MHD 1 5,,ced by the turbulence itself via the dynamo effect, one
turbulence as essentlaIWnen&nal, described by acqyig assume that the strongest field will be at the outeescal
Kolmogorov-like cascade (Fyfe etlal. 1977), with an admix- 4 that this field will play the role of an (approximately)-un
ture of Alfvén waves having some spectrumkipunrelated ¢ guide field for the Alfvén waves in the inertial range.

to the perpendicular structure of the turbulence (note thatggmaliv. this amounts to assumina that in the inertial &n
11984, while adopting a similar view, anticipated the Y. 9 ®ng

scaling relation[(b), but did not seem to consider it to be-any 6B 1 KL<l 6
thing more than the confirmation of an essentially 2D nature Bo <L KL< 6)
of the turbulence). In what we are referring to here as GS
turbulence, the 2D and Alfvénic fluctuations are not sepa-
rate components of the turbulence. The turbulence is three
dimensional, with correlations parallel and perpendictoa
the (local) mean field related at each scale by the critical ba
ance assumption.

Indeed, intuitively, we cannot havgva < k u, : the tur-
bulence cannot be any more 2D than allowed by the critical
balance because fluctuations in any two planes perpendicu n th K field the d callv st
lar to the mean field can only remain correlated if an Alfvén ' the weak-mean-ieid case, the dynamically strong

stochastic magnetic field is a result of saturation of the

wave can propagate between them in less than their Perpen; i scale. or fluctuation dynameamplification of mag
dicular decorrelation time. In the opposite limit, weakiyar- o ' ' hea )
PP ’ ye netic field due to random stretching by the turbulent mo-

acting Alféen waves with fixe#t) andw =kjva >k u, can be X i =L
shown to give rise to an energy cascade towards smaller pertions (see review by Schekochihin & Cowley 2007). The
geflmtlve theory of this saturated state remains to be dis-

pendicular scales where the turbulence becomes strong and ored. Both physical arguments and numerical evidence
Eq. (3) is satisfied (Goldreich & Sridhar 1997; Galtier et al. LY -
2000 Yousef & Schekochihin 2009). Thus, there is a natural (Schekochihin etal._2004; Yousefei al. 2007) suggest that

tendency towards critical balance in a system containimgno '€ magnetic field in this case is organized in folded flux
linearly interacting Alfvén waves. We will see in what folis sheets (or ribbons). The length of these folds is compara-

that critical balance may, in fact, be taken as a general-phys ble to t?etouter scaI?, \tl\f/1hll? Itge. s(;:atle of thg Eel?r;dn;cn_on
ical principle relating parallel scales (associated witiear ' ErsSals transverse to the oid IS determined by the @ssip

: : : . tion physics: in MHD with isotropic viscosity and resistiv-
propagation) and perpendicular scales (associated with no ity, it is the resistive scal& Although Alfvén waves prop-

'é”mear '”tmerac“%’;) in anisotropic plasma turbulence 88, . 1.0 along the folds may exist (Schekochihin &t al. 2004;

We emphasize that, the anisotropy of astrophysical plasma _ .
P Py Py P spectrum. The fact that the spectrum is cIoserki?/2 than tok>/°

turbulence is an observed phenomenon. Itis seen mostelearl " mericalsimulations| {Maron & Goldrelch_200L: Mulleraét [2003;
in the spacecraft measurements of the turbulent fluctustion [vason et al 2007, Perez & Boldytév 2008, 2009: Beresnyak Zakian
in the solar wind [(Belcher & Davis 1971; Matthaeus et al. [2008b) prompted BoldyreV (2006) to propose a scaling arguthet allows
[1990; | Bieber et all 1996; Dasso el al. 2005; Bigazzi et al. an anisotropic Alfvénic turbulence with Ief/2 spectrum. His argument is
2006:[ Sorriso-Valvo et al. 2006; Horbury et Al. 2005, 2008: based on the conjecture that the fluctuating velocity andnetigfields tend

! [ : : ' ially align at small scales, an idea that has had dersble numeri-

: to partial r

Osman & Horbury 2007._Hamilton et’al. 2008) and in the c,/'s\oo0n(Maron & Goldreich 2001 Beresnyak & LazaiiaBie:P008b;
magnetosheath__Sahraoui et aL_(ZOOB-)-_ALQX_ﬁﬂdLOld et al|vason et all 2006: Matthaeus elal. 2008a). The alignmenkeveanonlin-
(2008b). In a recent key development, solar-wind data anal-ear interactions and alters the scalings. Another modificaif the GS the-
ysis by[Horbury et gl.[(2008) approaches quantitative cor- ory leading to an anisotropik>/2 spectrum was proposed by Gogobelidze
roboration of the critical balance conjecture by confirming (2007), who assumed that MHD turbulence with a strong medthifielom-

; ; _ inated by nonlocal interactions with the outer scale. Hawewn both argu-
the scaling of the spectrum with the parallel wave num ments, the basic assumption that the turbulence is strorgaimed. This is

ber ~ k2 that follows from the first scaling relation in  the main assumption that we make in this paper: the critiakrize conjec-
Eg. (4). Anisotropy is also observed indirectly in the ture [3) is used below not as a scaling prescription but in akeresense of
ISM Mmﬂﬂmw%jmkmﬂ al an ordering assumption, i.e., we simply take the wave pralgagy terms in
: = the equations to be comparable to the nonlinear terms. titifard to show
0 b that the results derived in what follows remain valid whetbenot the align-
 (Heyer et} ) ment is present. We note that observationally, only in therseind does one
measure the spectra with sufficient accuracy to state thgtate consistent
with K;*® butnotwith k ¥ (see §8111).
11 In weakly collisional astrophysical plasmas, such a dpsori is not
" applicable: the field reversal scale is most probably detexdnby more
complicated and as yet poorly understood kinetic plasnmectsf below this
scale, an Alfvénic turbulence of the kind discussed in tkipgr may exist
10 The numerical evidence is much less clear on the scaling ®f th (Schekochihin & Cowley 2006).

It is, however, by no means obvious that this should be true.
When a strong mean field is imposed by some external mech-
anism, the turbulent motions cannot bend it significanty, s
only small perturbations are possible af8l< By. In con-
trast, without a strong imposed field, the energy densitheft
magnetic fluctuations is at most comparable to the kinetic-
|energy density of the plasma motions, which are then suffi-
ciently energetic to randomly tangle the field, &> Bj.
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[Schekochihin & Cowley 2007), the presence of the small-[Czaykowska et all_2001; Smith ef al. 20D06; Sahraouilet al.
scale direction reversals means that there is no scaleddg-s [2006;/ Alexandrova et al. 2008h,b, see also Eig. 1). The fun-
equipartition between the velocity and magnetic fields:levhi damental challenge that a comprehensive theory of astesphy
the magnetic energy is small-scale dominated due to the didcal plasma turbulence must meet is to give the full acco@int o
rection reversal’? the kinetic energy should be contained pri- how the turbulent fluctuation energy injected at the outalesc
marily at the outer scale, with some scaling law in the i¢rti  is cascaded to small scales and deposited into particle heat
range. We shall see (314 and §38.5) that the familiar concept of an

Thus, at the current level of understanding we have to as-energy cascade can be generalized in the kinetic framework
sume that there are two asymptotic regimes of MHD turbu- as thekinetic cascadef a single quantity that we call the
lence: anisotropic Alfvénic turbulence withB < By and generalized energgsee also_Schekochihin et al. 2008b, and
isotropic MHD turbulence with small-scale field reversalda references therein). The small scales developed in the pro-
0B > By. In this paper, we shall only discuss the first regime. cess are small scales both in the position and velocity space
The origin of the mean field may be external (as, e.g., in the The fundamental reason for this is the low collisionality of
solar wind, where it is the field of the Sun) or due to some the plasma: since heating cannot ultimately be accompulishe
form of mean-field dynam(rather than small-scale dynamo), without collisions, large gradients in phase space aresiece
as usually expected for galaxies (see, 2007) sary for the collisions to be effective.

Note finally that the conditionB < By need not be satis- The idea of a generalized energy cascade in phase space
fied at the outer scale and in fact is not satisfied in most spaceas the engine of kinetic plasma turbulence is the central con
or astrophysical plasmas, where more commoiy- By at cept of this paper. In order to understand the physics of the
the outer scale. This, however, is sufficient for the Kraich- kinetic cascade in various scale ranges, we derive in what fo
nan hypothesis to hold and for an Alfénic cascade to be setflows a hierarchy of simplified, yet rigorous, reduced kiogti
up, so at small scales (in the inertial range and beyond), thefluid and hybrid descriptions. While the full kinetic theory

assumptiong {6) are satisfied. of turbulence is very difficult to handle either analytigadir
. numerically, the models we derive are much more tractable.
1.4. Kinetic Turbulence For all, the regimes of applicability (scale/parameteiges)

The GS theory of MHD turbulence [§1.2) allows us to underlying assumptions) are clearly stated. In each okthes
make sense of the magnetized turbulence observed in cosmitegimes, the kinetic cascade splits into several chanfeis-o
plasmas exhibiting the same statistical scaling as tunimele  ergy transfer, some of them familiar (e.g., the Alfvénic-cas
in a neutral fluid (although the underlying dynamics are very cade, §518 and[§3.4), others conceptually new (e.g., the ki-
different in these two cases!). However, there is an asfect o netic cascade of collisionless compressive fluctuatios2,§
the observed astrophysical turbulence that underminesgthe  or the entropy cascade, [E8](.9-7.12).
plicability of any type of fluid description: in most caseset So as to introduce this theoretical framework in a way that
inertial range where the Kolmogorov scaling holds extends t is both analytically systematic and physically intelligiplet
scales far below the mean free path deep into the collisisnle us first consider the characteristic scales that are refégan
regime. For example, in the case of the solar wind, the meanthe problem of astrophysical turbulencé (§1.5). The models
free path is close to 1 AU, so all scales are collisionless— we derive are previewed if&1.6, at the end of which the plan
an extreme case, which also happens to be the best studiedf further developments is given.
thanks to the possibility df situ measurements (se€l§ 8).

The proper way of treating such plasmas is using kinetic 1.5. Scales in the Problem
theory, not fluid equations. The basis for the applicatiotief 151 Outer Scale
MHD fluid description to them has been the following well T
known result from the linear theory of plasma waves: while It is a generic feature of turbulent systems that energy is
the fast, slow and entropy modes are damped at the meaninjected via some large-scale mechanism: “large scaleg her
free-path scale both by collisional viscosity (Bragind4@65, means some scale (or a range of scales) comparable to the
see {6]]2 and by collisionless wave-particle interastio size of the system, depending on its global properties, and
6 sed §6.2.2), the Alfvén waves are only dampednuch larger than the microphysical scales at which energy
at the ion gyroscale. It has, therefore, been assumed that this dissipated and converted into heaf (81.5.2). Examples of
MHD description, inasmuch as it concerns the Alfvén-wave large-scale stirring of turbulent fluctuations include tudar
cascade, can be extended to the ion gyroscale, with the unactivity in the corona (launching Alfvén waves to produce
derstanding that this cascade is decoupled from the dampedurbulence in the solar wind); supernova explosions in the
cascades of the rest of the MHD modes. This approach andSM (e.g./Norman & Ferrara 1996; Ferrigére 2001); the mag-
its application to the turbulence in the ISM are best exgdin  netorotational instability in accretion dis
bylLithwick & Goldreich (2001). [1998); merger events, galaxy wakes and active galactic

While the fluid description may be sufficient to under- nuclei in galaxy clusters (e.gl, _Subramanian et al. 2006;
stand the Alfvénic fluctuations in the inertial range, itegc  [EnRlin & Vogt|2006; Chandran 2005a). Since in this paper
tainly inadequate for everything else: the compressivéifluc  we are concerned with the local properties of astrophysical
ations in the inertial range and turbulence in the dissgpati plasmas, let us simply assume that energy injection occ¢urs a
range (below the ion gyroscale), where power-law spectra ar some characteristiouter scale L All further considerations
also detected (e.g., Denskat etial. 1983; Leamonl et al. 1998will apply to scales that are much smaller tHaand we will

assume that the particular character of the energy injectio

12 SeelHaugen etal (2004) for an alternative view. Note alsotie  does not matter at these small scales.

numerical evidence cited above pertainddred simulations. Indecaying ; ; ;
MHD turbulence simulations, the magnetic energy does itidggpear to be In most astrophysical situations, one cannot assume that

at the outer scalé (Biskamp & Mller 2000), so one might ekpadAlfvénic equilibrium quantities such as density, temperature, nvean
cascade deep in the inertial range. locity and mean magnetic field are uniform at the outer scale.
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FIG. 2.— Partition of the wave-number space by characteristides. The wave numbers are normalizeddoy vi/s, wheree is the total power input (see
§[1.2). Dotted line shows the path an Alfvén-wave cascadtirgjat the outer scale ~ |y takes through the wave-number space. We also show the segion
validity of the three tertiary approximations. They all vég k| <k, (anisotropic fluctuations) ari pi < 1 (i.e.,k) vini < i, low-frequency limit). Reduced

MHD (RMHD, 8R) is valid wherk pi < K Amfpi < (me/m)Y/2 (strongly magnetized collisional limit, adiabatic elects). The regions of validity of Kinetic
Reduced MHD (KRMHD, §F) and Electron Reduced MHD (ERMHID] §& within that of the isothermal electron/gyrokinetic iapproximation (Fig¥) with
the additional requirement thi{ pi < min(L,k Amepi) (Strongly magnetized ions) for KRMHD ¢, pi > 1 (unmagnetized ions) for ERMHD. The collisional

limit of KRMHD (§ Bland AppendikD), ife/m)Y? <« K Amfpi < 1, is similar to RMHD, except electrons are isothermal. Toedl line is the scaling df
vsk, from critical balance in both the Alfvén-wave[[§1.2, Eq.]J@&)d kinetic-Alfvén-wave [E715, Eq_{Z}1)] regimes.

However, at scales much smaller tharthe gradients of the  flow (the E x B velocity field). Atk, p; ~ 1, ions can ex-
small-scale fluctuating fields are much larger than the euter change energy with electromagnetic fluctuations via wave-
scale gradients (although the fluctuation amplitudes arehmu particle interactions (and ion heating eventually occuasay
smaller; for the mean magnetic field, this assumption is dis- kinetic ion-entropy cascade, see[88[7.9-I7.10).kAp; > 1,
cussed in some detail if§1.3), so we may neglect the equithe ions are unmagnetized and have a Boltzmann response
librium gradients and consider the turbulence to be homoge-(§[7.2). Note that the ion inertial scade= p; /\/f3; is compara-
neous. Specifically, this is a good assumptiorif > 1 ble to the ion gyroscale unless the plasma leta8rn;T; /B2

[Eq. (@)], i.e., not only the perpendicular scales but ale® t is very different from unity. In the theories developed belo
much larger parallel ones are still shorter than the outlesc  d;, does not play a special role except in the limitTot Te,
Note that we cannot generally assume that the outer-scale enwhich is not common in astrophysical plasmas (see further
ergy injection is anisotropic, so the anisotropy is alsqitog- discussion in E711 and Appendik E).

erty of small scales only.

Electron gyroscale— At k; pe < 1, electrons are magnetized

1.5.2. Microscales and the magnetic field is frozen into the electron flow(§ 4,
There are four microphysical scales that mark the transi- 84, AppendixC). Atk pe ~ 1, the electrons absorb the
tions between distinct physical regimes: energy of the electromagnetic fluctuations via wave-plartic

interactions (leading to electron heating via a kineticetmn-

Electron diffusion scale— At KjAmmpi(m/me)¥? > 1, the  entropy cascade, se€87.12).
electron response is isothermal(g4.4, Apperidixl A.4). At

P — 1/2 « 1, itis adiabatic (484, AppendixA.3). Typical values of these scales and of several other key pa-
| Amipi (/) ( PP ) rameters are given in Tablé 1. In FId. 2, we show how the

wave-number spacek (, k), is divided by these scales into
Mean free path— At K Ampi >> 1, the plasmais collisionless. ~ several domains, where the physics is different. Further pa
In this regime, wave-particle interactions can damp comypre titioning of the wave-number space results from comparing
sive fluctuations via Barnes dampind(§612.2), so kinetic de Kipi andkAmpi (Kipi < Kj Amipi is the limit of strong mag-
scription becomes essential. AfAmp < 1, the plasmais  netization, see AppendEu_E.Z) and, most importantly, from
collisional and fluid-like (E6]1, AppendicEs A afid D). comparing parallel and perpendicular wave numbers. As we

explained above, observational and numerical evidents tel
lon gyroscale— At k; pi < 1, ions (as well as the electrons) us that Alfvénic turbulence is anisotropig, < k. In Fig.[2,
are magnetized and the magnetic field is frozen into the ionwe sketch the path the turbulent cascade is expected to take
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TABLE 1
REPRESENTATIVEPARAMETERS FORASTROPHYSICALPLASMAS.

than the ion cyclotron frequency, < €;, gyrokinetics can
be systematically derived by making use of the following two

assumptions, which also underpin the GS theofy (8§ 1.2): (a)
anisotropy of the turbulence, se- k; /k . is used as the small
parameter, and (b) strong interactions, i.e., the fluatnaim-

Solar .
Parameter wind e, fcretion Salaxy plitudes are assumed to be such that wave propagation and
L AaLtJ @ ISMO)  sgra@  (coresfd nonlinear interaction occur on comparable time scalesnfro
Eq. [(3),u. /va ~ €. Thefirst of these assumptions implies that
R > fluctuations at Alfvénic frequencies satisfy ~ kyva < €
e iOTi(e) gc?oo 11%51 gi ig even when their perpendicular scale is skch L1, This
T K 5%x10F 8000 ~ 1020 Ae) makes gyrokinetics an ideal tool both for analytical thesomgl
B, G 104 10°6 30 7% 1076 for numerical studies of astrophysical plasma turbuletiee;
Bi 5 14 4 9 numerical approaches are also made attractive by the long ex
perience of gyrokinetic simulations accumulated in thédfus
zthi'k‘;n”;f 28 %o %Xé 106 280 research and by the existence of publicly available gyroki-
0 kD ~ 10 ~10 100 A netic codes| (Kotschenreuther etlal. 1995; Jenkolet al.| 2000;
' \Candy & Waltz 2003/ Chen & Parker 2003). A concise re-
L, km® ~1F ~1015 ~108 ~ 107 view of gyrokinetics is provided in[§ 3 (see Howes €t al. 2006
(M /me) 2 Amtpi, km - 100 2x10°F  4x1010 4x101® for a detailed derivation). The reader is urged to pay partic
)\mflzi: km(©) 3 : 10° 61301006 1894 12%5 ular attention to E3]4 and§3.5, where the concept okthe
Z'e’ km > b 0.003 500 netic cascadef generalized energyg introduced and the par

ticle heating in gyrokinetics is discussed (Apperidix Fantr

) o duces additional conservation laws that arise in 2D and some
2 Values for slow wind (mean flow spe&y, = 350 km/s in this case)

measured by Cluster spacecraft and taken et d5]2ex-
cept the value offe, which they do not report, but which is expected
to be of the same order & (Newbury et al 1998). Note that the
data interval studied by Bale efl &l. (2005) is slightly atgbi with 3;
higher than usual in the solar wind (the full range®fvariation in
the solar wind is roughly betweenl0and 10; see Howes efi Al. 2008a
for another, perhaps more typical, fiducial set of slow-wpatame-
ters and Appendix A of the review by Bruno & Carblhne 2005 fonsl
and fast-wind parameters measured by Helios 2). Howevenisgee

times also in 3D). This establishes the conceptual framlewor
in which most of the subsequent physical arguments are pre-
sented. The region of validity of gyrokinetics is illusedt

in Fig.[3: it covers virtually the entire path of the turbulen
cascade, except the largest (outer) scales, where onetcanno
assume anisotropy. Note that the two-fluid theory, which is
the starting point for the MHD theory (see Appenfik A), is
not a good description at collisionless scales. It is imgurt

their parameter values as our representative example $eetlae spec-
tra they report show with particular clarity both the electind mag-
netic fluctuations in both the inertial and dissipation e (see Fid.1).
See further discussion in[§8.1 anf §8.Zypical values (see, e.g.,
[Norman & Ferraia 1996; Ferriere 2001). See discussiol_ 7§ 8al-
ues based on observational constraints for the radioiagitilasma
around the Galactic Center (Sgi pas interpreted By Loeb & Waxman
(2007) (see also Quatakrt 2D03). See discussioh i €\&akies for the
core region of the Hydra A cluster taken from EnRlin & Yogt 0&(;
see Schekochihin & Cowldy 2006 for a consistent set of nusfmr
the hot plasmas outside the cores. See discussion h*8/8esassume
Ti ~ Te for these estimatdsRough order-of-magnitude estim&t®e-
fined Amipi = Vini /vii, Wherew is given by Eq.[(GR).

to mention, however, that the formulation of gyrokineticatt
we adopt, while appropriate for treating fluctuations at col
lisionless scales, does nevertheless require a certaiakjwe
degree of collisionality (see discussion i §3/1.3 and an ex
tended treatment of collisions in gyrokinetics in Apperig)x

Isothermal Electron Fluid (Bl4)— While gyrokinetics con-
stitutes a significant simplification, it is still a fully kétic
description.  Further progress towards simpler models is
achieved by showing that, for parallel scales smaller than t
electron diffusion scalel Amspi > (me/m)*?, and perpen-

in the wave-number space (we use the scalinds ofith k . dicular scales lar
, ger than the electron gyroschlese < 1,
that follow from the GS argument for the Alfvén waves and an he glectrons are a magnetized isothermal fluid while ions

analogous argument for the kinetic Alfvén waves, reviewedi st be treated (gyro)kinetically. This is the secondary
§[1.2 and &705, respectively). approximation in our hierarchy, derived ifil§ 4 via an asymp-
I . totic expansion inrfe/m)Y? (see also Appendix 0.1). The
1.6. Kinetic and Fluid Models plasma is described /by the ion gyrokinetic equation and two
What is the correct analytical description of the turbulent fluid-like equations that contain electron dynamics—these
plasma fluctuations along the (presumed) path of the ca8cadeare summarized in[§4.9. The region of validity of this
As we promised above, it is going to be possible to simplify approximation is illustrated in Fi@l 4: it does not captie t
the full kinetic theory substantially. These simplificatsocan  dissipative effects around the electron diffusion scaléher
be obtained in the form of a hierarchy of approximations and electron heating, but it remains uniformly valid as the ealsc

as these emerge, specific physical mechanisms that cdmrol t passes from collisional to collisionless scales and alsib as
turbulent cascade in various physical regimes become morerosses the ion gyroscale.

transparent.

In order to elucidate the nature of the turbulence above and
below the ion gyroscale, we derive two tertiary approxima-
tions, one of which is valid fok pi < 1 (83 and §b) and the
other fork, p; > 1 (8; see also Appendix] C, which gives
a nonrigorous, nongyrokinetic, but perhaps more intuitive
derivation of the results[8 4 and &7 .2).

Gyrokinetics (EBy— The starting point for these develop-
ments and the primary approximation in the hierarchgyis
rokinetics a low-frequency kinetic theory resulting from av-
eraging over the cyclotron motion of the particles. Gyroki-
netics is appropriate for the study of subsonic plasma turbu
lence in virtually all astrophysically relevant parameterges
(Howes et all 2006). For fluctuations at frequencies lower
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Kinetic Reduced MHD (85 and % 6)- On scales above the ion heated. This part of the cascade is purely kinetic and itsrsal
gyroscale, known as tHertial range” we demonstrate that  feature is the particle distribution functions developamgall

the decoupling of the Alfvén-wave cascade and its indiffer- scales in the gyrokinetic phase space. Note that besidis der
ence to both collisional and collisionless damping areieipl  ing rigorous sets of equations for the dissipation-rangautu
and analytically provable properties. We show rigoroulstt  lence, &V also presents a number of Kolmogorov-style sgalin
the Alfvén-wave cascade is governed by a closed set of twopredictions—both for the KAW cascadd(g]7.5) and for the en-
fluid-like equations for the stream and flux functions—the Re tropy cascade (§7.9.2[§7.10.2. § 7.10[4, §]7.12).

duced Magnetohydrodynamics (RMHD)—independently of
the collisionality (§5.B and [§5.4; the derivation of RMHD
from MHD and its properties are presented [d § 2). The cas-
cade proceeds via interaction of oppositely propagatinggwa
packets and is decoupled from the density and magnetic-fiel
strength fluctuations (the “compressive” modes; in thei-coll
sional limit, these are the entropy and slow modes; §6.
and Appendi{D). The latter are passively mixed by the
Alfvén waves, but, unlike in the fluid (collisional) limithis
passive cascade is governed by a (simplified) kinetic equa
tion for the ions (§515). Together with RMHD, it forms a

Hall Reduced MHD (AppendiX E}- The reduced (anisotropic)
form of the popular Hall MHD system can be derived as a
special limit of gyrokineticsK, pi < 1, Ti < T, i < 1).

g The resulting Hall Reduced MHD (HRMHD)equations

are a convenient model for some purposes because they
simultaneously capture the cold-ion, low-beta limits offbo
]the KRMHD and ERMHD systems. However, they are
usually not strictly applicable in space and astrophysical
plasmas of interest, where ions are rarely cold gni not
particularly low. The HRMHD equations are derived in §E.1,

; 1 linati P ; - the kinetic cascade of generalized energy in the Hall limit i
gyvsggkﬁylgomggrl]%fj slsacsr;ﬁgo\r:vr(])iirr]n \?v%nce;gr?gﬂgug):(lﬁrlg% discussed in[EEl2, and the circumstances under which the ion

MHD (KRMHD). The KRMHD equations are summarized inertial and ion sound scales become important in theofies o
in §5.7. Their collisional and collisionless limits are ex- Plasma turbulence are summarized D §E.4. Theories of the
plored in 6.1 and EBl2, repectively. Whereas the Alfvén d!SS|pat|on_—raneturbulence based on Hall MHD are briefly
waves are undamped in this approximation, the compressivéliscussed inE8.2.6.

fluctuations are subject to damping both in the collisional . .- . L
(Braginskiil 1965 viscous damping[§6.11.2) and collisissle The regions of validity of the tertiary approximations—
(Barnes 1966 damping,[§6.2.2) limits. In the collisionless KRMHD and ERMHD—are illustrated in Fig 2. In this fig-
limit, the compressive component of the turbulence is a sim- Uré; We also show the region of validity of the RMHD sys-
ple example of an essentially kinetic turbulence, inclgdin tem derlve_d ffo”? the standard compressible MHD equations
such features as conservation of generalized energy despit?y assuming anisotropy of the turbulence and strong inter-
collisionless damping and (parallel) phase mixing, pdgsib actions. _Thl_s derivation is the_ f.|UId analog of the der[vat|0
leading to ion heating (§86.213-6.2.5). How strongly the of gyroklr]eths. We present it |r_1§ 2, before_ embarking on
compressive fluctuations are damped depends on the paraf'€ gyrokinetics-based path outlined above, in order toamak
lel scale of these fluctuations. Since the ion kinetic equati a connection with the conventional MHD treatment and to
turns out to be linear along the moving field lines associatedd€monstrate with particular simplicity how the assumptén
with the Alfvén waves, the compressive fluctuations do mot, i anisotropy leads to a reduced ﬂu,'d system in which the decou-
the absence of finite-gyroradius effects, develop smadiifdr ~ PIing of the cascades of the Alfvén waves and of the compres-
scales and their cascade may be only weakly damped abov?'ve modes is manifest (AppendiX A extends this derivation
the ion gyroscale—this is discussed i §6.3. 0 inskii 1965 two-fluid equations in the limit of strong
magnetization; it also works out rigorously the transiticm

Elecion Reduced MHD [87- At the fon gyroscale, the 1 20 B8 B SEEESANATRR o e contained
Alfvénic and the compressive cascades are no longer decoui—n §83EMT. The outline iveg above is mearr)n ?o help the reader
pled and their energy is partially damped via collisionless ’ 9 P

wave-particle interactions (87.1). This part of the endggy  "avigate these sections. In]§8, we discuss at some length
channelled into ion heat. The rest of it is converted into a how our results apply to various astrophysical plasmas with

cascade of kinetic Alfvén waves (KAW). This cascade ex- weak coIIisiona.Iity: f[he solar wind and the magnetosheath,
tends through what is known as t(htﬁssizjation range’to e ISM, accretion disks, and galaxy cluster6 (§8.1 dndl§ 8.2

the electron gyroscale, where its turn comes to be damped Vi&;;\?halso_ge read as_lagl 0\]{erall summalry of the paper in “gtht
wave-particle interaction and transferred into electreath g. ﬁe\/' %Ce avaiia .g rorg _sr;ace_;p asma r&qeaslt(uemfe nts)
The KAW turbulence is again anisotropic wik) < k. It Ina yli n o 't‘]f"? pro&/] et"." ”ef‘?p' ogue and make a few
is governed by a pair of fluid-like equations, also derived remarks about future directions ot inquiry.

from gyrokinetics. We call thenklectron Reduced MHD 2. REDUCED MHD AND THE DECOUPLING OF TURBULENT
(ERMHD). In the high-beta limit, they coincide with the re- CASCADES

duced (anisotropic) form of the previously known Electron  cgnsider the equations of compressible MHD

MHD (Kingsep et all 1990). The ERMHD equations are de-

rived in §7.2 (see also Appendix_C.2) and the KAW cas- @:—qu @)
cade is considered in 887.3-7.5. The fate of the inertial- dt ’

range energy collisionlessly damped at the ion gyroscale is du B2 B-VB

investigated in §§7]6-7.11; an analogous consideration fo Y (p+§) o (8)
the KAW energy damped at the electron gyroscale is pre-

sented in §7.72. In these sections, we introduce the no- d_S:() S= P ’Y:E) (9)
tion of theentropy cascade-a nonlinear phase-mixing pro- dt 7 Py’ 3

cess whereby the collisionless damping occurring at the ion dB

and electron gyroscales is made irreversible and partacies ar B-Vu-BV-u (10)



8 SCHEKOCHI
wherep is the mass density,velocity, p pressureB magnetic
field, sthe entropy density, andl/dt = 9/0t+u -V (the con-
ditions under which these equations are valid are discuesed
Appendix[d). Consider a uniform static equilibrium with a
straight mean field in thedirection, so

p=po+dp, P=Ppo+ip, B=Boz+IB, (11)

wherepg, po, andBg are constants. In what follows, the sub-
scripts|| and_L will be used to denote the projections of fields,
variables and gradients on the mean-field directiand onto
the planeX,y) perpendicular to this direction, respectively.

2.1. RMHD Ordering
As we explained in the Introduction, observational and nu-

HIN ET AL.

turbulence in low-beta plasmas_(Chandran 2005b) suggests
that only a small amount of energy is transferred from the fas
waves to Alfvén waves with largle,. A similar conclusion
emerges from numerical simulations (Cho & Lazarian 2002,
[2003). As the fast waves are also expected to be subject to
strong collisionless damping and/or to strong dissipaditber

they steepen into shocks, we eliminate them from our con-
sideration of the problem and concentrate on low-frequency
turbulence.

2.2. Alfvén Waves

We start by observing that the Alfvén-wave-polarized
fluctuations are two-dimensionally solenoidal: sincenfro

Eq. (@),

merical evidence makes it safe to assume that the turbulence

in such a system will be anisotropic wiky < k, (at scales
smaller than the outer scalg,L > 1; see §113 and[§1.5.1).
Let us, therefore, introduce a small parameter ‘/kL and
carry out a systematic expansion of E(BlIV—lOS.inn this
expansion, the fluctuations are treated as small, but nét arb
trarily so: in order to estimate their size, we shall adogt th
critical-balance conjectur&l(3), which is now treatext as a
detailed scaling prescription but as an ordering assumptio
This allows us to introduce the following ordering:

b 0B 0B K
2 Po Bo Bo ki

whereva = By/v/4mpo is the Alfvén speed. Note that this
means that we order the Mach number

up
Va

Ui

e (12)

)

u €
M~ — ~—, 13
s Vi &
wherecs = (ypo/ po)*/? is the speed of sound and
8rpo _ 2C2
AT .

is the plasma beta, which is ordered to be order unity irethe
expansion (subsidiary limits of high and lgvcan be taken
after thec expansion is done; se¢€ §P.4).

In Eq. (I2), we made two auxiliary ordering assump-
tions: that the velocity and magnetic-field fluctuations
have the character of Alfvén and slow wave® ( /By ~
ui/va, 6Bj/Bo ~ uj/va) and that the relative amplitudes
of the Alfvén-wave-polarized fluctuation8R, /Bo, U, /Va),
slow-wave-polarized fluctuationsg;/Bo, uj/va) and den-
sity/pressure/entropy fluctuation&p( po, dp/po) are all the
same order. Strictly speaking, whether this is the casertkpe
on the energy sources that drive the turbulence: as we sha

ddp _

V-u=———/—
dt po

O(€) (15)
andV - 6B = 0 exactly, separating th@(c) part of these diver-
gences give¥/ | -u; =0andV, -6B, =0. To lowest order

in thee expansion, we may, therefore, exprassanddB | in
terms of scalar stream (flux) functions:
R 0B, _,

u,=zxVv,® =zxV_ W 16

1 X V1P, Nz X V1 (16)

Evolution equations fo and¥ are obtained by substituting
the expression§ (16) into the perpendicular parts of thednd
tion equation[(I0) and the momentum equatigh (8)—of the
latter the curl is taken to annihilate the pressure term.pKee
ing only the terms of the lowest ordé@(e?), we get

ov 0P
E +{(I)a\IJ} _VAEa (17)
OVie+{eVie)=nl ViU (v, Vi v}, (18)

where{®, ¥} =2-(V_ P x V ¥) and we have taken into
account that, to lowest order,

d 0 0

gt U Ve S g ek (19)
9 6B, _ 0. 1
bVt ey VT ) (@0

Hereb = B/By is the unit vector along the perturbed field line.
Equations [(TI’-18) are known as the Reduced Magne-

tohydrodynamics (RMHD). The first derivations of these

equations (in the context of fusion plasmas) are due to

}sadgmls_el&_lio,guﬁsé_ﬂalM) and 976). These

vere followed by many systematic derivations and gener-

see, if no slow waves (or entropy fluctuations) are launched,gjizations employing various versions and refinements of

none will be present. However, in astrophysical conteks, t

the basic expansion, taking into account the non-Alfvénic

outer-scale energy input may be assumed random and, thergngdes (which we will do in E2]4), and including the ef-

fore, comparable power is injected into all types of fluctua-
tions.

We further assume that the characteristic frequency of the1992

fects of spatial gradients of equilibrium fields (e

1977] Montgomery 1982; Hazeltine 1983; Zank & Matthaeus
= =< _ 2 . 1098;

fluctuationsisv ~ kv [Eq. ()], meaning that the fast waves, [Kruger et al 1998). A comparative review of these expansion

for which w ~ k, (V& +¢2)¥/2, are ordered out. This restric-
tion must be justified empirically. Observations of the so-
lar wind turbulence confirm that it is primarily Alfvénic (se

schemes and their (often close) relationship to ours idarits
the scope of this paper. One important point we wish to em-
phasize is that we do not assume the plasma beta [defined in

e.g./Bale et al. 2005) and that its compressive component isEq. [I3)] to be either large or small.

substantially pressure-balanced (Roberts 1990; Burlaaik e
11990; Marsch & Tu 199

Equations[(1]7) and(18) form a closed set, meaning that the

3; Bavassano ef al. 2004, see[Ed. (22)Alfvén-wave cascade decouples from the slow waves and den-

below). A weak-turbulence calculation of compressible MHD

sity fluctuations. It is to the turbulence described by HijE- (
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[18) that the GS theory outlined in §1.2 appltésn §[5.3, we 2.4. Slow Waves and the Entropy Mode
will show that Egs.[(17) and (18) correctly describe inértia |, orqer to derive evolution equations for the remaining

range Alfvénic fluctuations even in a collisionless plasma, \iip modes. let us first revisit the :
2 ; . , perpendicular part of the
where the full MHD description [EqSL.J(Z=110)] is not valid. momentum equation and use Eg.l(12) to order terms in it. In

>3 Elsasser Fields the lowest orderQ(¢), we get the pressure balance

The MHD equations[{7=10) in the incompressible limit 5 BodB; -0 Sp_ Vi0B 29
(p = const) acquire a symmetric form if written in terms of Vi p+T - = E - 2By (22)
the Elsasser fields® = u+0B/\/4rp (Elsassér 1950). Let _ _ °
us demonstrate how this symmetry manifests itself in the re-Using Eq. [22) and the entropy equatibh (9), we get

duced equations derived above. 5B
We introduceElsasser potentials® = ® + ¥, so thatzf = ddis =0, 5—5 = 5_p - 5—p =- <5—p + ﬁ’;?> , (23)
2x V1 (E. For these potentials, Eq5_{[7-18) become t o Po o po G Bo
o B 1, ., ~ ~ . wheresy = po/pg. Now, substituting Eq[{15) fo¥ - u in the
5V1Ci ¥VA3—ZV2¢<i =75 ({¢, Vi +{¢,VicT) parallel component of the induction equatibnl(10), we get
2 + - /B R
These equations show that the RMHD has a simple set of ex- dt\ Bo po

act solutions: if¢” = 0 or* = 0, the nonlinear term vanishes . ;
and the other, nonzero, Elsasser potential is simply a ﬂUC_Combmlng Eqs[{23) an@p4), we obtain

tuation of arbitrary shape and magnitude Eropagating along dép__ 1 b.v 25

the mean field at the Alfvén speeg: (* = f¥(X,y,zF vat). dt oo~ 1+C2N\2 4y (25)
; e ; . Po cz/v4

These solutions are finite-amplitude Alfvén-wave packéts o d 6B 1

arbitrary shape. Only counterpropagating such solutiams c 2% - - 5. uj. (26)

interact and thereby give rise to the Alfvén-wave cascade dt B 1+V,§/ c?

(Kraichnafi 1965). Note that these interactions are coaserv
tive in the sense that thet” and “~” waves scatter off each
other without exchanging energy.

Note that the individual conservation of the™and “~”
waves’' energies means that the energy fluxes associate
with these waves need not be equal, so instead of a sin-
gle Kolmogorov fluxe assumed in the scaling arguments dy —\25
reviewed in §1.P, we could have" Z ™. The GS the- T Ab'VB—O' (27)
ory can be generalized to this caseimbalancedAlfvénic
cascades (Lithwick et HI. 2007; Beresnyak & Lazarian 2008a; Equations[(26-27) describe the slow-wave-polarized fluctu

1 2008), but here we will focus on the balanced tur-ations, while Eq.[(23) describes the zero-frequency egtrop
bulence,s* ~ . If one considers the turbulence forced mode, which is decoupled from the slow wavésThe non-

in a physical way (i.e., without forcing the magnetic field, linearity in Egs. [ZB-27) enters via the derivatives defimed
which would break the flux conservation), the resulting cas- Eds. [1¥:2D) and is due solely to interactions with Alfvén
cade would always be balanced. In the real world, imbal- waves. Thus, both the slow-wave and the entropy-mode cas-
anced Alfvénic fluxes are measured in the fast solar wind, cades occur via passive scattering/mixing by Alfvén waives,
where the influence of initial conditions in the solar atmo- the course of which there is no energy exchange between the
sphere is more pronounced, while the slow-wind turbulencecascades. ) o

is approximately balanced (Marsch & Tu 1990a; see also re- Note that in the high-beta limits > va [see Eq.[(TH)], the

views byl Tu & Marsch 1995; Bruno & Carbdhe 2005 and ref- entropy mode is dominated by density fluctuations [Eg} (23),

erences therein). Cs > Va], which also decouple from the slow-wave cascade
[Eq. (28),cs > va]. and are passively mixed by the Alfvén-

13 The Alfvén-wave turbulence in the RMHD system has been stud- wave turbulence:

ied by many authors. Some of the relevant numerical invastigs are ds

due to[Kinney & McWilliamss [(1998),_Dmitruk et All_(2003), Ohipn et al. P -0 (28)

(2004) [ Rappazzo etlal. (2007, 2D08). Perez & Boldyrev (22089). An- dt :

alytical theory has mostly been confined to the weak-turimgeparadigm ) o ) ) .

(Ng & Bhattacharjed199€. 1997: Bhattacharjee & Ng 2001 tic¥aét al. The high-beta limit is equivalent to the incompressible ap-

[2002; [Tithwick & Goldreich[2003{"Galtier & Chandiidn _2006; 2é@enkb proximation for the slow waves.

2008). We note that adopting the critical balance [Ed. (3)pa ordering

assumption for the expansion kj /k, does not preclude one from subse-

quently attempting a weak-turbulence approach: the latteuld simply be

Finally, we take the parallel component of the momentum
equation[(B) and notice that, due to the pressure balanye (22
and to the smallness of the parallel gradients, the pressure
rm isO(e3), while the inertial and tension terms a@ée?).
herefore,

14 For other expansion schemes leading to reduced sets ofi@ugifor

treated bsidi h Indeed. imol teanisot ] these “compressive” fluctuations see references[in]§ 2.2e Mat the na-
reated as a subsidiary expansion. [ndeed, impiementaigriisotropy as ture of the density fluctuations described above is disfirzh the so called

sumption on the level of MHD equations rather than simultasy with “pseudosound” density fluctuations that arise in the “reémtompress-

the weak-turbulence closure (Galfier etlal.”2000) signifiyareduces the P ies [ : A 1987 THI1988:
amount of algebra. One should, however, bear in mind thatwbak- m%;\@ﬁﬁ?ﬁe&ﬁuﬁ:

turbulence approximation alwaysz t;reaks down at some seriflgi small sentially the density response caused by the nonlineasymedluctuations
scale—namely, whek . ~ (va/U)“kjL, whereL is the outer scale of the  caicylated from the incompressibility constraint. Theutisg density fluc-
turbulence,U velocity at the outer scale, arlg, the parallel wave num-  tuations are second order in Mach number and, thereforer efdin our

ber of the Alfvén waves (s har_1997 or thdewe by expansion [see Ed.(IL3)]. The passive density fluctuatienset! in this sec-
Schekochihin & Cowley 2007). Below this scale, interacti@annot be as- tion are ordef and, therefore, supersede the “pseudosound” (see review by
sumed weak. for a discussion of the relevant solar-wividence).
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In 85.3, we will derive a kinetic description for the ineftia  turbulence, the scalar-variance spectrum should, thergie
range compressive fluctuations (density and magnetic-fieldy > ([jihwick & Goldreich[2001). The same argument ap-

strength), which is more generally valid in weakly collisé pﬁes to all passive fields.

plasmas and which reduces to E4sJ[26-27) in the collisional’ |t is the (presumably) passive electron-density spectrum
limit (see AppendiXD). While these fluctuations will in gen- 5t yrovides the main evidence of &3 scaling in the in-
eral satisfy a kinetic equation, they will remain passivéhwi terstellar turbulencé (Armstrong eflal. 1081, 1 : :
respect to the Alfvén waves. 2004, see further discussion il §8]4.1). The explanation of
i this spectrum in terms of passive mixing of the entropy mode,
2.5. Elsasser Fields for the Slow Waves originally proposed bm@m@, was developed on the
The original Elsasser (1950) symmetry was was derived for basis of the GS theory by Lithwick & Goldreich (2001). The
incompressible MHD equations. However, for the “compres- turbulent cascade of the compressive fluctuations and the re
sive” slow-wave fluctuations, we may introduce generalized evant solar-wind data is discussed further [ % 6.3. In garti

Elsasser fields: ular, it will emerge that the anisotropy of these fluctuasion
5B 2\ 2 remains a nontrivial issue: is there an analog of the scaling
A =u + [ (1+_A) ' (29) relation [3)? The scaling argument outlined above does not
[ I LN cZ invoke any assumptions about the relationship between the

Straightforwardly, the evolution equation for these fidkis parallel and perpendicular scales of the compressive Huctu
' ations (other than the assumption that they are anisodropic
ozt v 0zf Lithwick & Goldreich (2001) argue that the parallel scalés o

I i the Alfvénic fluctuations will imprint themselves on the pas

—_— qj —_—
o V1+vy/c2 oz sively advected compressive ones, so Ed. (5) holds for the
1 ( 1 ) { . i} Ia}tt(fe]r as lvvell.. Ig E_(Ij& we exgm;nﬁ thfis corr]wclu?]ion in vi_ew
- 1lF——={¢",z of the solar wind evidence and of the fact that the equations
2 V1+vg/c H for the compressive modes become linear in the Lagrangian
frame associated with the Alfvénic turbulence.
T e zt} (30)
2 ViIH2/c i< S 2.7. Five RMHD Cascades

Thus, the anisotropy and critical balandd (3) taken as
ordering assumptions lead to a neat decomposition of the
MHD turbulent cascade into a decoupled Alfvén-wave cas-

In the high-beta limit {a < ), the generalized Elsasser
fields [29) become the parallel components of the conven-

For)ta(ljlnf:r? m;l)reSS|bIe E[s?ssertfleldls. Wel Seet;]hfr‘]t onlylsmt th cade and cascades of slow waves and entropy fluctuations pas-
Imit 4o e Slow waves Interact exclusively wi € counte sively scattered/mixed by the Alfvén waves. More precisely

propagating Alfvén waves, and so only in this limit does set- - :
ting (" =0 or¢* =0 gives rise to finite-amplitude slow-wave- Eﬁ;cﬁeﬁg C?Sgnzt%{%é:mply that, for arbitrapy there are

packet solutionzH = f%(x,y, zF vat) analogous to the finite-

1

amplitude Alfvén-wave packets discussed [n 8%.8or gen- Wiy, = > /dsf pol VL¢P (Alfvenwaves)  (33)
eral 3, the phase speed of the slow waves is smaller than that
of the Alfvén waves and, therefore, Alfvén waves can “catch W = 1 / d®r polz5 |2 (slow waves) (34)
up” and interact with the slow waves that travel in the same 2 [
direction. All of these interactions are of scattering tymel 1 [ 5 082 .
involve no exchange of energy. W= > /d r g (entropy fluctuations}35)

2.6. Scalings for Passive Fluctuations W,y andWy,, are always cascaded by interaction with each

The scaling of the passively mixed scalar fields introduced Other. W is passively mixed byxy andWy, Way, are pas-
above is slaved to the scaling of the Alfvénic fluctuations. Sively scattered bWy, and, unless > 1, also byWyy,.
Consider for example the entropy mode [EG](23)]. As Thisis an example of splitting of the overall energy cascade
in Kolmogorov—Obukhov theory (sed §1L.1), one assumes aiNto several channels (recovered as a particular case of the
local-in-scale-space cascade of scalar variance and tacns More general kinetic cascade in Appendix]D.2)—a concept
flux s of this variance. Then, analogously to Eg. (1), that will repeatedly arise in the kinetic treatmentto fallo

The decoupling of the slow- and Alfvén-wave cascades in
Vtzhi 5S§ MHD turbulence was studied in some detail and confirmed
EE N e in direct numerical simulations by Maron & Goldreli¢h (2001,
for 3 >> 1) and by_Cho & Lazarian (2002, 2003, for a range
Since the cascade timedg! ~ uy - V1 ~Va/ljy ~ /U3, of values of/3). The derivation given in §212 and §2.4 (cf.
5 12 ithwi ich2001) provides a straightforward theo
S (é) ﬁ7 (32) retical basis for these results, assuming anisotropy ofuthe
S € Vihi bulence (which was also confirmed in these numerical stud-
so the scalar fluctuations have the same scaling as the turbu'-e?t)-turns out that the decoupling of the Alfvén-wave cascade
lence that mixes thert (Obukfiov 19%9: Colfsin 1951). In GS that we demonstrated above for the anisotropic MHD turbu-

15 Obviously, settingboth ¢* = 0 does always enable these finite-
amplitude slow-wave solutions. More nontrivially, suchitéramplitude so- 16 Note that magnetic helicity of the perturbed field is not araifant of
lutions exist in the Lagrangian frame associated with tHeékl waves—this RMHD, except in two dimensions (see Appenflix]F.4). In 2Dyéhis also
is discussed in detail in[88.3. conservation of the mean square fI5f>d3r |¥|? (see AppendikFl2).

(31)
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lence is a uniformly valid property of plasma turbulence at to be strongly interacting Alfvén waves plus electron dignsi
both collisional and collisionless scales and that thisads and magnetic-field-strength fluctuations.

is correctly described by the RMHD equatiohsI[17-18) allthe Besidese, several other dimensionless parameters are
way down to the ion gyroscale, while the fluctuations of den- present, all of which are formally considered to be of order
sity and magnetic-field strength do not satisfy simple fluid unity in the gyrokinetic expansion: the electron-ion mass r
evolution equations anymore and require solving the kineti tio me/m;, the charge ratio

equation. In order to prove this, we adopt a kinetic descrip-

tion and apply to it the same ordering(8l2.1) as we used to Z=0q/|ge=a/e (40)
reduce the MHD equations. The kinetic theory that emerges

as a result is called gyrokinetics (for hydrogen, this is 1, which applies to most astrophysica

plasmas of interest to us), the temperature tatio
3. GYROKINETICS

. . . . T:-I—i/TE7 (41)
The gyrokinetic formalism was first worked out
for linear waves by | Rutherford & Friemlan | (1968) and the plasma (ion) beta
and by [Taylor & Hastie [(1968) (see aldo Ca 978;
/Antonsen & Lan

¢ 1980; Catto etlal. 1981) and subsequently _ Va3, _ 8tnTy _ AN
extended to the nonlinear regimelby Frieman & Chen (1982). i = e gl1+=) (42)

Rigorous derivations of the gyrokinetic equation based on

the Hamiltonian formalism were developed by Dubin étal. \yherevi: = (2T /m)Y2 is the ion thermal soeed and the total
(1983, electrostatic) and Hahm et al. (1988, electromaginet 3 yag c;gfinfad :énlquIM) based on the totgl prespure;T; +
This approach is reviewed In_Brizard & Hal rin_(;DO?). A neTe. We shall occasionally also use the electron beta
more pedestrian, but perhaps also more transparent egposit
of the gyrokinetics in a straight mean field can be found in 8meTe  Z
Howes et al.[(2006), who also provide a detailed explanation fe= B2 = P Gi- (43)
of the gyrokinetic ordering in the context of astrophysical 0
plasma turbulence and a treatment of the linear waves andrhe total beta i} = 5 + .
damping rates. Here we review only the main points so as
to allow the reader to understand the present paper without 3.1.1. Wave Numbers and Frequencies
referring elsewhere. ) )

In general, a plasma is completely described by the distribu ~As we want our theory to be uniformly valid at all (perpen-
tion function fs(t, r,v)—the probability density for a particle ~ dicular) scales above, at or below the ion gyroscale, werorde
of speciess (=1i,€) to be found at the spatial positisrmov-

ing with velocityv. This function obeys the kinetic Vlasov— Kipi~1, (44)
Landau (or Boltzmann) equation wherep; = v /€ is the ion gyroradius; = giBo/cm the ion
cyclotron frequency. Note that

%"'V'st'l'% E+VXB .%: % , (36)

ot ms c ov ot /), zZ me
wheregs andm are the particle’s charge and masss the Pe= "7\ m (45)
speed of light, and the right-hand side is the collision term ) o o
(quadratic inf). The electric and magnetic fields are Assuming Alfvénic frequencies implies

E=vo-12 goyxa 37) w kA ko (46)
c ot Q9 VB

The first equality is Faraday’s law uncurled, the second
the magnetic-field solenoidality condition; we shall use th
Coulomb gaugey - A = 0. The fields satisfy the Poisson and
the Ampére—Maxwell equations with the charge and current
densities determined big(t,r,Vv):

Thus, gyrokinetics is a low-frequency limit that averagesro

the time scales associated with the particle gyration. Beza
we have assumed that the fluctuations are anisotropic ard hav
(by order of magnitude) Alfvénic frequencies, we see from
Eq. (48) that their frequency remains far belayat all scales,

_ _ 3 including the ion and even electron gyroscale—the gyroki-
& E—47r2q5n5 - 47Tzq5/d vis, (38) netics remains valid at all of these scales and the cycletron
S S

LB 4 4 frequency effects are negligible (cf._Quataert & Gruzinov
- = _7T I = _7T 3 m)
V x B j c zszqs/d vV fs. (39)

17 1t can be shown that equilibrium temperatures change onithe t
scale ~ (2w)™! (Howes etdl[ 2006). On the other hand, from standard

3.1. Gyrokinetic Ordering and Dimensionless Parameters theory of collisional transport (e.d.. Helander & Sigrha02y) the ion and

electron temperatures equalize on the time sealg; ! ~ (m/me)/2u;t

) As in §2 we set up a static equilibrium with a Un_|f0rm Mean [see Eq.[(5)]. Therefore; can depart from unity by an amount of order
field, Bo = Boz, Eo = 0, assume that the perturbations will be 2w /4)(m /me)Y/2. In our ordering scheme [EJ_T49)], this @(e?) and,
anisotropic withk; < k; (at scales smaller than the outer therefore, we should simply set= 1+0(c?). However, we shall carry the
scale,k” L>1;see §1IB andm.]_), and construct an expan-parameter because other ordering schemes are possible that peritriagrb

; ; ; ; Tl ; values ofr. These are appropriate to plasmas with very weak collisibos
sion of the kinetic theory around this equilibrium with resp example, in the solar wind; appears to be order unity but not exactly 1

to the small parameter~ I(||/k4_- We adopt the ordering €X-  (Newbury etal[ 1998), while in accretion flows near the blacke, some
pressed by Eqd.l(3) arld{12), i.e., we assume the pertunisatio models predict > 1 (see §85).
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Fic. 3.— The regions of validity in the wave-number space of twionpry approximations—the two-fluid (Appendix_A.1) and gkinetic (§3). The
gyrokinetic theory holds whek < k. andw < Qi [whenk <k < pi_l, the second requirement is automatically satisfied for éifvslow and entropy
modes; see EJ_{#6)]. The two-fluid equations hold wheRnp < 1 (collisional limit) andk pi < 1 (magnetized plasma). Note that the gyrokinetic theory
holds for all but the very largest (outer) scales, whereadropy cannot be assumed.

3.1.2. Fluctuations w to be either smaller or larger than the (ion) collision fre-
Equation[(B) allows us to order the fluctuations of the scalar 4U€NCWi:
potential: on the one hand, we have from E¢|.u3)~ eva; on w K Amepi
the other hand, the plasma mass flow velocity is (to the lowest w TG 1, (49)
order) theE x B drift velocity of the ions,u; ~ cE, /By~ _ o )
cky ¢/Bg, SO where Ampi = Vini /vi i the ion mean free path (this order-
ing can actually be inferred from equating the gyrokinetie e
e 17 1 (47) tropy production terms to the collisional entropy prodanti

Te "z klpi\/ae' see extended discussion.in Howes ét al. 2006). Note that the
All other fluctuati tic, density, llel vetoti ordering[(49) holds on the understandin.g that we have oddere
Ord%re%raggot:gi;]c;ntso(glcacgari%'c ensity, parallel vetgyare kKipi~1 [Eq._ 43)] bgcausg the fluctuation frequency can de-
Note that the ordering of the flow velocity dictated by Pend orkipi in the dissipation range (se@&l7.3).

Eq. (3) means that we are considering the limit of small Mach . Other collision rates are related #p via a set of standard
a. 3) 9 formulae (see, e. 002), which will be

numbers: X
MY ¢ ) useful in what follows:
~ o 3/2

Vit \/H Vei =ZVege= 7—21 / ﬂ Vii, (50)
This means that the gyrokinetic description in the form used Z Me
below does not extend to large sonic flows that can be 8 792 [me
present in many astrophysical systems. It is, in principle, Vie:ﬁT\/ ﬁ’/iia (51)
possible to extend the gyrokinetics to systems with sonic
flows (e.g., in the toroidal geometry; dee Artun & Tang 1994; o= V2rZeniIin A (52)
[Sugama & Hortdn 1997). However, we do not follow this . m2T2

route because such flows belong to the same class of nonuni- _ _ )
versal outer-scale features as background density ancetemp Where InA is the Coulomb logarithm and the numerical factor
ature gradientS, System_speciﬁc geometry etc.—theselcan aln the d_eflnltlon OfVie has been inserted for futu_re notational
be ignored at small scales, where the turbulence should-be apconvenience (see Appendix A). We always define

proximately homogeneous and subsonic (as lorig las> 1, Ve v 7\ 2
see discussion in[E15.1). Amipi = ML Amfpe = the — (—) Amfpi- (53)
i Vei T
3.1.3. Collisions

The ordering of the collision frequency expressed by
Finally, we want our theory to be valid both in the colli- Eq. (49) means that collisions, while not dominant as in
sional and the collisionless regimes, so we do not assumehe fluid description (Appendix]A), are still retained in
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the version of the gyrokinetic theory adopted by us. Their orders in the gyrokinetic expansion). However, in a straigh
presence is required in order for us to be able to assumeuniform guide fieldBoz, the pair ¢,v) is a simpler choice,
that the equilibrium distribution is Maxwellian [EqL(54) which will mostly be used in what follows (we shall some-
below] and for the heating and entropy production to be times find an alternative pairand¢ =v; /v, useful, especially
treated correctly (&3l4 and_&8.5). However, our ordering of where collisions are concerned). It must be constantly kept
collisions and of the fluctuation amplituded(§311.2) imgs mind that derivatives ofi with respect to the velocity-space
certain limitations: thus, we cannot treat the class of imaalr variables are taken at constd®y, notat constant.

phenomena involving particle trapping by parallel-vagyin The functionhs satisfieghe gyrokinetic equation:
fluctuations, non-Maxwellian tails of particle distribortis,

plasma instabilities arising from the equilibrium pressur %4_\, %+£{<X>R h} = OsFos (X )R, + <%>
anisotropies (mirror, firehose) and their possible nosline ot 1oz Bo oS Tos Ot ot ).’
evolution to large amplitudes (see discussion[in & 8.3). (57)
where
The region of validity of the gyrokinetic approximation VIA v-A
in the wave-number space is illustrated in Hi§j. 3—it em- X(t,r,v)=go—M—2, (58)
braces all of the scales that are expected to be traversed by ¢ ¢

the anisotropic energy cascade (except the scales close to t the Poisson brackets are defined in the usual way:
outer scale).

As we explained abovene/m, i, kip andkjAmepi (or {(0rhe} = 2- (6<X>Rs " 8hs) (59)
w/vji) are assigned order unity in the gyrokinetic expansion. s ORs ORs)’

Subsidiary expansions in smatk/m (8§4) and in small or . S )
large values of the other three parameter$ [EE 5-7) can be cad the ring average notation is introduced:

ried out at a later stage as long as their values are not se larg 1 [or Vi X2
or small as to interfere with the primary expansion.ifhese (x(t,r,v))r, = =— / dv x (t, Rs— —,v) , (60)
expansions will yield simpler models of turbulence with mor 2 Qs

restricted domains of validity than gyrokinetics. where? is the angle in the velocity space taken in the plane
3.2. Gyrokinetic Equation perpendicular to the guide fiely2. Note that, whiley is
) Y o a function ofr, its ring average is a function d®s. Note
Given the gyrokinetic ordering introduced above, the ex- also that the ring averages depend on the species index, as
pansion of the distribution function up to first ordereirtan does the gyrocenter variabR. Equation[(5F) is derived by
be written as transforming the first-order kinetic equation to the gyitdee
so(t, T variable [56) and ring averaging the result (see Howes et al.
fs(t,r,v) = FOS(V)_%OS)FOS(V)*'hS(t’RS’VbVH)' (54) 2006, or the references given at the beginning[df § 3). The
ring-averaged collision integradfis/ot). is discussed in Ap-

To zeroth order, it is a Maxwelliat? pendixB.
Nos V2 2T03
Fos(V) = ———=5exp| ——— Vipe =14/ —= (55 . .
os(V) (mv3 )32 p< Vt2hs> ) Vs ms (55) 3.3. Field Equations

To Eq. [5T), we must append the equations that determine
the electromagnetic field, namely, the potentia(s,r) and
A(t,r) that enter the expression fgr[Eq. (58)]. In the non-
relativistic limit (v < €), these are the plasma quasineutral-
ity constraint [which follows from the Poisson equatiénl(38
to lowest order i/ /c:

with uniform densityngs and temperaturdos and no mean
flow. As will be explained in more detail in[§3.%5ys has a
slow time dependence via the equilibrium temperatlges
Tos(¢t). This reflects the slow heating of the plasma as the tur-
bulent energy is dissipated. Howevéss can be treated as a
constant with respect to the time dependence of the firgrord
distribution function (the time scale of the turbulent flugt Osp 3
tions). The first-order part of the distribution functiorcsm- 0=> aWns=>» ds [—T— n05+/d V<hs>r] (61)
posed of the Boltzmann response [second term in[Ed. (54), or- s s 0s

dered in Eq.[(4]7)] and thgyrocenter distribution functiongh
The spatial dependence of the latter is expressed not by th
particle positionr but by the positiorRs of the particle gy-

and the parallel and perpendicular parts of Ampére’s law
$Eq. (39) to lowest order in and iNviyi /cl:

rocenter (or guiding center)—the center of the ring orkitt th 5o A4m.  A4rx 3
the particle follows in a strong guide field: VIiA) T qu/d vV (s)r (62)
. s
_ V| XZ 4

Rs=r+ o (56) VzﬁB\\:‘%?-(VLXJ‘L)
Thus, some of the velocity dependence of the distribution 4
function is subsumed in thes dependence dfs. Explicitly, =5, V. X ZQS/dSVWth)r ., (63)
hs depends only on two velocity-space variables: it is cus- c s

tomary in the gyrokinetic literature for these to be chosgn a ~ ,
the particle energys = myv2/2 and its first adiabatic invari- Where we have useiB =2-(V, x A ) and dropped the dis-

ant s = my? /2B, (both conserved quantities to two lowest Placement current. Since field variablesAj and 6B are
s = MeV1 /280 ( d functions of the spatial variable not of the gyrocenter vari-

18 The use of isotropic equilibrium is a significant idealipati—this is ableRs, we had to determine the contribution from the gy-
discussed in more detail ifE8.3. rocenter distribution functiohs to the charge distribution at
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fixed r by performing a gyroaveraging operation dual to the the nonlinear term conserves the varianchsand

ring average defined in Eq._(60): 5
E/dsv/dsRs Toshs :/dSV/dSRSqS 6<X>Rs hs
dt 2Fos ot

1 [ V) X2
<hS(t’RS’VL7VH)>r:Z\/O d19h5<t,f+LQ—S,VL,V)-

Tosh h
(64) +/d3v/d3Rs = (%) . (70)
In other words, the velocity-space integrals in EGs][(G)L-63 . . 0 _ c
are performed ovehng at constant, rather than constams. Let us now sum this equation over all species. The first term

If we Fourier-transfornins in Rs, the gyroaveraging operation  0n the right-hand side is

takes a simple rriathematmal form: qu/d3v/d3Rs 8%(2& "
(hs)r :Z<e'k'RS>rhsk(t,VL,V||) s

k ax
‘ 5 =[dr) g /d3v<—h >
=> <ex|0(ik-\uﬂX Z>> hs(t, V1, V) / zs: i "/
k r

S
dp 10A
) — 3 3 . 3
:Zelk'rJo(as)hsk(t,VL,V“), (65) —/d r [E gqs/d V<hs>r c ot zsqu/d V<Vhs>r1
‘ d 02p%nos
whereas =k, v, /Qs and J is a Bessel function that arose =—/d3r Szf+/d3rE g, (71)
Os

from the angle integral in the velocity space. In Hql(63), an
analogous calculation taking into account the angulardepe | bare we have used Eq_{61) and Ampére’s law [EGS. (62-
dence ofv, leads to [63)] to express the integrals bf. The second term on the
4 . J right-hand side is the total work done on plasma per unittime
§B|| — _anm eik.r Z/dsvmsvi_ l(as) g P p
Bo k s 8

hae(t, Vi, v))- Using Faraday'’s law [Eq[{37)] and Ampére’s law [Eg.](39)],
it can be written as

Note that Eq.[(83) [and, therefore, EGQ.X66)] is the gyroki- /d3rE = _d /dsr |6B|? P (72)
netic equivalent of the perpendicular pressure balanteatha dt 8r et

peared in &2 [Eq[(22)]: wherePey = —fd3rE -Jext iS the total power injected into the

BodB; gsBo . system by the external energy sources (outer-scale gfjiirin
vi ar =V SC /d3V<ZXVth>f terms of the Kolmogorov energy flux used in the scaling
s A argumentsin §:|]2?ext:an0ia, whereV is the system vol-
-V, Zﬂsms/d3v oV, he (t, VX Z,V¢7V> ume). Combining Eqs(110-V2), we fird (Howes €t al. 2006)
9 Qs 2 2.2 2
° aw_d [ iz ( /dsvwhs» &y nOS) ,198] i
=-V.iViy, / dvmy(vivihg =-V, V0P, (67)  dt dt s 2Fos  2Tos 8r
s — 3 3 TOshs a_hs
where we have integrated by parts with respect to the gyroan- PeXt+ZS: / av / IR Fos \ Ot /. (73)

gle ¥ and usedv, /99 =2 x v, 0%V, /0¥? =-v, (cf. the _ - o _ _ o

Appendix th 5). Wi is a positive definite quantity—this becomes explicit if we
Once the fields are determined, they have to be substi-us€ EQ.[(6]1) to express it in terms of the total perturbedielist

tuted intoy [Eq. (58)] and the result ring averaged [Elg](60)]. bution functions fs = —gseFos/ Tos + hs [see Eq.[(SH)]:

Again, we emphasize that, A| andéB are functions of,

2 2
while (x)r, is a function ofRs. The transformation is ac- W= /d3r (Z/(ﬁv Tos0'fs + 9B ) . (74)
S

complished via a calculation analogous to the one that led to 2Fos 8
Egs. [65) and (86): We will refer toW as thegeneralized energyWe use this
- ik-Rs term to emphasize the role oY as the cascaded quantity
(X, ;el (Rt (68) in gyrokinetic turbulence (see below). This quantity is, in

fact, the gyrokinetic version of a collisionless kinetiwani-
(V)Rok = Jo(as) <<pk _ VIIAk> + Eﬁ Ji(as) % (69) ant variously referred to as tlgeneralized grand canonical
© c Os V2, a Bo potential (see_ Hallatschék 2004, who points out the funda-
. . mental role of this quantity in plasma turbulence simuladio
The last equation establishes a correspondence between the fraa energy(e.q. Fowlet 1968: Scoltt 2007). The nonmag-

Fourier transforms of the fields with respectrtoand the  hatic part oW is related to the perturbed entropy of the sys-
Fourier transform of x)r, with respect tdRs. tem i Sugama etlal. 1996: Howes et al.

(Krommes & Hu 199
- . . 61 ihi H . Q y i i . .
3.4. Generalized Energy and the Kinetic Cascade 20061 Schekachinin et al. 2008b, see discussio INIF3.5)

As promised in 8114, the central unifying concept of this  *° Note also that a quadratic form involving both the perturtistribution
paper is now introduced function and the electromagnetic field appears, in a morergéform than

. . . . Eq. [73), in the formulation of the energy principle for thén&tic MHD
If we multiply the gyrokinetic equatiori(57) b¥shs/Fos approximation!(Kiuskal & ObermEn 1958, Kulstud 1062, 196agarding
and integrate over the velocities and gyrocenters, we fiatl th the relationship between Kinetic MHD and gyrokinetics, &enote 23.
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Equation [(7B) is a conservation law of the generalized en- 3.5. Heating and Entropy
ergy: Pex i the source and the second term on the right-hand |, 5 stationary state, all of the the turbulent power injdcte

side, which is negative definite, represents collisionabidi 1\, the external stirring is dissipated and thus transfeireed
pation. This suggests that we might think of kinetic plasma paat - Mathematically, this is expressed as a slow increase i

turbulence in terms of the generalized enevgynjected by e temperature of the Maxwellian equilibrium. In gyrokine
the outer-scale stirring and dissipated by collisions. M 0 g the heating time scale is orderedhag-2w) .

der for thﬁ d|SS|Ft))at|on to be |mportg?nt, the r(}:_O”ISIOﬂﬁh’l&n Even though the dissipation of turbulent fluctuations may
Eq. (73) has to become comparableé. This can happen o occurring “collisionlessly” at scales such thghmp > 1

In two ways: (e.g., via wave-particle interaction at the ion gyroscal&),
. . the resulting heating must ultimately be effected with taph
1. At collisional scalesk Amfyi ~ 1) due to deviations of ¢ collisions. This is because heating is an irreversibbepss
the perturbed distribution function from a local per- gngitis a small amount of collisions that make “collisicsge
turbed Maxwellian (see[§8.1 and Appendix D); damping irreversible. In other words, slow heating of the
Maxwellian equilibrium is equivalent to entropy productio
and Boltzmann'd-theorem rigorously requires collisions to
make this possible. Indeed, the total entropy of spexigs

2. At collisionless scalek{Amgi > 1) due the develop-
ment of small scales in the velocity space—large gra-
dients inv; (see §6.2}4) ov, (which is accompanied

by the development of small perpendicular scales in the Ssz—/d3r/d3v fsIn fs
position space; sed §7.P.1).
f2
—_ 3 3 3
Thus, the dissipation is only important at particular (djnal - /d r/d v (FOSIn Fos + ZFZS) +0(€),  (79)

scales, which are generally well separated from the outer, e we tookf d §f, = 0. Itis then not hard to show that
scale. The generalized energy is transferred from the outer _

scale to the dissipation scales via a nonlinear cascade. We §V 1dTos _dS ——/d3v/d3Rs Toshs <5_hs)
at R

shall call itthe kinetic cascaddt is analogous to the energy 2 Tos dt  dt s \ ot

cascade in fluid or MHD turbulence, but a conceptually new (76)

feature is present: the small scales at which dissipatigr ha where the overlines mean averaging over times longer than
pens are small scales both in the velocity and position spacethe characteristic time of the turbulent fluctuationsw™
Whereas the large gradients vy are produced by thén-  put shorter than the typical heating time (c?w)™ (see
ear parallel phase mixing, whose role in the kinetic dissipa- [Howes et dl["2006; Schekochihin et al."2008b for a detailed
tion processes has been appreciated for some time (Llandagerivation of this and related results on heating in gyroki-
11946; Hammett et al. 1991; Krommes & Hu 1994; Krommes netics; see also earlier discussions of the entropy pramfuct
11999] Watanabe & Sugama 2004, sée §6.2.4), the emergend@ gyrokinetics byl Krommes & Hili_1994; Krommés 1999;
of large gradients irv, is due to an essentiallgonlinear  [Sygama et al. 1996). We have omitted the term describing the
phase mixing mechanism[{(§7.P.1). At spatial scales smallerinterspecies collisional temperature equalization. Nb
than the ion gyroradius, this nonlinear perpendicular phas hoth sides of Eq[{76) are ordéw.
mixing turns out to be a faster and, therefore, presumalely th  |f we now time average EqL{V3) in a similar fashion, the
dominantway of generating small-scale structure inthearel  |eft-hand side vanishes because it is a time derivative of a
ity space. It was anticipated in the development of gyrofluid quantity fluctuating on the time scatew™ and we confirm
moment hierarchies by Dorland & Hammett (1993). Here we that the right-hand side of Eq{76) is simply equal to the av-
treat it for th_e first time as a phase-space turbulent.cgscadeerage powePe, injected by external stirring. The import of
this is done in §719 and[§7.110 (see also Schekochihinl et alEq. [76) is that it tells us that heating can only be effected
2008b). by collisions, while Eq.[{Z3) implies that the injected powe
In the sections that follow, we shall derive particular fsrm  gets to the collisional scales in velocity and position spay
of W for various limiting cases of 'ghe gyrokinetic theory means of a kinetic cascade of generalized energy.
(842, 456, §6.215,[87.8, Appendides D.2 E.2). We The first term in the expression for the generalized energy
shall see that the kinetic cascadeVifis, indeed, a direct  (73) is —> " TosdSs, WheredSs is the perturbed entropy [see
generalization of the more familiar fluid cascades (s_uch aseq. (75)]. The second term in Eq._{74) is magnetic energy.
the RMHD cascades discussed il § 2) and Watontains  Collisionless damping of electromagnetic fluctuations loen
the energy invariants of the fluid models in the appropriate thought of as a redistribution of the generalized energpgr
limits. In these limits, the cascade of the generalized en-ferring the electromagnetic energy into entropy fluctuzio
ergy will split into several decoupled cascades, as it did in while the totaW is conserved (a simple example of how that
the case of RMHD (E217). Whenever one of the physically happens for collisionless compressive fluctuations inriiee-i
important scales (§81.5.2) is crossed and a change of physica&ial range is worked out in[§6.2.3).
regime occurs, these cascades are mixed back together into The contribution to the perturbed entropy from the gy-
the overall kinetic cascade ¥, which can then be splitin  rocenter distribution is the integral ofh?/2Fys, whose
a different way as it emerges on the “opposite side” of the evolution equation[{70) can be viewed as the gyrokinetic
transition region in the scale space. The conversion of theyersjon of theH-theorem. The first term on the right-hand
Alfvénic cascade into the KAW cascade and the entropy cas-side of this equation represents the wave-particle intierac
cade atk, pi ~ 1 is the most interesting example of such a (collisionless damping). Under time average, it is related
transition, discussed in(% 7. the work done on plasma [Ed. (71)] and hence to the average

~ The generalized energy appears to be the only quadratiGexternally injected powePey via time-averaged Eq{V29.
invariant of gyrokinetics in three dimensions; in two dimen

sions, many other invariants appear (see Appdndix F). 20 Note that Eq.[{7R) is valid not only in the integral form busaindi-
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In a stationary state, this is balanced by the second terheint kinetic equation for the electrons, accurate up to and dioky
right-hand side of Eq[{70), which is the collisional-heati the first order inife/m)Y/2 (or in k. pe):
or entropy-production, term that also appears in Eql (76).

Thus, the generalized energy channelled by collisionless Ohe ohe ¢ VIA| Toe V2 0B

damping into entropy fluctuations is eventually converigd i ot Vi57 9z +|3_ Tc eV By ©

heat by collisions. The sub-gyroscale entropy cascadehwhi NI , —~ —— e

brings the perturbed distribution functidm to collisional @ © ® © @

scales, will be discussed further i &7.9 arild §17.10 (see also

Schekochihin et al. 2008b). __ehe ( _M_@ﬁfﬁ) N (6_he> (79)

Toe 0L\ 7 c evi Bo ot ).

This concludes a short primer on gyrokinetics necessary —_~ —— —m— —

(and sufficient) for adequate understanding of what is te fol @ © @ ©

low. Formally, all further analytical derivations in thisyper Note thate, A in Eq. (79) are taken at= Ro. We

are simply subsidiary expansions of the gyrokinetics irpidre
rameters we listed in[83.1: in% 4, we expand in(m)*/2,

in 83 ink, p; (followed by further subsidiary expansions in
large and smakj Amgpi in 8[6), and in & in 1k, p;.

have indicate the ”Iowest order to which each of the terms
enters if compared wnn”ahe/az In order to obtain these
estimates, we have assumed that the physical ordering intro
duced in §311 holds with respect to the subsidiary expansion
in (me/m)*2 as well as for the primary gyrokinetic expansion

) ) i in ¢, so we can use Eq$.](3) arid(12) to order terms with re-
In this section, we carry out an expansion of the electron gy- spect to (ne/m)*2. We have also made use of EqS](45)] (47),

4. ISOTHERMAL ELECTRON FLUID

rokinetic equation in powers ofre,/m)*/2 ~ 0.02 (for hydro-  and of the following three relations:
gen plasma). In virtually all cases of interest, this expamns
can be done while still considering3;, ki pi, andk Ampi to M Vine ﬁ m (80)
be order unity! Note that the assumptida p; ~ 1 together w  Va 7\ me’
with Eq. mean that
q. (48) (VI/OA] VvinedBr 1 ToedB. [5G [m 61)
Ky pe ~ ki pi(me/m)"? < 1, (77) © ckiy  kipeep By TV m’
i.e., the expansion inng/m)%? means also that we are Eﬁ@wzkﬂ)-\/ﬁ. (82)
considering scales larger than the electron gyroradiue Th ep Vi, B T tV

idea of such an expansion of the electron kinetic equation
has been utilized many times in plasma physics literature.
The mass-ratio expansion of the gyrokinetic equation in aEqS' [29).[ED)]

The collision term is estimated to be zeroth order becaese [s

form very similar to what is presented below is found in vei TG 1
Snyder & Hammett (2001). A7 kH)\mfpu (83)

The primary import of this section will be technical: we
shall dispense with the electron gyrokinetic equation amdt  The consequences of other possible orderings of the awilisi
prepare the necessary ground for further approximations. T terms are discussed in_§%.8. We remind the reader that all
main results are summarized i §4.9. A reader who is only dimensionless parameters excéptk, ~ e and ne/m)/2
interested in following qualitatively the major steps ireth  are held to be order unity.
derivation may skip to this summary. We now lethe = h© +h )+ . and carry out the expansion
to two lowest orders |nr(1e/m)1/2.
4.1. Ordering the Terms in the Kinetic Equation

In view of Eq. [7T),a. < 1, so we can expand the Bessel 4.2. Zeroth Qrdgr o
functions arising from averaging over the electron ring mo-  To zeroth order, the electron kinetic equation is

tion:
~ ehy (9AH oh©
vb-vh® =y, 2L+ [ 22 ) | (84)
Jo(ae):l—%a§+---, Jl(ae)::_zl<1_:_éag+...>.(78) I e T ot ot ).
G where we have assembled the terms in the left-hand side to
Keeping only the lowest-order terms of the above expansionstake the form of the derivative of the distribution function
in Eq. (€9) for(x)r.. then substituting thigy)gr, andge = along the perturbed magnetic field:
—ein the electron gyrokinetic equation, we get the following
0 6B 0 1
. . . . b-V=—+—=-V=—-—{A,}. (85)
vidually for each wave number: indeed, using the Fouriengformed Fara- 0z By 0z By

day and Ampeére’s laws, we ha& -j; +E; - jk = Ex Jaxek TER “Jextk ~ . .
. " (0)
(1/4m)0|6Bk|?/0t. In a stationary state, time averaging eliminates the time We now multlply Eq‘m) b)he /Foe and Integrate over and

derivative of the magnetic-fluctuation energy,Bp-J; +E; -jx = 0 at allk r (since we are only retaining lowest-order terms, the distin
except those corresponding to the outer scale, where ﬁ;mektenergy in-  tion betweerr andRe does not matter here). Sin&e-B =0,

jection occurs. This means that below the outer scale, thie dane onone  the left-hand side vanishes (assuming that all perturbatoe

species balances the work done on the other. The wavelpariteraction either periodic or vanish at the boundaries) and we get
term in the gyrokinetic equation is responsible for thisrggpeexchange.

21 One notable exception is the LAPD device at UCLA, whére 107 - /d3 /d3 h(O) <3h(0)> __embe /d3 (~)A|| 4O =
C

1073 (due mostly to the electron pressure because the ions aile ceb lle
0.1, sof3i ~ 3¢/10; see, e.gl. Morales efl Al. 1999: Carter &t al. 2006). This CToe

interferes with the mass-ratio expansion. (86)
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The right-hand side of this equation is zero because the 4.3. Flux Conservation

electron flow velocity is zero in the zeroth Ordfﬂf&) = Equation [3b) implies that the magnetic flux is conserved
(1/nge) fd3vv‘h(e0) =0. This is a consequence of the paral- and magnetic_:—field Iines cannot be broken to lowest order in
lel Ampére’s law [Eq.[[BR)], which can be written as follows —the mass-ratio expansion. Indeed, we may follow Cowley

c (1985%) and argue that the left-hand side of Eq] (95) is minus
Uje = vaAll Uy, (87)  the projection of the electric field on the total magneticcfiel

e
where [see Eq.[(37)], so we have

- 1 C_ 0 TOe 5ne .
=22 [ @@ (88) Eb=ov (? @) | 0
k

The three terms in Eq._(87) can be estimated as follows hence the total electric field is

N an Toe ON Toe ON
(0) — _ . Oe e\ _ Oe e
Yjle _ EVihe \/E\/ﬁ67 (89) E (I bb) <E+V e nOe) Vv € Noe (%8)
\JA Va TV Me and Faraday’s law becomes
[l
Y 90
va € (%0) 9B oV XE=V x (Ue x B). (99)
cV? A|| kJ_p' * 1)
T i
~ 91 _c Toe 0N
47TerbeVA Z /_ﬁi €, ( ) ueff_ @ (E+V? n_():> X 87 (100)

where we have used the fundamental ordefing (12) of the slow. - . . -
waves (i ~ eva) and Alfvén wavesdB, ~ eBo). Thus, the i.e., the magnetic field lines are frozen into the velocit{dfie

two terms in the right-hand side of Ef._{87) are one order of uhe“f' In Apfp?]ndixlim., Wﬁ showl thqt this effe%tivelveloci:]y Is
12 lier thard®. which that t thord the part of the electron flow velocity, perpendicular to the
(me/my)*= smaller ani;, which means thatto zeroth order, 45| magnetic fields [see Eq.[CB)].

the parallel Ampére’s law isf‘%) =0. The flux conservation is broken in the higher orders of the
The collision operator in E(86) contains electron-etmct ~ Mass-ratio expansion. In the first order, Ohmic resistifaty

and electron-ion collisions. To lowest order ime(/m)/2, mally enters in Eq.I]Q5) (unless collisions are even weaker

the electron-ion collision operator is simply the pitclgbn than stumeo' SO far,.n‘. they are _downgraded one order as is

scattering operator [see EG._{B20) in Apperidix B and recall don€ in 4.8, resistivity enters in the second order)hén t

thatuy; is first order]. Therefore, we may then rewrite G (86) second order, the electron inertia and the finiteness ofdoe e

as follows tron gyroradius also lead to unfreezing of the flux. This can b
O seen formally by keeping second-orderterms in Ed. (79); mul
/d3r /d3viCee[hg°)] tiplying it by v| and integrating over velocities. The relative
Foe importance of these flux unfreezing mechanisms is evaluated

eify) 1— €2 / HhON 2 in 8[7.1.
—/d3r/d3v”D(V) ¢ (a d ) =0. (92

Foe 2 o€ 4.4. Isothermal Electrons
Both terms in this expression are negative defir)1ite and must, Equation[[9b) mandates that the perturbed electron temper-
therefore, vanish individually. This implies thiaf) must be  ature must remain constant along the perturbed field lines.
a perturbed Maxwellian distribution with zero mean veloc- Strictly speaking, this does not precludi& varying across
ity (this follows from the proof of Boltzmann's H theorem;  the field lines. However, we shall now assuéife= const (has
see, e.gl._ Longmire 1963), i.e., the full electron distiitiu g spatial variation), which is justified, e.g., if the fieldds

function to zeroth order in the mass-ratio expansion is [Seegre stochastic. Assuming that no spatially uniform pegrb

Eq. (B3)]: tions exist, we may setT, = 0. Equation[{94) then reduces
2
fe = F09+ _}% +hg)) = 7”9 32 exp (_%) 5 (93) on eQO
Oe (27Te/me) e h© = (n—e - T—) Foe(V), (101)
wherene = Nge +dne, Te = Toe +dTe. Expanding around the ) oe  T0e
unperturbed Maxwelliafe, we get or, using Eq.[(54),
ne ep (v 3\ 6T, _0Ne
ho=|Ze = (2 _2)2e |k 94 d fe = — Foe(V). (102)
e noe Toe Vtzhe 2 Toe Oes ( ) € n()e
where the fields are taken at R.. Now substitute this so- Hence follows the equation of state for isothermal elecron
lution back into Eq.[(84). The collision term vanishes aral th JPe = ToedNe. (103)
remaining equation must be satisfied at all values. of his _
gives 4.5. First Order
10A; -~ A~ ToeONe We now integrate Eq_{T9) over the velocity space and retain
Py +b'V90=b'V?n—Oea (95) the lowest (first) order terms only. Using Elg. (101), we get
T 0 (0o 38, o, o sE1)
b-VT—Oe =0. (96) 7t \noe  Bo Bo ®, e Bo
The collision term is neglected in E.{95) because,{8¥ L OUe 1 (AU }+% dne 0By -0, (104)
given by Eq.[(9%), it vanishes to zeroth order. 9z Bo U "TIES T 6By | e’ Bo ’
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where the parallel electron velocity is first order: This is not a serious limitation because electrons can be con
1 sidered well magnetized at virtually all scales of intefflest
Ujle = Uhle) = —/dsvv”h(el). (105) astrophysical applications. However, we do forfeit the de-
Noe tailed information about some important electron physics a
The velocity-space integral of the collision term does m¢e K1 pe ~ 1: for example such effects as wave damping at the
because it is subdominant by at least one factomgf )Y/ electron gyroscale and the electron heating (althouglotaé t -
indeed, as shown in AppendixB.1, the velocity integration @mount of the electron heating can be deduced by subtracting
leads to an extra factor éf pz, so that the ion heating from the total energy input). The breaking of
the flux conservation (resistivity) is also an effect thajuiees
1 =y <8he> ek 2 oNe incorporation of the finite electron gyroscale physics.
Noe c enLive Noe

4.8.2. ki pi > (me/m)Y2
Me > o ONe . o .
~ | T —K] piri P (106) If this condition is broken, the smal; p; expansion, car-
m Oe ried out in 5, must, formally speaking, precede the mass-
where we have used EqE.145) afdl(50). The collision termratio expansion. However, it turns out that the small-
is subdominant because of the ordering of the ion collision K. pi expansion commutes with the mass-ratio expansion

frequency given by EqL(49). (Schekochihin et all 2007, see also footnpfé 23), so we
may use the equations derived in[884.2-4.6 whkep; <
4.6. Field Equations (me/m)Y/2,
Using Eq. [I01) and; = Ze, nge = Zngi, Toe = Toi /7, We de- "
rive from the quasineutrality equatidn {61) [see also EB)](6 4.8.3. Ky Amfi < (my/me)™'°.
one  on Let us consider what happens if this condition is broken

A aer L
P :_T_gp +Ze‘krﬁ/d3VJo(aa)hik, (107) and kjAmpi > (M/me)¥2. In this case, the collisions be-
e O o Tk O come even weaker and the expansion procedure must be mod-

and, from the perpendicular part of Ampere’s law [EG (66), ified. Namely, the collision term picks up one extra order of

using also EqL{I07)], (me/m)Y2, so it is first order in Eq.[{29). To zeroth order,
the electron kinetic equation no longer contains collisian-
% :%{ <1+E> ZT;(p —Ze”” stead of Eq.[(84), we have o
T i ~
° . k V|| b- tho) = V|| e_F[)e —H (110)

1 3 | Z ZVi_ Ji(&)
. /d v [;JO(a‘HE a hic ¢~ (108)  \we may seek the solution of this equation in the fdih =
o _ H(t, Re)Foe+h),.» WhereH (t, Re) is an unknown function to
The parallel electron velocity e, is determined from the par- be determi d HO
allel part of Ampére’s law, thB?). € determined ant hon,
The ion distribution functior; that enters these equations fying

is the homogeneous solution satis-

has to be determined by solving the ion gyrokinetic equation b.vh® =0 111
Eq. (57) withs=1. Vhehom =0, (111)
ie., hg)mm must be constant along the perturbed magnetic

_ 4.7. Generalized Energy _ field. This is a generalization of EJ.(96). Again assuming
The generalized energy [(§38.4) for the case of isothermalstochastic field lines, we conclude thgf),, is independent
electrons is calculated by substituting Hq. {102) into E){ o space. If we rule out spatially uniform perturbations, we

Toiof2  NoeToe SN2 |0BJ2 may seth® =0. The unknown functiohi(t, Re) is readily
— 3 3,, 1001 Oe '0e Olle ‘e hom y Re
W_/d ' (/d v 2Fi T3 @+ 8 )’ (109) expressed in terms éhe andy:

wheres fi = hi — (Zep/Toi ) Foi [see Eq.[(GH)]. e _&p +i /d3vhg°) -~ H= ONe —%7 (112)

Noe Toe

4.8. Validity of the Mass-Ratio Expansion sohQ is again given by Eq[{101), so the equations derived

Let us examine the range of spatial scales in which thein §§4.2E4.6 are unaltered. Thus, the mass-ratio expansion
equations derived above are valid. In carrying out the ex- remains valid ak) Amfpi = (my/me)¥/2,
pansion in fne/m)Y2, we orderedk, p; ~ 1 [Eq. (ZT)] and
kjAmfpi ~ 1 [EQ. (83)]. Formally, this means that the perpen- 4.8.4. Ky Amipi > (me/m)Y2.
dicular and parallel wavelengths of the perturbations mast
be so small or so large as to interfere with the mass ratioex- . . =" < 1/2 . f
pansion. We now discuss the four conditions that this requir IS 1S violated,kjAmpi S (me/m)~*, the collision term in
ment leads to and whether any of them can be violated withoutEd- (Z9) i minus first order. This is the lowest-order term in

: Py ; ; the equation. Setting it to zero oblige®) to be a perturbed
destroying the validity of the equations derived above. Maxwellian again given by EqLT94). Instead of Hg1(84), the

4.8.1. ki pi < (m/mo)*2. zeroth-order kinetic equation is

If the parallel wavelength of the fluctuations is so long that

This is equivalent to demanding tHat pe < 1, a condition vib. ThO =y, EFe oA, (ohg) (113)
thatwas, indeed, essential for the expansion to hold [E)].(7 I e "V cTe Ot ar ).
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FiG. 4.— The region of validity in the wave-number space of theosdary approximation—isothermal electrons and gyrdkiriens (§3). It is the region
of validity of the gyrokinetic approximation (Fifl 3) fueth circumscribed by two conditionsk) Amepi >> (me/my)Y/2 (isothermal electrons) ankl, pe < 1
(magnetized electrons). The region of validity of the sglgrmagnetized two-fluid theory (Appendix’A.2) is also showtris the same as for the full two-fluid
theory plus the additional constraikt pi < kjAmfpi- The region of validity of MHD (or one-fluid theory) is the sét of this withk) Amfpi < (rm/mi)l/2
(adiabatic electrons).

logiln/p:)

Now the collision term in this order contairhgl), which electron and ion distribution functiors, h; and three field

can be determined from Ed. (113) by inverting the colli- equations [Eqs[{BI-63)] that related A andéB| to he and

sion operator. This sets up a perturbation theory that in dueh;. In this section, we have taken advantage of the smallness

course leads to the Reduced MHD version of the generalof the electron mass to treat the electrons as an isothermal

MHD equations—this is what was considered [0 § 2. Equa- magnetized fluid, while ions remained fully gyrokinetic.

tion (@8) no longer needs to hold, so the electrons are not In mathematical terms, we solved the electron kinetic equa-

isothermal. In this true one-fluid limit, both electrons and tion and replaced the gyrokinetics with a simpler closed sys

ions are adiabatic with equal temperatures [see[EQ] (115) betem of equations that evolve 6 unknown functiopsA, 4By,

low]. The collisional transport terms in this limit (parelll one, Uje andh;. These satisfy two fluid-like evolution equa-

and perpendicular resistivity, viscosity, heat fluxes,)etere tions t@) and[(104), three integral relations (107), [1@8p

calculated [starting not from gyrokinetics but from the gen (B7) which involveh;, and the kinetic equatiof (b7) fdr.

eral VIasov—Landau equatiofh_{36)] in exhaustive detail by The system is simpler because the full electron distriloutio

Braginskii (1965). His results and the way RMHD emerges function has been replaced by two scalar fields anduc.

from them are reviewed in AppendiX A. We now summarize this new system of equations: denoting
In physical terms, the electrons can no longer be isothermala =k, v, /Q;, we have

if the parallel electron diffusion time becomes longer tham 10A, To 01

characteristic time of the fluctuations (the Alfvén time): EWﬁLb Ve=h- v_n_’ (116)
Oe
1 1 1 /me
2 < Kdmip S —=,/—. (114 d /én. 0B CToe [ 0N 6B
Vthe/\mfpikﬁ ~ Ky va | Amfol ~> VBV m (114) at (E: Bo”) +b-Vu Uje=— eBue — H ,(117)

Furthermore, under a similar condition, electron and ion-te
peratures must equalize: this happens if the ion-electobn ¢

ONe _ ker 3
lision time is shorter than the Alfvén time, oo T—o| Zel /d v Jo(@)hic, (118)
1 1 Me )
< L < L — — 2 k- 3
ve S ka7 K Amipi S V51 / m (115) u“e—mVLA” +zk:e rn_Oi / d3vv) Jo(a)hik, (119)

(see Lithwick & Goldreich 2001 for a discussion of these con-
ditions in application to the ISM). Zep

Toi

_Zeik-r

@:@ 1+E
Bo 2 T K

x—/d3 { (@ )+2V Jl;f"’} .k}, (120)

thl

4.9. Summary

The original gyrokinetic description introduced ifil§ 3 was
a system of two kinetic equations [Ef._{57)] that evolved the
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and Eq.[(5F) fos=i and ion-ion collisions only: Theng satisfies the following equation, obtained by substitut-

oh oh 760 ing Eq. [12#) and the expression foA /ot that follows from

—I+V||—I+£{<X>Ri,hi} _ <€ (R, For + (Gi[h])g . Eq. (I18) into the ion gyrokinetic equatidn (121):

ot 0z Bp Toi Ot ( '2 )

121 oy 99 ¢
where(Ci[....] g is the gyrokinetic ion-ion collision operator o Vgt Bo {00r, 9} = (Gildl)g, =
(see AppendiXB) and the ion-electron collisions have been
neglected to lowest order img/m)*/? [see Eq.[(5l)]. Note ©
that Egs. [(116-117) have been written in a compact form, . L
where €
T VI B {ALe=(o)r}
4.0, 92250 1 AN
dt ot VT at By 5
is the convective derivative with respect to the B drift ve- T 5N A
locity, ug =—cV | ¢ x 2/Bg, and +h.v E_E_<Vl'7l> Fo
o 0B o 1 ° e ° IR)Iw
~ J_ 1
. = 4+ —. = — - — PN
b-v 52" By \Y% 92 B {A,-} (123) ®

is the gradient along the total magnetic field (mean field plus Ze v, -A
perturbation). iE Gi[( ¢ ——= c =) Fo (129)

The generalized energy conserved by E@s. 1{116-121) is R Ri

given by Eq.[(Z0D). \6 ©

It is worth observing that the left-hand side of Hq. (1L116) is
simply minus the component of the electric field along the to- In the above equation, we have used compact notation in
tal magnetic field [see Eq{B7)]. This was used [ 4.3 to writing out the nonlinear terms: e.g{A}. ¢~ {()r,})g =
prove that the magnetic flux described by EG.{L16) is exactly ({ A (r), ©(})r, = (AR, (9)r }. where the first Poisson

conserved (see[81.7 for a discussion of scales at which thig, ., et involves derivatives with respectrtand the second
conservation is broken). Equatidn (116) is the projectibn o . respect tR,
|-

the generalized Ohm'’s law onto the total magnetic field—the : : : :
right-hand side of this equation is the so-called thermmele The field equationg [T1IB-1P0) rewritten in termyaire

tric term. This is discussed in more detail in AppendixIC.1, Nke 3Bk Zepy
where we also show that EG.(117) is the parallel part of Fara- —I'i(c B +[1-To(a)] T
day’s law and give a qualitative nongyrokinetic derivatafn Oe 0 o
Eqs. (TTH-1117). —~
We will refer to Eqs.[(116-121) abe equations of isother- © © ®
mal electron fluid.They are valid in a broad range of scales: 1 3
the only constraints are th&t < k. (gyrokinetic order- = F/d Vv Jo(&) 0k (126)
ing, 83.1),k, pe < 1 (electrons are magnetized, §418.1) and o
Ky Amfpi > (me/m)Y2 (electrons are isothermal(§4.8.4). The ©
region of validity of Eqs.[(T16-121) in the wave-number spac

is illustrated in Fig[¥. A particular advantage of this higbr c 1 5

fluid-kinetic system is that it is uniformly valid across the u\\ke"’ﬁkLAHk = F/d vV Jo(@)k = Ui, (127)
transition from magnetized to unmagnetized ions (i.e.nfro 7€Me o

ki pi < 1tok, p; > 1). \6 ) 5

5. TURBULENCE IN THE INERTIAL RANGE: KINETIC RMHD

Our goal in this section is to derive a reduced set of equa- Z Nge () + 2] By _ 1=T (o Zepx

tions that describe the magnetized plasma in the limit oflsma 7 Noe 2(c) G| By [ 1(0)]

k. pi. Before we proceed with an expansiorkinp;, we need —_——

to make a formal technical step, the usefulness of which will © © @

become clear shortly. A reader with no patience for this or 5

any of the subsequent technical developments may skip to the 1 (4,21 h@) o, (128)
2 K

summary at the end of this sectior (§5.7). T o V3,
5.1. A Technical Step ©

Letus formally split the ion gyrocenter distribution fuitt
into two parts:

Oi

wherea =k, v, /i, ai =K% p?/2 and we have defined

=1 [ A2E
N2 (A g o(a)= o [ & (@R
oi ¢ /r =lo(a;) € =1-qi+---, (129)
_ KR Zepk | 2V Ji(a) 0Bk 1 22 J(a
—;e' R [JO(ai)T—Oi-’-?: a By Foi +0.(124) I‘l(ai):n—o/dgvaJ'Jo(ai) lz(:")FOi =-T'H(cv)
I I thi
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— [IO(Oéi) _ Il(ai)] g% =1— g apt--, (130) 5.3.2. Derivation of quZIB)
) ) As we are about to see, in order to derive [EG] (18), we have
_1 3. [2v] (&) _ to separate the first-order part of thep; expansion. The
a(ci) = N /d v [T — | Foi=2"(q). (131) easiest way to achieve this, is to integrate Eq.(125) ower th

Oi thi ; ; :
) o velocity space (keeping constant) and expand the resulting
Underneath each term in EqB. (A25:1128), we have indicatedgquation in smak, pi. Using Eqs.[{I26) an@{IR7) to express

the lowest order itk p; to which this term enters. the velocity-space integrals gf we get
5.2. Subsidiary Ordering in kp; g[l—l“ () Zepy +g [5nke_r (o 6Bk}
In order to carry out a subsidiary expansion in snkalb;, ot o Toi Ot Noe a Bo
we must order all terms in Eq$.(95-104) ahd ({25}128) with
respect tak, pi. Let us again assume, like we did when ex- @ ©
panding the electron equation[{8 4), that the ordering intro 9 c
duced for the gyrokinetics in[§3.1 holds also for the sub- + (ullke+—kiAllk)
sidiary expansion ik p;. First note that, in view of EqL{47), oz Amerbe
we must regard@ep/To to be minus first order: \6 T
Zep ‘ (132)
To  kipiVB©

to o [ dva@){n.gh
Also, aséB, /By ~ € [Eq. (12)], o Noi

V| /OA|  VindB 1 Ta 0B ©
VI/OA  vinidBL Jo 0BL | /5 (133)
@ ckie  kipiZep Bo 1 /d3vJ( e Ze VAL E
soyp and { /c)A are same order. " o @\ ST\ P c R
Sinceu = u;; (electrons do not contribute to the mass flow), —_~ ——
assuming that slow waves and Alfvén waves have comparable ® @)
energies impliesi; ~ u, . Asuy; is determined by the second
equality in Eq.IZIEV), we can ordgiusing Eq.[(12)]: + g ] > (137)
g uy u € Rk
=~~~ 134 ~— :
Foo v Vi VG (139 ©)
sog s zeroth order ik p;. Similarly, 6ne/nge ~ 6B /Bo ~ € Underneath each term, the lowest ordekirp; to which it

are zeroth orqler ik pi—this follows dire<_:t|y frqm Eq.[(IR). enters is shown. We see that terms containingre all first
Together with Eq[{3), the above considerations allow us to order, so it is up to this order that we shall retain terms. The
order all terms in our equations. The ordering of the caltisi  collision term integrated over the velocity space picksw t

term involvingyp is explained in AppendixBI2. extra orders ok, p; (see AppendiXBI1), so it is second or-
i o o der and can, therefore, be dropped. As a consequence of
5.3. Alfvén Waves: Kinetic Derivation of RMHD quasineutrality, the zeroth-order part of the above equnati

We shall now show that the RMHD equatiohs]{I7-18) hold exactly coincides with EqL{104), i.én/noi = dne/nee sat-
in this approximation. There is a simple correspondence be-isfy the same equation. Indeed, neglecting second-ondaste
tween the stream and flux functions defined in Eq] (16) and (but not first-order ones!), the nonlinear term in Eq. 13 (

the electromagnetic potentiatsandA: last term on the left-hand side) is
c 1 1 1
¢ Al —{cp —/dgvg}——{A —/d3vv g
d=—L¢p, V=-——nd . 135 " Noi b o I
BO ®, \/m ( ) BO Noj . B((;B 1n0I V2
The first of these definitions says that the perpendicular flow + L {—”, — dSVTLg} , (138)
velocity u, is theE x B drift velocity; the second definition ZeB { Bo Mo Vini

is the standard MHD relation between the magnetic flux func- and, using Eqs[{1266-1P8) to express velocity-space iategr
tion and the parallel component of the vector potential. of gin the above expression, we find that the zeroth-order part
of the nonlinearity is the same as the nonlinearity in Eq)f10
5.3.1. Derivation of Eq.[(IV) while the first-order part is

Deriving Eq. [17) is straightforward: in E4.(95), we retain c 1, ,Zep 1 c 2
only the lowest—minus first—order terms (those that contain g/ Y50l LTy +B—o b 4rene ViA) ¢, (139)

v andAy). The resultis where we have used the expansion {129) g(lri) and con-

oA 9y cC verted it back intox space.
ot %5, B {A ¢} =0. (136) Thus, if we subtract EqL{I04) from EG_{137), the remain-
0 der is first order and reads
Using Eq. [I3b) and the definition of the Alfvén speeg= 01 , ,Zep c 1 ,_,7Zep
Bo/v4rming, we get Eq.[(dl7). By the argument of §4.3, 22 A LT—Oi+B—O {cp >/ VLT—Oi}

Eq. (136) expresses the fact that that magnetic-field lines a 5
frozen into theE x B velocity field, which is the mean flow . C > 1 { y c V2 A, } ~0.(140)

velocity associated with the Alfvén waves (sde §5.4). oz 47TerbeVLA” "B Arene
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Multiplying Eq. (I40) by Zo/Zep? and using Eq[(135), we 5.5. Compressive Fluctuations

get the second RMHD equatidn {18). The equations that describe the density) and magnetic-
We have established that the Alfvén-wave component of thefield—strength §B) fluctuations follow immediately from

turbulence is decoupled and fully described by the RMHD ¢ #
. . ' " Eqgs. [I2H-128) if only zeroth-order terms are kept. In these
gl%ﬂtl)%rt]?1%7&3%%8){0;?1‘%2%%iIsSi(;trr:g j(?rr?oet Z;etgtatthgnequations, terms that involve and A, also contain factors
P ~ k% p? and are, therefore, first-order [with the exception of

lev§2<vza;\ée§ea:/r;(?iéhat a fluid-like description only requires the nonlinearity on the left-hand side of EQ. (1L25)]. The fac
LP ' that(Ci[ (¢)r,Fail) g, in Eq. (125) is first order is proved in Ap-

5.4. Why Alfvén Waves Ignore Collisions pendiXB.2. Dropping these terms along with all other centri
Let us write explicitly the distribution function of the ion butions of order higher than zeroth and making use of[Eg. (69)
gyrocenters [EqL(124)] to two lowest ordersdnp;: to write out(y)g,, we find that Eq.[{I25) takes the form
Ze vi 9B d Zone 2 0B
hi= = (p)rFoi+ 5= Fi+g+-, (141) 99, v,b- + (£ VIOBI ) £
i To i Vtzhi Bo i at \ b-Vig T o Vtzhi Bo Foi

where, up to corrections of ordé# p?, the ring-averaged V2 6B
scalar potential isp)r, = ©(Rj), the scalar potential taken at = <Cii [g+ TL—HFOJ > , (145)
the position of the ion gyrocenter. Note that in Hg. (141¢, th Vi Bo Ri

first term is minus first order ik p; [see Eq.[(T3R2)], the sec- _— :
ond and third terms are zeroth order [Hq. {134)], and all germ where we have used definitioris (I2Z-1123) of the convective

of first and higher orders are omitted. In order to compute thetIme derivatived /dt and the total gradient along the magnetic

full ion distribution function given by EqL{54), we have to [1€ld b-V to write our equation in & compact form. Note

converth; to ther space. Keeping terms up to zeroth order, that, in view of the correspondence betwelenl andp, A
' P ping P [Eq. (I35)], these nonlinear derivatives are the same aetho

wezgeet 76 76 Vix3 defined in Eqs[(1B-20). The collision term in the right-hand
—{p)r ~ —@(R)== [p(r)+ S V() +--- side of the above equation is the zeroth-order limit of the gy
Toi Toi Toi Qi rokinetic ion-ion collision operator: a useful model forrito
Ze 2V, -Ug is given in AppendikxB.B [Eq[(B18)].
T, p(r)+ V. te (142) To zeroth order, Eqd_(116-1128) are
whereug = —cV(r) x 2/By, the E x B drift velocity. Sub- % _ﬁ _1 e 146
stituting Eq. [I4R) into Eq.[{I31) and then Ef_(1141) into e Bo Ny Vg, (146)
Eq. (53), we find 1
. 2 u =— [ ddvv, 147
Rt e B e () | nOi/ o (47
i Vini Bo Z 6ne 1\ 6B, 1 V2
The first two terms can be combined into a Maxwellian ——+2(1+—> —=——/d3v7lg. (148)
with mean perpendicular flow velocity, = ug. These are 7 Noe Bi) Bo Mo Vihi

the terms responsible for the Alfvén waves. The remaining Note thatu; is not an independent quantity—it can be com-

terms, which we shall denoti;, are the perturbation of the  puted from the ion distribution but is not needed for the dete
Maxwellian in the moving frame of the Alfvén waves—they mination of the latter.
describe the passive (compressive) component of the turbu- Equations [(I46-138) evolve the ion distribution function
lence (see BHl5). Thus, the ion distribution function is g, the “slow-wave quantitiest;, 6B, and the density fluc-
Noi (Vi —Ug)?+vE _ tuationsdne. The nonlinearities in EqL(I#5), contained in
fi = IE A Ev— +o0fi.  (144)  d/dtandb-V, involve the Alfvén-wave quantitie® and ¥
_ iz ) thf (or, equivalentlyy andA)) determined separately and inde-
This sheds some light on the indifference of Alfvén waves pendently by the RMHD equations {L7}18). The situation
to collisions: ~Alfvénic perturbations do not change the s qualitatively similar to that in MHD (E214), except now
Maxwellian character of the ion distribution. Unlike inare  a kinetic description is necessary—Eds._([451148) replace
tral fluid or gas, where viscosity arises when particless_{an Eqs. [ZH-2I)—and the nonlinear scattering/mixing of toesl
port the local mean momentum a distaneémi, the parti-  waves and the entropy mode by the Alfvén waves takes the
cles in a magnetized plasma instantaneously take on the loform of passive advection of the distribution functignThe
cal E x B velocity (they take a cyclotron period to adjust, so, density and magnetic-field-strength fluctuations are \igloc
roughly speakmgpi plays the role of the mean _free path). space moments @f
Thus, there is no memory of the mean perpendicular motion -~ Another way to understand the passive nature of the com-

and, therefore, no perpendicular momentum transport. pressive component of the turbulence discussed above is to
Some readers may find it illuminating to notice that

Eq. EZID) can be interpreted as stating siniply = 0: the first gyrokinetic expansion. However, sincg does not produce any current,

; izatiorec the lowest-order contribution to the perpendicular curremes from the
two terms represent the dlvergence of the polarlzatlo T polarization drift. The higher-order contributions to tipgrocenter distribu-

which is perpendicular to the magnetic fiéfdthe last two  {ion function did not need to be calculated explicitly besmthe information
terms areb - Vj I No contribution to the current arises from about the polarization charge is effectively carried bygbasineutrality con-

the collisional termin Equ?) as ion-ion collisions can® dition (&1]). We do not belabor this point because, in our aagih, the notion
- of polarization charge is only ever brought in for interptite purposes, but
particle transport to lowest order i p;. is not needed to carry out calculations. For further qualigadiscussion of
the role of the polarization charge and polarization drifgirokinetics, we

22 The polarization-drift velocity is formally higher-ordénanug in the refer the reader o Kromnies 2006 and references therein.
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K Amgp ~ 1 kipi~1 kipe~1

FIG. 5.— The channels of the kinetic cascade of generalizedyg1(&8i3.4)
from large to small scales: sed _§J2.7 and Apperdix] D.2 (alertnge,
collisional regime), E516 and[§6.2.5 (inertial range, is@hless regime),
§[7.8 and §7.12 (dissipation range). Note that some ion rgeqtiobably
also results from the collisional and collisionless dargmhthe compressive
fluctuations in the inertial range (seE §611.2 ahd §5.2.4).

think of it as the perturbation of a local Maxwellian equilib
rium associated with the Alfvén waves. Indeed, [N.85.4, we
split the full ion distribution function [Eq[{134)] into sh a
local Maxwellian and its perturbation

(149)

It is this perturbation that contains all the informatioroab

23

the generalized energWeompr, Which contains the compres-
sive component of the turbulence(&15.5) and is the invariant
conserved by Eqd. (ITH0-152).

In terms of the potentials used in our discussion of RMHD
in 8[2, we have

n .
Wsz/dSr% (IVLOP+V 0 P)

Noi -
= [ TR (LG TP
=Way +Waw (154)

whereW,, andW,,, are the energies of the™and “~" waves
[Eq. (33)], which, as we know from[&2.3, cascade by scatter-
ing off each other but without exchanging energy.

Thus, the kinetic cascade in the linkit p; < 1 is split, in-
dependently of the collisionality, into three cascadesNgf,
Waw andWeompr. The compressive cascade is, in fact, split
into three independent cascades—the splitting is difteren
the collisional limit (AppendiX'D.P) and in the collisiords
one (86.2.b). Figurgl5 schematically summarizes both the
splitting of the kinetic cascade that we have worked out s0 fa
and the upcoming developments.

5.7. Summary

In 84, gyrokinetics was reduced to a hybrid fluid-kinetic
system by means of an expansion in the electron mass, which
was valid fork, pe < 1. In this section, we have further re-

the compressive component; the second term in the above exstricted the scale range by takikgp; < 1 and as aresult have

pression enforces to lowest order the conservation of tee fir
adiabatic invarianj; = mvzl/ZB. In terms of the function

(cf. 7):

>+V,|6.v(5ﬂ )

= (i 0] ) (150)

d
dt

- V2 6B Zn
5fi_TLB—O”FOi +;n—O:F0i

Vini

(

Me_ 1 / d3vof,, (151)
Noe Noi

By _ B1 [ 5 (Z V.7

- = -_ — + —_— L

T / dv (£ va 5f, (152)

5.6. Generalized Energy: Three KRMHD Cascades

The generalized energy[(§8.4) in the lirkitp; < 1 is cal-
culated by substituting into EJ._{7109) the perturbed ion dis
tribution functions fi = 2v, - ugFoi/V3; + 0f; [see Eqs.[(143)
and [149)]. After performing velocity integration, we get

W:/dsr [
ﬂ (153)

M Ng; U2 . 6B%
+ NoiToi dsviz
We see that the kinetic energy of the Alfvénic fluctuations

Foi

2 81
2 <

Zong, 298] 1
T n%e Gi B(Z) Noj
=Waw +Wcompr-

has emerged from the ion-entropy part of the generalized en-

ergy. The first two terms in Eq_(Ib3) are the total (kinetic
plus magnetic) energy of the Alfvén waves, dendég,. As
we learned from E513, it cascades independently of the fest o

been able to achieve a further reduction in the complexity of
the kinetic theory describing the turbulent cascades. €he r

({I79), Egs.[(145-148) take a somewhat more compact formduced theory derived here evolves 5 unknown functichs:
Sehekochini I

W, 6By, éne andg. The stream and flux function$, and ¥
are related to the fluid quantities (perpendicular veloaitd
magnetic field perturbations) via E.{16) and to the electro
magnetic potentialg, A via Eq. [I35). They satisfy a closed
system of equations, Eqs._{[7}18), which describe the decou
pled cascade of Alfvén waves. These are the same equations
that arise from the MHD approximations, but we have now
proven that their validity does not depend on the assumption
of high collisionality (the fluid limit) and extends to scale
well below the mean free path, but above the ion gyroscale.
The physical reasons for this are explainedin §5.4. The den-
sity and magnetic-field-strength fluctuations (the “conspre
sive” fluctuations, or the slow waves and the entropy mode in
the MHD limit) now require a kinetic description in terms of
the ion distribution functiory [or §f;, Eq. [149)], evolved by
the kinetic equatio (145) [or Eq._(T50)]. The kinetic edoiat
containsine andéBj, which are, in turn calculated in terms
of the velocity-space integrals gfvia Eqgs. [14b) and (148)
[or Egs. [A51) and (152)]. The nonlinear evolution (turlmle
cascade) of), 6B anddne is due solely to passive advection
of g by the Alfvén-wave turbulence.

Let us summarize the new set of equations:

oV o
5 =vab- Ve, (155)
%Vi¢=vA6-VVikll, (156)
dg n Z5ne Vi 58” _
a+vllb'v[g+<;@+%8—0 Foi

v o
Vi Bo

e, o
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one _ { +2( )] /d3 [_ (1+1)} g in the collisionless limit, 8§6.218-6.2.5). As in previosec-
T Gi Noi Vihi ’

Noe tions, an impatient reader may skip tb §6.3 where the results
of the previous two subsections are summarized and the im-
5B 1 14 R 7 plications for the structure of the turbulent cascades ef th
22— +2 — | L += 159 density and field-strength fluctuations are discussed.
v g, (159)
Bo T ﬁ. Noi 2T

6.1. Collisional Regime

where 6.1.1. Equations
d_9 +{®,---}, b-V= 9 o1 {¥,---}. (160) In the collisional regimek i < 1, the fluid limit is re-
dt ot 9z Va covered by expanding Eqé&(] 59) in sm@immpi. The
An explicit form of the collision term in the right-hand sidé ~ calculation that is necessary to achieve this is done in Ap-
Eq. (I57) is provided in AppendixB.3 [Eq{B18)]. pendixD (see also AppendixA.4). The result is a closed set
The generalized energy conserved by Efs.1(155-159) isof three fluid equations that 6V0|‘(§B” ONe andu”
given by Eq.[(I5B). The kinetic cascade is split, the Alfeéni d 5B d sn
cascade proceeding independently of the compressive one l=p. Vu||+——e, (161)
(see Fig[b). dt dB o dt nge
The decoupling of the Alfvénic cascade is manifested by UH [
Egs. [I5H-156) forming a closed subset. As already noted in =vib- v+ +VH'b V(b-vu), (162)
§[4.9, Eq.[(I5b) is the component of Ohm's law along the total d 6T~ 2d 6n . ST
magnetic fieldB - E = 0. Equation[(156) can be interpreted as — == +r)ib-V (b . V—') , (163)
the evolution equation for the vorticity of the perpendamul dt T 3dt noe Toi
plasma flow velocity, which is thE x B drift velocity. where

i 6B
netic Reduced Magnetohydrodynamics (KRMBEDI)t is a +E> one _ 0% _2 (—” 12 vjib- Vu) (164)
hybrid fluid-kinetic description of low-frequency turbulee 7/ MNoe Ta G\ Bo 3y
in strongly magnetized weakly collisional plasma that is un and yh and x; are the coefficients of paraIIeI ion viscosity

We shall refer to the system of equations (|[55}159%ias (
1

formly valid at all scales satisfying, pi < min(L, kjjAmmi) and thermal dlffuswlty, respectively. The viscous andrthe
(ions are strongly magnetizéd)and K Amfpi > (me/my)Y/2 mal d|ffu5|on are anlsotr0|c because plasma is magnetized
(electrons are isothermal), as |Ilustrated in Elg. 2. Troeme Amfpi > pi ( 11965). The method of calculation of

it smoothly connects the collisional and collisionlessimegs ¥ andr IS explamed in AppendikDI3. Here we shall ig-
and is the appropriate theory for the study of the turbulastc ~ nore numerical prefactors of order unity and give order-of-
cades in the inertial range. The KRMHD equations generalizemagnitude values for these coefficients:

rather straightforwardly to plasmas that are so collisesl V2

that one cannot assume a Maxwellian equilibrium distribu- Vi ~ K|ji ~ MU Vithi Amipi - (165)
tion function [Chen et al. 2009)—a situation that is relgvan Vi

in some of the solar-wind measurements (see further discus- If we sety; = x; = 0, Eqgs. [(16[-164) are the same as the
sion in §8.B). RMHD equations of EI2 with the sound speed defined as

KRMHD describe what happens to the turbulent cascade at

or below the ion gyroscale—we shall move on to these scales =y Gi(Z,.5)_ [£Te S5Ta (166)
in 8[7, but first we would like to discuss the turbulent cassade M2 \7 73 m 3m’

of density and magnetic-field-strength fluctuations andr the

damping by collisional and collisionless mechanisms. This is the natural definition ofs for the case of adiabatic
ions, whose specific heat ratiojs= 5/3, and isothermal elec-
6. COMPRESSIVE FLUCTUATIONS IN THE INERTIAL RANGE trons, whose specific heat ratiojis= 1 [becauseé pe = ToedNe;

- . . . Eq.[(103)]. Note that Eq_(164) is equivalent to the
Here we first derive the nonlinear equations that govern see s = =1
the evolution of the compressive (density and magnetic-fiel pressure balance [Ed.{22) of}8 2] with=n/Ti +neTe and

6p = T()eéne.
strength) fluctuations in the collision&l(mip < 1, §6.1 and e~ . .
AppendiXD) and collisionlesk(Ampi > 1, §6.2) limits, dis- As in 812, the fluctuations described by Eqs. |L§1}164) sep-

cuss the linear damping that these fluctuations undergein th arate into the zero-frequency entropy mode and the left- and

two limits and work out the form the generalized energy takes right-propagating slow waves with
for compressive fluctuations (which is particularly int&ieg K| Va

w= (167)
/ 2 [c2
23 The term is introduced by analogy with a popular fluid-kioetystem 1+VA/CS
known as Kinetic MHD, or KMHD (sek Kulsrild 1964, 1983). KMHBde-  [see Eq.[(3D)]. All three are cascaded independently of each

rived for magnetized plasmag; (< Amipi) under the assumption thigts < 1 ; ; ; ; ; A _
andw < O but without assuming efther strong anisotrofy (< k) or other via nonlinear interaction with the Alfvén waves. In-Ap

small fluctuations |§B| < Bg). The KRMHD equations[{185-T59) can be pendm[ﬂ, we Sh_OW that the_ g?neral'zed ene@ympf f_o_r
recovered from KMHD by applying to it the GK-RMHD ordering E{T2) this system given in[&8.6, splits into the three familiasain-
and €3] and an expansion img/m)/2 (Schekochihin et al. 2007). This  antsWg,,, W, andWs, defined by Eqs[(3H-85) (see Fig. 5).
means that thé&, pi expansion (El5), which for KMHD is the primary ex-

pansion, commutes with the gyrokinetic expansiof (§ 3) aedfhe/m)*/2 6.1.2. Dissipation

expansion (EM4), both of which preceded it in this paper. . . . . .
24 The conditionk  pi < kj Amfpi must be satisfied because in our est- The diffusion terms add dissipation to the equations. Be-

mates of the collision terms (AppendBXB.2) we tdokp; < 1 while assum-  cause diffusion occurs along the field lines of the total mag-
ing thatk Amfpi ~ 1. netic field (mean field plus perturbation), the diffusivener
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are nonlinear and the dissipation process also involvesint
tion with the Alfvén waves. We can estimate the characferist
parallel scale at which the diffusion terms become impdrtan
by balancing the nonlinear cascade time and the typical-diff

sion time:
Kiva ~ Vi Amiik! < Ky Amipi ~ 1//B;,

where we have used Ef. (165).

Technically speaking, the cutoff given by Eq. (168) always
lies in the range ok that is outside the region of validity
of the smallk  A\mepi €xpansion adopted in the derivation of
Egs. (I6IEI6R). In fact, in the low-beta limit, the collisa
cutoff falls manifestly in the collisionless scale range.,i
the collisional (fluid) approximation breaks down before th

(168)

slow-wave and entropy cascades are damped and one must use

the collisionless (kinetic) limit to calculate the dampifsge
8[6.2.2). The situation is different in the high-beta limiit:
this case, the expansion in smia|l\ngi can be reformulated
as an expansion in smalf {/5; and the cutoff falls within the
range of validity of the fluid approximation. Equatiofs (161
[I&3) in this limit are

d 5BH o

at B—o =b- VU”, (169)
dUH _on §B|| 0 Qi

déne_ 1+Z/7 ﬁ”iB-V(B-V%)- (171)

dtnee 5/3+Z/7 Noe
As in 82 [Eq. [28)], the density fluctuations [EG.{171)] have
decoupled from the slow waves [Eds. (I[694170)]. The former
are damped by thermal diffusion, the latter by viscositye Th
corresponding linear dispersion relations are

_ L 1+Z)/7 5
W—_|Wﬂ‘“k”, (172)
k 2 vii kK2
w=2kVa 1—(””2V'—> —i%. (173)
A

Equation[(I7R) describes strong diffusive damping of the de
sity fluctuations. The slow-wave dispersion relation {17a&3
two distinct regimes:

1. Whenk; < 2va/v;, it describes viscously damped

damped slow waves. In particular, in the limit
K| Amfpi < 1//Bi, we have
2
~ kyva—i 1N 174
w >~ ”VA 5 ( )

. Fork; > 2va/v;, both solutions become purely imag-
inary, so the show waves are converted into aperiodic
decaying fluctuations. The stronger-damped (diffusive)
branch hasy ~ —iu”ikﬁ, the weaker-damped one has

w~—iv’2* 0oV i va
oy B Amip VB Amifpi
This damping effect is called viscous relaxation. It is

valid until ky Amgi ~ 1, where it is replaced by the col-
lisionless damping discussed i §6]2.2 [see Eq.1(190)].

(175)

The viscous and thermal-diffusive dissipation mechanisms

described above lead, in the limits where they are effictent,
ion heating via the standard fluid (collisional) route, itwing
the development of small parallel scales in the positiotepa
but not in velocity space (se¢ §B.4 arf{d § 3.5).

25

6.2. Collisionless Regime
6.2.1. Equations
In the collisionless regime; Amgpi > 1, the collision inte-
gral in the right-hand side of the kinetic equatibn {157) ban
neglected. The, dependence can then be integrated out of

Eq. (I5T). Indeed, let us introduce the following two alatyi
functions:

Gn(V”):— |:§+2 (1"'%)-

-1

2

27 [ _-V 1
X — dviv, |[==-2(1+=)|g, (176
”Oi/o o | Vi ( 5i>}g (176)
z 1\
Ge(v)=—-|—-+2(1+=
owp==|2e2(1+3)
27 [ v Z
- dv,v, [ =£+=)g. 177
><noi A i L<Vt2hi T>g ( )
In terms of these functions,
oB
% :/dVHGn7 —” :/dVHGB (178)
Noe Bo

and Eq. [[(I5)7) reduces to the following two coupled one-
dimensional kinetic equations

Gy, - z 1\
W*an-VG“:_[F”(“Eﬂ ViFut)

~ [Z 2\ 0he 25B||:|
xb-vIZ(1+2 ) =—=+Z 1| 179
_T( ﬁi) Noe Gi Bo (179)
- z 1\17*
W+V||b-VGB={;+2(1+E)} ViFum(v))
LT 5B
bV 5(1+5)%+<2+5> _”} (180)
K3 7 ] Nge 7/ Bo

whereFy (V) = (1/v/7Vini) exp(—vﬁ/vfhi) is a one-dimensional
Maxwellian. This system can be diagonalized, so it splits in
two decoupled equations

" A F R +00
dést +V”b,VGi=V+£’)b.v/ dv| G*(v)), (181)
where
+__7,.1 U RS
AT=-gtg s (1+Z) i (82

and we have introduced a new pair of functions
G'=Gg+=

1/, Z 172

1+2) Gy, G =Gn+-LGg, (183)
o T o Zf;
s=1+l+ 14 (1+T

Gi z

where

)2+ 1 (184)
a
Equation [[I811) describes two decoupled kinetic cascades,

which we will discuss in greater detail in E§6.12.3-612.5.

6.2.2. Collisionless Damping

Fluctuations described by E§.(181) are subject to collisio
less damping. Indeed, let us linearize Eq.{181), Fourdarsy
form in time and space, divide through bi(w —kv|), and
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Im(w

kjva

MHD collisional

inertial
range

collisionless

| |

1 1

FIG. 6.— A schematic log-log plot (artist's impression) of ttaio of the
damping rate of magnetic-field-strength fluctuations toAHeén frequency
k| va in the high-beta limit [see Eq$.(1I73) and (190)]. In Barreal§2009),
this plot is reproduced via a direct numerical solution af timearized ion
gyrokinetic equation with collisions.

k| Amfp

integrate ovew. This gives the following dispersion relation
(the “=” branch is forG™, the “+” branch forG*)

GZ(G)=AF-1, (185)

where G = w/[Kj|vini = w/|Ki|vay/Fi and we have used the
plasma dispersion functio i nte 1961)

1 [ e
Z(Ci)_ﬁ~/—oodxx_<i

(the integration is along the Landau contour). This funci®o
not to be confused with the ion charge paramétery /e.

(186)

Formally, Eq. [I8b) has an infinite number of solutions.
Wheng; ~ 1, they are all strongly damped with damping rates
Im(w) ~ [k [Vini ~ [Kj|Va, SO the damping time is comparable
to the characteristic time scale on which the Alfvén waves

cause these fluctuations to cascade to smaller scales.
Itis interesting to consider the high- and low-beta limits.

High-Beta Limit— When/; >> 1, we have in Eq[(185)
- T
A -1~ 2(1+Z)’
1

AT -1~
Gi

G ~G, (187)

G'~Gg+ }E Gn. (188)
2T

SinceG, is strongly damped, EJ._{1IB8) impli€s ~ Gg, i.e.,
the fluctuations that are damped at the riate](190) are predom-
inantly of the magnetic-field strength. The damping rate is a
constant (independent &f) small fraction~ 1/,/f; of the
Alfvénic cascade rate.

In Fig.[g, we give a schematic plot of the damping rate of the
magnetic-field-strength fluctuations (slow waves) corningct
the fluid and kinetic limits fors; > 1.

Low-Beta Limit— Wheng; <« 1, we have

A’—l:—(1+%), G‘:Gn+%GB, (191)
A*—l:%, G'~Gg. (192)

For the =" branch, we again have Ig{ ~ 1, so
w ~ =ilky|Vay/i, (193)

which now is much smaller than the Alfvénic cascade rate
K(va. For the *” branch (predominantly the field-strength

fluctuations), we seek a solution with= -i¢; and ¢ > 1.
Then Eq.[(185) becomesZ(Gi) ~ 2\/7 G exp(i) = 2/5. Up
to logarithmically small corrections, this gives~ +/|In 5],

whence
w ~ =i[K[vay/Gi|InGi]. (194)

While this damping rate is slightly greater than that of th& “
branch, it is still much smaller than the Alfvénic cascade.ra

6.2.3. Collisionless Invariants

Equation[[I81) obeys a conservation law, which is very easy
to derive. Multiplying Eq.[(I81) byG* /Ry and integrating
over space and velocities and performing integration bispar
in the righ-hand side, we get

d [ 3 (GH)?
a/d r/dv” 2F

1 R
:_F/dsr (/dVGi> bV/dV\\V||Gi (195)

On the other hand, integrating E0. (181) ovegives

g\/CIVHG:l: :—B-V/dV”VHGi.
dt

Using this to express the right-hand side of [Eq. {195) asla ful

(196)

The “=” branch corresponds to the density fluctuations. The time derivative, we find

solution of Eq.[(I8b) has Ing() ~ 1, so these fluctuations are

strongly damped:
w ~ =ilky [Vay/;- (189)

The damping rate is much greater than the Alfvénic kate
of the nonlinear cascade. In contrast, for thé branch, the
damping rate is small: it can be obtained by expandifig) =
iv/7+0(¢), which giveg®

= Ky vani - K [va
VT Nz

25 This is the gyrokinetic limit K| /kL < 1) of the more general damping
effect known in astrophysics as the Balnes (1966) dampingiraplasma
physics as transit-time damping. We remind the reader tivayoproach was
to carry out the gyrokinetic expansion (in smig|l/k ) first, and then take
the high-beta limit as a subsidiary expansion. A more stahdpproach in
the linear theory of plasma waves is to take the limit of higgwhile treating
k) /kL as an arbitrary quantity. A detailed calculation of the dargpates

done in this way can be found[in Foote & Kulsriid (1979).

(190)

dW=E
V\g‘;mp’ =0, (197)

where the two invariants are

Nei Toi (G:t)z 1 2
e o]

(198)
Itis useful (and always possible) to split
G* =Ry / dvG* +G*, (199)
where [ dv;G* = 0 by construction. Then
£ _ Noi Toi (G*)?
Wcompr—/d3r % [/dVH FM
1 2
+
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Written in this form, the two invariantSingmpr are mani- Using Egs.[(178) and (I83), we can expréssanddBy in

festly positive definite quantities becausé> 1 andA~ < 0. terms of [ dv”Gi as follows

The invariants regulate the two decoupled kinetic cascafles

compressive fluctuations in the collisionless regime. Tdie c one _ 1 o | dvG = T2 dviG* (202)
lisionless damping derived i &6.2.2 leads to exponendal d Noe K I Z G I ’

cay of the density and field-strength fluctuations, or, eatuiv 5B 1 7

lently, of [ dv;G*, while conserving\;5..,- This means that —l-= [a/dv”G*— <1+—) /dv”G‘} ,  (203)
the damping is merely a redistribution of the conserved guan Bo & T

tity Wismpr the first term in Eq.[{200) grows to compensate \yheres was defined in Eq[{I84) and
for the decay of the second.

2
6.2.4. Linear Parallel Phase Mixing K= (1+%) + 5_12 (204)
In dynamical terms, how does the kinetic system Eq.1(181) '
arrange for the integral of the distribution functiG (v;) to In order to expresg in terms of G+, we have to reconstruct

decay while alIOWing its norm to grOW? This is a very well thev dependence Qj, which we integra‘[ed out at the begin-

known phenomenon of (linear) phase mixing (Landau 1946; ning of §6.2.1.

Hammett et al. 199 1994; | 99; et us represent the distribution function as follows
04). To put it in simple terms, the

solution of the linearized Eq. {IB1) consists of the inhoeiog _no =
neous part, which contains the collisionless damping aad th 9= ﬁ eglvy), g vy) = Z Li(X)Gi(vy), (205)
homogeneous part (solution of the left-hand side = 0) given b thi 1=0

G* x ekVit, the so-called ballistic response (this is also the —\2 NP2
' R ; . wherex = v /v and we have expandegdn Laguerre poly-
nonlinear solution ift and kp1 are interpreted as Lagrangian 1/ Vin pandgi g oy

. . , i = | | | a=X i _
Vi e ame ofth Alven vaves SE369) o TOTISL O 10 G ke Srce Lo pobne,
time goes on, this part of the solution becomes increasinglysum of “ener iegs” aséociated with the expansion cgeﬁisient
oscillatory inv|, so its velocity integral tends to zero, while 9 P

its amplitude does not decay. It is such ballistic contiiug 1 P G2
that make up th&* term in Eq. [20D). ~ dsvg = Z/dVH F—' (206)
As the velocity gradient ofG* increases with time, o N M
9G* /oy ~ k|tG*, at some point it can become sufficiently The expansion coefficients are determined via the Laguerre
large to activate the collision integral [the right-handesbf transform:
Eq. (I57)], which has so far been neglected. This way the col- o
lisionless damping of compressive fluctuations can be tlrne Gi(v)) = / dx &Ly (x)g(X, v )- (207)
into ion heating—a simple example of a more general prin- 0
ciple of how electromagnetic fluctuation energy is transfer _ 1y it
into heat via the entropy part of the generalized enerfyAg 3. Aslo=1andL, = 17X Itis easy to see thah, anddB can
Indeed, we will prove in E6.215 that the invariakis, are be expressed as linear combinationg'afv; G and [ dv; G,

constituent parts of the overall generalized energy fonati  [5¢€ Eqs.[(I76-I78)]. Using EqE. (17 ), 183), we
for the compressive fluctuations, so their cascade to smallcan show that
scales in phase space is part of the overall kinetic cascade i 1 2\ .. Z ™
troduced in §3M4. GO:—E [(U_E) A'G +; (a—l—z) AG } , (208)

It is not entirely clear how efficient is the parallel-phase- '
mixing route to ion heating and, therefore, whether thei-coll Gy = 1 [UA"G*— (1+ E) A"G‘] (209)
sionlessly damped energy of compressive fluctuations gmds u K T ’

in the ion heat or rather reaches the ion gyroscale and cauple gy

back to the Alfvénic component of the turbulencE(8 7.1). The WhereG™ satisfy Eq. [(1811). As follows from EL(157) (ne-
answer to this question will depend on whether compressivedlécting the collision integral), all higher-order expimsco-
fluctuations can develop larde—a nontrivial issue further efficients satisfy a simple homogeneous equation:

discussed in 6l 3. dG .
dat +V||b VG =0, |>1 (210)
6.2.5. Generalized Energy: Three Collisionless Cascades
We will now show how the generalized energy for com- Thus, the distribution function can be explicitly written i
terms ofG*:

pressive fluctuations in the collisionless regime incoapes
the two invariants derived in[§6.2.3. Vi

Rewriting the compressive part of the KRMHD generalized 9= [GO(V) + (1_ VT) Gl(V)]
energy [Eq.[(I83)] in terms of the functiansee Eq.[(149)], thi

Noi
2

TV

e_vi_/vtzhi +4, (211)

we get whereGy and G; are given by Eqs[{208-2D9) argicom-
T 1 5 prises the rest of the Laguerre expansion Gallwith | > 1),
Weompr= Mo Lo /d3r {_ /dSVg_ i.e., itis the homogeneous solution of Hg. ([L57) that doés no
2 Noi Foi contribute to either density or magnetic-field strength:

(e 6B>2 [Z < 1)]682 b ¢
+= - -1Z+2(1+2 )| =L 3. (201 9 VG = 3= 3y L g=
- (nOe B - %) ' ([ @0 4 HVib- Vg O,/d Vg O,/d vz 070 (212)



28 SCHEKOCHIHIN ET AL.
Now substituting Eqs[[(208) and (209) into Elg. (R06) and >

then substituting the result and Eds. (2021203) into ET)20 = Tz
we find after some straightforward manipulations time 0 time £
Tei G2 FIG. 7.— Lagrangian mixing of passive fields: fluctuations depesmall
Wcompr:/d3r /dgv% scales across, but not along the exact field lines.
i
+4 |14 (1 D) (A, : - : -
K Z compr We emphasize that this lack of nonlinear refinement of the
72 11 scale ofone andoBy along the moving field lines is a particu-
+2= <1+ = _) (A7) Wormon (213) lar property of the compressive component of the turbulence
72 K Bi P not shared by the Alfvén waves. Indeed, unlike Eq.[157), the

wherex is defined by Eq[(204) and/3,,, are the two inde- ~ RMHD equations[(I55-156), do not reduce to a linear form
pendent invariants that we derived iE§Jﬁ|2.3. Thus, thegene under the Lagrangian transformatidn (214), so the Alfvén
alized energy for compressive fluctuations splits intodline ~ waves should develop small scales both across and along the
dependently cascading parw;,,, associated with the den- ~ perturbed magnetic field. o
sity and magnetic-field-strength fluctuations and a purely k ~ Whether the density and magnetic-field-strength fluctua-
netic part given by the first term in EQ_{213) (see . 5). tions develop small scales along the magnetic field hastdirec
The dynamical evolution of this purely kinetic component is physical and observational consequences. Damping of these
described by Eq[{212)—it is a passively mixed, undamped fluctuations, both in the collisional and collisionlessinegs,
ballistic-type mode. discussed in §6.11.2 and_§86.2.2, respectively, depends pre-
Al three cascade channels lead to small perpendicular spacisely on their scale along the perturbed field: indeed, the
tial scales via passive mixing by the Alfvénic turbulencelan linear results derived there are exact in the Lagrangiandra
also to small scales i via the parallel phase mixing pro- (@14). To summarize these results, the damping rat&nef
cess discussed il §6.2.4 (note thas subject to this process andéBj atfi ~1is

as well).
7Y ~ Vithi Ampi kﬁ()a I(HO/\mfpi <1, (217)

6.3. Parallel and Perpendicular Cascades
g v~ VitniKjjo, KjoAmfpi > 1, (218)

Let us return to the kinetic equatioh (157) and transform R
it to the Lagrangian frame associated with the velocity field whereko ~ b -V is the wave number along the perturbed

u; =2x Vo of the Alfvén waves:t(r) — (t,ro), where field (i.e., if there is no parallel cascade, the wave number o
t the large-scale stirring).
rt,ro) = ro+/ dt'u (t',r(t’,ro)). (214) Whether this damping cuts off the cascadegrafandsB
0

) ) o ] . depends on the relative magnitudes of the dampingyréoe
In this frame, the convective derivativé/dt defined in 3 givenk, and the characteristic rate at which the Alfvén
Eq. (160) turns inta)/ot, while the parallel spatial gradient  waves causéne anddB, to cascade to highes, . This rate
b-V can be calculated by employing the Cauchy solution for is wa ~ kjava, Wherekj is the parallel wave number of the

the perturbed magnetic fiebB |, =2 x vV V: Alfvén waves that have the sarke. Since the Alfvén waves
A . OB (t,r) - do have a parallel cascade, assuming scale-by-scaleatritic
b(t,r)=2+ B b(0,ro) - Vor, (215)  palancel[(B) leads to [EQ(5)]

wherer is given by Eq.[(2I4) an¥ = 9/0ro. Then Kja~ k2¢/3|c_>1/3- (219)

b-V =b(0,r0)- (Vor) -V =b(0,ro)- Vo = i, (216) If, in contrast to the Alfvén wavesn, anddB; have no par-

) 9% .. allel cascadeko does not grow witfk, , so, for large enough
wheres; is the_arc length along the perturbed magnetic field i | kijo < kja andy < wa. This means that, despite the damp-
taken att = 0 [if 6B (0,ro) =0, so=2)]. Thus, inthe La-  jng, the density and field-strength fluctuations should have
grangian frame associated with the Alfvénic component of perpendicular cascades extending to the ion gyroscale.
the turbulence, EqL(I57) is linear. This means that, if the = The validity of the argument at the beginning of this sec-
effect of finite ion gyroradius is neglected, the KRMHD sys-  tjon that ruled out the parallel cascadesof. andJB; is not
tem does not give rise to a cascade of density and magneticyuite as obvious as it might appear. Lithwick & Goldréich
field-strength fluctuations to smaller scales along the nvi ) argued that the dissipation &, andéB; at the ion
(perturbed) field lines, i.elh - Vone andb - V4B do notin-  gyroscale would cause these fluctuations to become uncorre-
crease. In contrast, there is a perpendicular cascadeafismsc |ated at the same parallel scales as the Alfvénic fluctustign
in k. ): the perpendicular wandering of field lines due to the which they are mixed, i.ekjjo ~ kja. The damping rate then
Alfvénic turbulence causes passive mixingiof andéBy in becomes comparable to the cascade rate, cutting off the cas-
the direction transverse to the magnetic field (seel§ 2.6 for acades of density and field-strength fluctuationls @ty ~ 1.
quick recapitulation of the standard scaling argument @ th The corresponding perpendicular cutoff wave number is [see
passive cascade that leads tblg(s in the perpendicular di-  EQ. (219)]

rection). Figur€l7 illustrates this situatiéh.

ki ~ 15 A - (220)

2 . . - .
Note that effectively, there is also a cascaddjrif the latter is mea- : : ; o
sured along the unperturbed field—more precisely, a casicakle This is Asymptotically speaking, in a weakly collisional plasma,

due to the perpendicular deformation of the perturbed ntagfield by the this cutoff is far above the ion gyrosca"eipi < 1. How-

Alfvén-wave turbulence: sinc® | grows whileb -  remains the same, we ~ €VET, the relatively small value Ofmgy in the warm ISM,
have from Eq.[(123)/9z ~ ~(3B /Bo)- V| . which was the main focus of Lithwick & Goldreich 2001,
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meant that the numerical value of the perpendicular cutoff the perpendicular and parallel directions.

scale given by Eq.[{220) was, in fact, quite close both to
7. TURBULENCE IN THE DISSIPATION RANGE: ELECTRON RMHD

the ion gyroscale (see Tall¢ 1) and to the observational es- AND THE ENTROPY CASCADE

timates for the inner scale of the electron-density fluatunst .

in the ISM [Spangler & Gwidh 1990; Armstrong eilal. 1995). 7.1. Transition at the lon Gyroscale

Thus, it was not possible to tell whether Hg. (220), rathanth The validity of the theory discussed il 185 and § 6 breaks
k. ~ pit, represented the correct prediction. down whenk, pj ~ 1. As the ion gyroscale is approached,

The situation is rather different in the nearly collision- the Alfvén waves are no longer decoupled from the rest of
less case of the solar wind, where the cutoff given by the plasma dynamics. All modes now contain perturbations
Eq. (220) would mean that very little density or field- of density and magnetic-field strength and can be collision-
strength fluctuations should be detected above the ion gydessly damped. Because of the low-frequency nature of the
roscale.  Observations do not support such a conclu-Alfvén-wave cascade,y < ; even atk, pi ~ 1 [Eq. [48)],
sion: the density fluctuations appear to follonka&/ law so the ion cyclotron resonance { kv, = +(%) is not im-
at all scales larger than a few times (Lovelaceetdl. portant, while the Landau one & kHV|B is. The linear the-
[1970; Woo & Armstrond 1979; Celnikier etlal. 1983, 1987; ory of this collisionless damping in the gyrokinetic approx
Coles & Harmoh| 1989; Marsch & Tu_19900; Coles et al. imation is worked out in detail in_Howes et al. (2006) (see
[1991), consistently with the expected behavior of an un- also.Gary & Borovsky 2008). Figufé 8 shows the solutions of
damped passive scalar field (s€e_82.6). An extended rang¢heir dispersion relation that illustrate how the Alfvénuea
of k™3 scaling above the ion gyroscale is also observed for becomes a dispersivenetic Alfvén wave (KAWsee §7.8)
the fluctuations of the magnetic-field strendth (Marsch & Tu and collisionless damping becomes important as the ion gy-
1990b; [ Bershadskii & Sreenivasan 2004 Hnat ef al. 2005;roscale is reached.
lAlexandrova et &, 2008a). We stress that this transition occurs at the ion gyroscale, n

These observational facts suggest that the cutoff formulaat the ion inertial scalé; = p; /\/ (except in the limit of cold
(220) does not apply. This does not, however, conclusivelyions, =Toi/Tee < 1; see AppendiXE). This statement is true
vitiate the Lithwick & Goldreich((2001) theory. Heuristibg even whens; is not order unity, as illustrated in Figl. 8: for the
their argument is plausible, although it is, perhaps, usefu three cases plotted thete,d; = 1 corresponds th, pi = 0.1,
to note that in order for the effect of the perpendicular dis- 1 and 10 forg = 0.01, 1 and 100, respectively, but there is
sipation terms, not present in the KRMHD equatidns [157- no trace of the ion inertial scale in the solutions of thedine
[I59), to be felt, the density and field-strength fluctuations dispersion relation. Nonlinearly, in the lim# < 1, we may
should reach the ion gyroscale in the first place. Quanti- consider the scalds di ~ 1 and expand the gyrokinetics in
tatively, the failure of the compressive fluctuations in the Kipi =Ky div/fi < 1inaway similar to how it was done i85
solar wind to be damped could still be consistent with the and obtain precisely the same results: Alfvénic fluctuation
[Lithwick & Goldreich (2001) theory because of the relative described by the RMHD equations and compressive fluctua-
weakness of the collisionless damping, especially at loa be tions passively advected by them and satisfying the reduced
(8[6.2.2)—the explanation they themselves favor. The way to kinetic equation derived in[§5.5. Thus, even thoagh> p;
check observationally whether this explanation sufficesldio ~ at low beta, there is no change in the nature of the turbulent
be to make a comparative study of the compressive fluctua-cascade untk, pi ~ 1 is reached.
tions for solar-wind data with different values 6f. If the The nonlinear theory of what happenskatp; ~ 1 is very
strength of the damping is the decisive factor, one should al poorly understood. It is, however, possible to make pragres
ways see cascades of baif, andéB;| at low 3, no cascades by examining what kind of fluctuations emerge on the other
at 5 ~ 1, and a cascade @B but notén at high 3 (in side of _the transition, &t p; > 1. As we will demonstr_atej
this limit, the damping of the density fluctuations is strpng below, it turns out that another turbulent cascade—thig tim
of the field-strength weak; se€ §6J2.2). If, on the other hand of KAW—is possible in this so-calledissipation range It
the parallel cascade of the compressive fluctuations imintr ~ can transfer the energy of KAW-like fluctuations down to the
sically inefficient, very littled; dependence is expected and a €lectron gyroscale, where electron Landau damping becomes
perpendicular cascade should be seen in all cases. important (see_Howes etlal. 2006). Some observational evi-

Obviously, an even more direct observational (or numer- dence of KAW is, indeed, available in the solar wind and the
ical) test would be the detection or non-detection of near- magnetosphere (Bale et al. 2005; Grison et al. 2005, see fur-
perfect alignment of the density and field-strength stmestu  ther discussion in[§8.2.4). Below we derive the equatioas th
with the moving field lines rfot with the mean magnetic describe KAW-like fluctuations in the scale rangepi > 1,
field—see footnot& 26), but it is not clear how to measure K1pe < 1 (8Z.2) and work out a Kolmogorov-style scaling
this reliably. It is interesting, in this context, that inaxe  theory for this cascade [&T.5).
the-Sun measurements, the density fluctuations are reporte Because of the presence of the collisionless damping at the
to have the form of highly anisotropic filaments aligned with ion gyroscale, only a certain fraction of the turbulent powe
the magnetic field (Armstrong etlal. 1990; Grall etlal. 1997; arriving there from the inertial range is converted into the
Woo & Habbal 1997). Another intriguing piece of observa- KAW cascade, while the rest is Landau-damped. The damp-
tional evidence is the discovery that the local structurthef ~ ing leads to the heating of the ions, but the process of deposi
magnetic-field-strength and density fluctuations at 1 Alihis, ~ ing the collisionlessly damped fluctuation energy into tre i
a certain sense, correlated with the solar cylcle (Kiyanileta heatis nontrivial because, as we explainedinB 3.5, cofisi
[2007;[Hnat et all_2007; Wicks etlal. 2009)—this suggests ado need to play a role in order for true heating to occur. As
dependence on initial conditions that is absent in the Alfivé ~ we explained in E315 and will see specifically for the dissi-
fluctuations and that presumably should also disappeaein th pation range in E718, the electromagnetic-fluctuationgner

compressive fluctuations if the latter are fully mixed bath i does not disappear as a result of the Landau damping but is
converted into ion entropy fluctuations, while the genesali
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FiG. 8.— Numerical solutions of the linear gyrokinetic dispensrelation (for

a detailed treatment of the linear themsg Howes et Hl. 2006) showing the

transition from the Alfvén wave to KAW between the inertiahge k, pi < 1) and the dissipation rangk (pi = 1). We show three cases: low beta € 0.01),
Bi =1, and high betad; = 100). In all three cases, = 1 andZ = 1. Bold solid lines show the real frequeney bold dashed lines the damping rateboth

normalized byk; va (in gyrokineticsw /K va and+/kj va are functions ok only)

. Dotted lines show the asymptotic KAW soluti¢n (P3Bprizontal solid line

shows the Alfven waves = kj va. Vertical solid lines shovk pi = 1 andk; pe = 1. Note that the damping can be considered strong if theacteistic decay
time is comparable or shorter than the wave period, 4.4 = 1/2r. Thus, in these plots, the dampinglatp; ~ 1 is relatively weak for3; = 1, relatively

strong for low beta and very strong for high beta.

energy is conserved. Collisions are then accessed and ion These equations are a reflection of the fact thatkfqr >

heating achieved via a purely kinetic phenomenon: the ion

1, the ion response is effectively purely Boltzmann, wita th

entropy cascade in phase space (nonlinear phase miximg), fogyrokinetic parth; contributing nothing to the fields or flows

which a theory is developed if§7.9 arld&7.10. A similar pro-
cess of conversion of the KAW energy into electron entropy
fluctuations and then electron heat is treatedin §7.12.
Figure® illustrates the routes energy takes from the ion gy-
roscale towards heating. Crucially, it is lat p; ~ 1 that it
is decided how much energy would eventually go into the
ions and how much into electroRs. How this distribution
of energy depends on plasma parametgksafd Toi/Toe)
is an open theoretical questf@rof considerable astrophys-
ical interest: e.g., the efficiency of ion heating is a key un-
known in the theory of advection-dominated accretion flows
(Quataert & Gruzinov_1999, see discussion [n_%8.5) and of
the solar corona (e.g.. Cranmer & van Ballegooijen 2003); we
will also see in §7.111 that it may determine the form of the
observed dissipation-range spectra in space plasmas.
A short summary of this section is given i & 7.14.

7.2. Equations of Electron Reduced MHD

The derivation is straightforward: whep~ k p; > 1, all
Bessel functions in Eqd. (11[8-120) are small, so the integra
of the ion distribution function vanish and Eds. (I[183126) b

[see Eq.[(BK) withn, omitted;h; does, however, play an impor-
tant role in the energy balance and ion heating, as explained
in 8§[7Z.8E7.1D below]. The Boltzmann response for ion den-
sity is expressed by EJ_(221). Equatibn (222) states tfeat th
parallel ion flow velocity can be neglected. Finally, Hg.3p2
expresses the pressure balance for Boltzmann (and, therefo
isothermal) electrons [EJ. (ID3)] and ions: if we write

ByoB
(11 I =_s Pi — 0 Pe = —ToidN; — Toed N, (224)
T
it follows that
=T Gi Z\ dne
= +— ) —
Bo 2 1 7 ) Noe’ (229)

which, combined with Eq[[(221), gives Ef.(223). We remind
the reader that the perpendicular Ampere’s law, from which
Eq. (223) was derived [EQ.(B6) via Ef.{120)] is, in gyrokine
ics, indeed equivalent to the statement of perpendicuks-pr
sure balance (sed¢ §8.3).

Substituting Eqs[{22[[-2P3) into Egs. (A16-117), we obtain
the following closed system of equations

come o 7\ .
- = 1+—|b-Vo 226
%:_Zﬁ :_ii (221) ot VA( 7') Ve (226)
n Toi | PiVA oL -
- : v A-vz v o 245 (1A+z/7) b-V(piviv). @21
Upe= ——VAA =-EL2 =0, (222) |
4menoe VB Note that, using Eql(223), EqE.(226) ahd (227) can be recast
0By _ B 1+ Z\ Zep _ VB 1+ Z\ @ 293 as two coupled evolution equations for the perpendiculdr an
By 2 ) To B 7 ) piva’ (223) parallel components of the perturbed magnetic field, respec

where we used the definitions {135) of the stream and flux
functions® andW.

27 Some of the energy of compressive fluctuations may go intbéz via
collisional (§6.1.2) or collisionless [§6.2.2) dampingtbése fluctuations
in the inertial range. Whether this is a significant ion h@atmechanism
depends on the efficiency of the parallel cascade (Eee §&nd.46.8).

28 How much energy is converted into ion entropy fluctuationth@pro-
cess of amonlinearturbulent cascade is not necessarily directly relatedeo th
strength of thdinear collisionless damping.

tively [Egs. [CID) in Appendik C]2].

We shall refer to Eqs[(246-2P7) Bsectron Reduced MHD
(ERMHD). They are related to the Electron Magnetohydrody-
namics (EMHD)—a fluid-like approximation that evolves the
magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity, while

the ions are immobilay; = 0 (Kingsep et al. 1990):
oB_ ¢
ot~ 4Arene

V x [(V x B) x B]. (228)
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As explained in Appendikx Cl2, the result of applying the
RMHD/gyrokinetic ordering (E2]1 and[&§3.1) to E@._(228),
whereB = Byz+ 6B and

oB 1, =T

— == U+z— 229

BO VAZX VL z BO ) ( )
coincides with our Eqs[{2¥6-2R7) in the effectively incom-
pressible limits of%; > 1 or 5 = 3iZ/7 > 1. When betas are
arbitrary, density fluctuations cannot be neglected coetpar

to the magnetic-field-strength fluctuations [EQ._(225)] and

give rise to perpendicular ion flows wilfi - u; Z 0. Thus, our

ERMHD system constitutes the appropriate generalization o

EMHD for low-frequency anisotropic fluctuations withoueth
assumption of incompressibility.

A (more tenuous) relationship also exists between our

ERMHD system and the so-called Hall MHD, which, like

EMHD, is based on the magnetic field being frozen into
the electron flow, but includes the ion motion via the stan-

dard MHD momentum equation [Ed.(8)]. Strictly speak-
ing, Hall MHD can only be used in the limit of cold ions,

7 =Toi/Toe < 1 (see, e.gl, Ito et El. 2004; Hirose ellal. 2004,
and Appendi{E), in which case it can be shown to reduce
to Eqgs. [228-227) in the appropriate small-scale limit (Ap-

pendix[E). Althoughr < 1 is not a natural assumption for

most space and astrophysical plasmas, Hall MHD has, due to

its simplicity, been a popular theoretical paradigm in thuels
ies of space and astrophysical plasma turbulence (se€&3.8.2.
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By = Byz
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22Xk, zxk,
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FiG. 9.— Polarization of the kinetic Alfvén wave, see E@s.(282) [233).

so, for a single +” or “—" wave (corresponding t®, =0 or
Oy = 0, respectively)§By rotates in the plane perpendicular
the wave vectok clockwise with respect to the latter,
while the wave propagates parallel or antiparallel to thdeu
field (Fig.[9).

The waves are elliptically right-hand polarized. Indeesd, u
ing Eq. [2238), the perpendicular electric field is:

. iwk
Eix=-ikip+ S Ak

= {-ik +2xk, P <1+5)] 0
.

233
i ki pf (259

We have therefore devoted Appenfix E to showing how this (cf.|Gary/1985{ Hollweg 1999). The second term is small in
approximation fits into the theoretical framework proposed the gyrokinetic expansion, so this is a very elongated sdlip
here: namely, we derive the anisotropic low-frequency ver- (Fig.[9).

sion of the Hall MHD approximation from gyrokinetics under
the assumption < 1 and discuss the role of the ion inertial

and ion sound scales, which acquire physical significance in

this limit. However, outside this Appendix, we assume 1
everywhere and shall not use Hall MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further digmiss

in §[7.8.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

1+Z/1
=+ —/klpikHVA-

2+ 6 (1+2/7) (230)

Wk

This dispersion relation is illustrated in F[d. 8: note thiz
transition from Alfvén waves to dispersive KAW always oc-
curs atk; p; ~ 1, even whens; < 1 or 5 > 1. In the latter
case, there is a sharp frequency jump at the transition fa&cco
panied by very strong ion Landau damping).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (§1.R), itis a natural question to ask how simi-
lar the nonlinear properties of a putative KAW cascade vell b
to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes [Hgs.] (230)
and[231)], and it turns out that certain superpositioncese
modes (KAW packets) are also examinlinearsolutions of
Eqgs. [228-227). Let us show that this is the case.

We might look for the nonlinear solutions of Eds. (}264227)
by requiring that the nonlinear terms vanish. Sificev =
0/0z+(1/va){¥,---}, this gives

{T,#}=0 = U=09, (234)
(U, pPV30}=0 = pVAiU=cl, (235)

wherec; andc, are constants. Whether such solutions are
possible is determined by substituting Eds. (234) andl(235)
into Egs. [22b) and(227) and demanding that the two result-

The eigenfunctions corresponding to the two waves with ing linear equations be consistent with each other (both equa-

frequencied(230) are

1+2 2+ 142 gﬂgxyk. (231)
(2 fen (7))

Of =

tions now just evolvel). This is achieved P

ot (1) s ()]
2 T T

so real solutions exist i€; < 0. In particular, wave pack-

(236)

Using Eqs.[(229) and(2P3), the perturbed magnetic-field vec ets consisting of KAW given by one of the linear eigen-

tor can be expressed as follows

. kLO; -6 .
— +
z kL 2Va z

1+Z/7
2+6 (1+2/7)

O + Oy
2Va
(232)

)

modes [(2311) with an arbitrary shape zrbut confined to a

29 Formally speakingg; andc, can depend ohandz. If this is allowed,
we still recover Eq[(236), but in addition to it, we get th@lkexion equation
c10c1 /0t =va(l+Z/7)0c1/0z. This allowsc; = const, but there are, of
course, other solutions. We shall not consider them here.
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single shelllk | = k; = const, satisfy Eqs[(244-236) with (for the purposes of scaling arguments and order-of-
¢, = —k% p?. This outcome is, in fact, only mildly nontrivial: ~ magnitude estimates, we sgf = 1, but keep thes de-
in gyrokinetics, the Poisson bracket nonlinearity [Hg)[59 pendence so low- and high-beta limits could be recovered if
vanishes for any monochromatic (k) mode because the necessary). The fact that fixéd- KAW packets, which sat-
Poisson bracket of two modes with wave numbersandk’, isfy Eq. (237) withA = 1/k,, are exact nonlinear solutions
is o 2- (k. x k’)). Therefore, any monochromatic solution of the ERMHD equations (817.4) lends some credence to this
of the linearized equations is also an exact nonlinearisplut ~ assumption.
As we have shown above, a superposition of monochromatic Assuming scale-space locality of interactions implies a
KAW that have a fixed , or, somewhat more generally, sat- constant-flux KAW cascade: analogously to Eq. (1),
isfy Eq. [23%) with a fixed,, is still an exact solution. 2 2

Note that a similar procedure applied to the RMHD equa- (L2/A) ~ (1+5)(2x/pi) ~ ekaw =const  (238)
tions [ITEIB) returns the Elsasser solutions: perturhataf TKAW A TKAW A
arbitrary shape that satisfy = +=0. The physical difference  wherergaw » is the cascade time ardaw is the KAW energy
between these finite-amplitude Alfven-wave packets and theflux proportional to the fraction of the total flux(or the total
finite-amplitude KAW packets discussed above is that non-tyrbulent powerPs; see §3M1) that was converted into the
linear interactions can occur not just between counte@fop KAW cascade at the ion gyrosca|e_
gating KAW but also between copropagating ones—a natural - Using Egs. [226-227) and Eq.{237), it is not hard to see
conclusion because KAW are dispersive (their group vefocit that the characteristic nonlinear decorrelation tima?%is®..
along the guide field is< vaky pi), so copropagating waves | the turbulence is strong, then this time is comparable to
with differentk, can “catch up” with each other and inter-  the inverse KAW frequency [EJ_{ZB0)] scale by scale and we

act® may assume the cascade time is comparable to either:
7.5. Scalings for KAW Turbulence 22 1 piva
A scaling theory for the turbulence described by Elgs.](221- TKAWA ™ 5™ V15 Xm' (239)

[2277) can be constructed along the same lines as the GS theory
for the Alfvén-wave turbulence [§1.2). Namely, we shall as- In other words, this says that/0z ~ (6B /Bo)- V1 and so
sume that the turbulence below the ion gyroscale consists 0PB.1x/Bo ~ A/ljx (note that the last relation confirms that
KAW-like fluctuations withk; < k. (Quataert & Gruzindv  our scaling arguments do not violate the gyrokinetic orufgri
[1999) and that the interactions between them are critically see §2.11 and[&3.1). Equatién (239) is the critical-balasee a
balanced[(Cho & Lazariah 2004), i.e., that the propagationsumption for KAW. As in the case of the Alfvén wave$(81.2),
time and nonlinear interaction time are comparable at everywe mightargue physically that the critical balance is st
scale. We stress that none of these assumptions are ystricticause the parallel correlation lendh is determined by the
speaking, inevitabf (and, in fact, neither were they in- condition that a wave can propagate the distadngen one
evitable in the case of Alfvén waves). Since we have de- nonlinear decorrelation time corresponding to the perjpend
rived Egs. [226-227) from gyrokinetics, the anisotropy of ular correlation lengti\.

the fluctuations described by these equations is hard-wired Combining Eqs[(238) anf (2139), we get the desired scaling
but it is not guaranteed that the actual physical cascade betrelations for the KAW turbulence:
low the ion gyroscale is indeed anisotropic, although anal- By~ (EKAW)l/S Va

ysis of solar-wind measurements does seem to indicate that 1+ )13 107302023, (240)
at least a significant fraction of it is (sée_Leamon étal. '

[1998;Hamilton et dl._2008). Numerical simulations based e\ Ié/spil/3)\1/3
on Eq. [228)[(Biskamp et &l. 1996, 1999; Ghosh &t al. 1996; i~ ( ) (1+5)6
Ng et al. 2003} Cho & Lazarian 2004; Shaikh & Zank 2005) '

have revealed that the spectrum of magnetic fluctuationswherelg =V3 /¢, as in £1.2. The first of these scaling relations

scales a:kf/g, the outcome consistent with the assumptions is equivalent to &17/3 spectrum of magnetic energy, the sec-
stated above. Let us outline the argument that leads to thisond quantifies the anisotropy (which is stronger than for the

(241)
EKAW

scaling. GS turbulence). Both scalings were confirmed in the numer-
First assume that the fluctuations are KAW-like and th&t  ical simulations of Cho & Lazarian (2004)—it is their detec-
and® [Eqg. (Z31)] have similar scaling. This implies tion of the scaling[(241) that makes a particularly strongeca
A that KAW turbulence is not weak and that the critical balance
Uy~ V1+6 r 5} (237)  hypothesis applies.

For KAW-like fluctuations, the density [Eq[(2R1)] and
30 The calculation above is analogous to the calculation by magnetic field [Eqs.[(223) an@(231)] have the same spec-
Mahajan & Krishah [(2005) for incompressible Hall MHD (i.eessen- 1 7/3 . -
tially, the high#e limit of the equations discussed in AppendiX E), but trum as the scalar potentlal, "ka » While the electric field
the result is more general in the sense that it holds at arpition and E ~ kﬂp has akll/s spectrum. The solar-wind fluctuation

electron betas. The Mahajan—Krishan solution in the EMHttlamounts - -
to noticing that Eq.[{228) becomes linear for force-freeltf@ei) magnetic spectra reported MJOS) indeed are consistent

perturbations,V x 6B = ASB. Substituting Eq.[(229) into this equation ~ With a transition to KAW turbulence around the ion gyroscale
and using Eq.[(223), we see that the force-free equation isvaignt k=5/3 magnetic and electric-field power spectr&at< 1 are
tﬁo E%ﬂ%gﬁg; -A? and the incompressible limit3( > 1 or  yeplaced, fokp; > 1, with what appears to be consistent with
e—=PiL/T . -7/3 - H . 3
31 In fact, the EMHD turbulence was thought to be weak by sevaual ak™”/ sca_lllng for the m_agneﬂc-ﬂe_ld_spectrum_ankf%{ for .
thors, who predicted &2 spectrum of magnetic energy assuming isotropy the electric one (see Fifgl 1). A similar result is recovered i

(Goldreich & Reiseneggér 1992) ki for the anisotropic casé (Voienko  fully gyrokinetic simulations with3; = 1,7 =1 (ml
(1998 Galiier & Bhattacharje 2003: Galiier 2006). [2008b). However, not all solar-wind observations are cast
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straightforwardly supportive of the notion of the KAW cas- finite-gyroradius effects enter whén pe ~ 1. Thus, at low
cade and much steeper magnetic-fluctuation spectra have alsge, the electron inertia becomes important above the electron
been reported (e.d., Denskat et al. 1983; L eamon et all 1998gyroscale, whereas at high, the finite-gyroradius effects en-
[Smith et al[ 2006). Possible reasons for this will emerge in ter first. Finally, the Ohmic resistivity comes from the ¢oll
§[7.8 and §7.71 and the solar wind data is further discussed irsion term (see AppendixB.4):

[8.2.4 and E8.215.
8 cme 1 3 Ohe cme L2 2
- _— d VVH —_— ~ —VE|U||e ~ Ve|deeA”. (243)
7.6. Validity of the Electron RMHD and the Effect of Electron € Noe o), e

Landau D [ iativi i
andau Damping Thus, resistivity starts to act whén de ~ (w/ve))/2. Using

The ERMHD equations derived in(§7 are valid provided the KAW frequency [Eq.[[230)] to estimate and assuming
kipi > 1 and also provided it is sufficient to use the leading that7 is not small, we get

order in the mass-ratio expansion (isothermal electroas; s

8[4). In particular, this means that the electron Landau damp B Z2
ing is neglected. Asymptotically speaking, this is a rig@o K1 pe ~ Ky Amepi T4 2
limit, but one must be cautious in applying it to real plas- T
mas. Since the width of the scale range wHerg; >1and  Thus, the resistive scale can only be larger the electron gy-
ki pe < 1isonly~ (m/me)l/2 ~ 43, for some values of the roscale if the plasma is collisiond(Amfpi << 1) and/or elec-
plasma parameterdq/Toe and ;) there may not be a very trons are much colder than ions ¥ 1) and/or3; < 1. Note
broad interval of scales where the electron Landau dampingif only the last of these conditions is satisfied, the elactro
is truly negligible. Consider, for example, the low-betait inertia still becomes important at larger scales than tieis

B < 1. In this limit, the KAW frequency isv ~ K piK|Va

[Eg. (Z30)]. The electron Landau damping becomes impor-  7.8. Generalized Energy: KAW and Entropy Cascades

tant whenw ~ K Vine, or ki pe ~ /i < 1, so the ERMHD The generalized energy[(§8.4) in the lirkitp; > 1 is cal-

approximation breaks down and, consequently, the KAW cas- jated bv substituting E §.(221) ahd(P23) into EG.{109):
cade, if any, should be interrupted well before the electron y g ) ) )

gyroscale is reached. Figufé 8 shows the solution of the [ 3 3. Tai(h?),  6B%

full gyrokinetic dispersion relation_(Howes et al. 2006y fo W_/d r /d v 2Foi +§

small, unity and large;. One can judge for which scales and )

how well (or how badly) the ERMHD approximation holds . Noi Toi <1+§) {14_@ <1+§)] <Z;tp> }
2 T

(244)

from the precision with which the exact frequency follows th 2 T Toi

asymptotic solution Eq[{280) and from the relative strangt _

of the damping compared to the real frequency of the waves. =W, +Wiaw - (245)
Nonnegligible electron Landau damping may affect turbu- Here the first term\M,, is the total variance dfj, which is

lence spectra because one can no longer assume a constagioportional to minus the entropy of the ion gyrocentendist

flux of KAW energy as we did in §7]5. To evaluate the conse- pution (see E3]5) and whose cascade to collisional scales wi

quences of this effect, Howes et al. (2008a) constructedasi pe discussed in[§7.9 an@E7.10. The remaining two terms are
ple model of spectral energy transfer and concluded that Lan the independently cascaded KAW energy:

dau damping leads to steepening of the KAW spectra—one
of several possible reasons for steep dissipation-ra Noi
p p dissip regHIsp vvawz/d% mzo.{m\mz

observed in space plasmas (see also §7.11).

7.7. Unfreezing of Flux 7 B Z\ 1 ®2
+ (142 ) 11+ 2 (142 )| =
As ERMHD is a limit of the isothermal-electron-fluid sys- T 2 )] p?
tem (84), the magnetic-field lines remain unbroken (see
§[4.3). Within the orderings employed above (small mass ra- :/dsr Mot (lo*fP+|e7). (246)
tio, i ~ w, B ~ 1, 7 ~ 1), the flux unfreezes only in the 2

vicinity of the electron gyroscale. It is interesting to ke Although we can writdMcaw as the sum of the energies of
some_what more precisely the scale at which this happens as ghg “4+» and “~” linear KAW eigenmodes [Eq[TZ31)], which
function of plasma parameters. , __are also exact nonlinear solution§(§7.4), the two do not cas
Physically, there are three kinds of mechanisms by which caqe independently and can exchange energy. Note that the
the flux conservation is broken: electron inertia, the &€ ERyHD equations also conseryad® ¥, which is readily
finite electron gyroradius, and Ohmic resistivity. Let ussta  jhterpreted as the helicity of the perturbed magnetic fist(
thevy moment of the electron gyrokinetic equation [EQ.l(57), appendiEB). However, it does not affect the KAW cascade

s= e, integration at constami and use Eq[(222) to evaluate  giscssed in §715 because it can be argued to have a tendency
the inertial term in the resulting parallel electron moment i, ~ascade inversely (AppendixF.6).

equation: Comparing the way the generalized energy is split above
cm e 9,y and below the ion gyroscale (sele §5.6 forkhe; < 1 limit),
= ot A deVIiA|, (242) we interpret what happens at thep; ~ 1 transition as a redis-
tribution of the power that arrived from large scales betwee
where de = pe/+/e is the electron inertial scale ang, = a cascade of KAW and a cascade of the (minus) gyrocenter

Z3 /7. Comparing this with théA /ot term in the right- entropy in the phase space (see Eig. 5). The latter cascade
hand side of the electron momentum equation, we see that thés the way in which the energy diverted from the electromag-
electron inertia becomes important whienpe ~ v/Be. The netic fluctuations by the collisionless damping (wave-ipket
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interaction) can be transferred to the collisional scafebde-

posited into heat (&87.1). The concept of entropy cascade as

the key agent in the heating of the plasma was introduced in
§[3.3, where we promised a more detailed discussion later on
We now proceed to this discussion.

7.9. Entropy Cascade

The ion-gyrocenter distribution functidn satisfies the ion
gyrokinetic equation (121), where ion-electron collisicaare
neglected under the mass-ratio expansionk At > 1, the
dominant contribution tdx)r, comes from the the electro-
magnetic fluctuations associated with KAW turbulence. 8inc
the KAW cascade is decoupled from the entropy casdade,
is a passive tracer of the ring-averaged KAW turbulence in

HIN ET AL.

FiG. 10.— The nonlinear perpendicular phase-mixing mechanigra
gyrocenter distribution function &; of particles with velocities; andv/;
is mixed by turbulent fluctuations of the potentibl(E x B flows) averaged
over particle orbits separated by a distance greater tleacattielation length

phase space. Expanding the Bessel functions in the expressf ®.

sion for (x)r k [a > 1 in Eq. [69) withs =i] and making
use of Eqs.[(22P-223) and of the KAW scalifig~ ®/k pi
[Eq. (231)], it is not hard to show that

Ze Ze _ 2 Jo(&) P«

o o (O)Rik = NN (247)

<X>Ri7k =~

where

2 s _ As
@)~/ cos(a-7). a=kip, (248)

soh; satisfies [Eq[{121)]

oh; oh;
ﬁ' +V”8_zl +{(®)r,,hi} =

2
VBi piva

8<(I)>Ri
ot

Foi + (Gi[hi])g,

(249)
with the conservation law [E_ (Y= 1]
1dw, d 3 3. h2
et A LGE
2 A(®)g,
=—— [d® /d3Ri—'hi
\/EPiVA/ Y ot
+ / ddv / d%%. (250)

7.9.1. Nonlinear Perpendicular Phase Mixing

The wave-patrticle interaction term (the first term on the
right hand sides of these two equations) will shortly be seen
to be subdominant &, p; > 1. It represents the source of
the invariant\}, due to the collisionless damping at the ion
gyroscale of some fraction of the energy arriving from the in
ertial range. In a stationary turbulent state, we shoulcchav

is the appropriate limit at and below the ion gyroscale for
most of the plasmas of interest; cf. footnbid 24), we have
Vi Jw ~ \/E/k”/\mf i < 1.

The condition ) means that the collision rate can be ar-
bitrarily small—this will always be compensated by the suf-
ficiently fine velocity-space structure of the distributiomc-
tion to produce a finite amount of entropy production (heat-
ing) independent ofy; in the limit v;; — +0. The situa-
tion bears some resemblance to the emergence of small spa-
tial scales in neutral-fluid turbulence with arbitrarily atn
but nonzero viscosity (Kolmogorav 1941). The analogy is
not perfect, however, because the ion gyrokinetic equation
(249) does not contain a nonlinear interaction term thativou
explicitly cause a cascade in the velocity space. Instead,
the (ring-averaged) KAW turbulence mixés in the gyro-
center space via the nonlinear term in Hq. (249) hswill
have small-scale structure R on characteristic scales much
smaller thanp;. Let us assume that the dominant nonlin-
ear effect is a local interaction of the small-scale fluctua-
tions ofh; with the similarly small-scale component @)g, .
Since ring averaging is involved and p; is large, the val-
ues of (®)g, corresponding to two velocities and v’ will
come from spatially decorrelated electromagnetic fluabnat
if kv, /€ andk V| /€ [the argument of the Bessel function
in Eq. (247)] differ by order unity, i.e., for

6VJ_ _ |VJ_ —VIL| 1
Vi Vihi Kipi
(see Fig[ID). This relation gives a correspondence between

the decorrelation scales &f in the position and velocity
space. Combining Eqd.(252) alid (251), we see that there is

(252)

dW, /dt = 0 and this source should be balanced on average bya collisional cutoff scale determined By pi ~ (w/vi)"/? >

the (negative definite) collisional dissipation term ( = tireg
see &§3.b). This balance can only be achieved develops
small scales in the velocity space and carries the genedaliz
energy, or, in this case, entropy, to scales in the phase sppac
which collisions are important. A quick way to see this is by
recalling that the collision operator has two velocity dari

1.3? The cutoff scale is much smaller than the ion gyroscale.
In the range between these scales, collisional dissipadion
small. The ion entropy fluctuations are transferred actuss t
scale range by means of a cascade, for which we will con-
struct a scaling theory in[87.9.2 (and, for the case withiogit t
background KAW turbulence, in[87110).

tives and can only balance the terms on the left-hand side of It is important to emphasize that no matter how small the

Eq. [229) if

5 1/2
i (55) ~e ( ) . @5

wherew is the characteristic frequency of the fluctuations
of hi. If vj < w, év/vin < 1. This is certainly true for
kipi ~ 1: takingw ~ kjva and usingkjAmgpi > 1 (which

0

ov

)Y
Vthi

vi

w

collisional cutoff scale is, all of the generalized enerbgic-
nelled into the entropy cascade at the ion gyroscale eventu-
ally reaches it and is converted into heat. Note that theaiate

32 Another source of small-scale spatial smoothing comes trmrper-
pendicular gyrocenter-diffusion terms i (v/vin)?k? pZhjy that arise in
the ring-averaged collision operators, e.g., the secamnl ite the model op-
erator [BIB). These terms again enforce a cutoff wave nurabehn that

Kipi ~ (w/mi)¥2>> 1.
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which this happensis in general amplitude-dependentisecau which corresponds to I{alf/3 spectrum of entropy.
the process is nonlinear, although we will arguein §7.%4 (s In the argument presented above, we assumed that the scal-
also §7.1013) that the nonlinear cascade time and the gharall ing of hj was determined by the nonlinear mixing laf by
linear propagation (particle streaming) time are relatgdb the ring-averaged KAW fluctuations rather than by the wave-
critical-balance-like condition (we will also argue thetet particle-interaction term on the right-hand side of Eg.9R4
the linear parallel phase mixing, which can generate smallWe can now confirm the validity of this assumption. The
scales inv, is a less efficient process than the nonlinear per- change in amplitude df; in one KAW correlation timewaw
pendicular one discussed above). due to the wave-particle-interaction term is

It is interesting to note the connection between the entropy 12
cascade and certain aspects of the gyrofluid closure formal- Ahis ~ Noi. (3) D)\
ism developed by Dorland & Hammiett (1993). In their the- N\ Vi piva
ory, the emergence of small scalesvin manifested itself as e 13 1
the growth of high-ordev, moments of the gyrocenter distri- ~2 (EKAW ) 1573 %/8A7/8, (258)
bution function. They correctly identified this effect asane Vi € VB (L+ )43

sequence of the nonlinear perpendicular phase mixing of the,here we have used EG{240). Comparing this with EG(255)

gyrocenter distribution function caused by a perpendreula 4,4 using Eq{257), we see thahy, in Eq. [258) is a factor
e e B vmocten01(1/0)"" smalr hanh due 0 he noninear msing

below the ion gyroscale. 7.9.3. Phase-Space Cutoff

7.9.2. Scalings ~ Towork out the cutoff scales both in the position and veloc-
Since entropy is a conserved quantity, we will follow the ity space, we use Eq$.(251) add (52): in EQ. 1251y 1/,
well trodden Kolmogorov path, assume locality of interac- Where_is the characteristic decorrelation timehogiven by
tions in scale space and constant entropy flux, and concludeEd. (256); using EqL(252), we find the cutoffs:

analogously to Eq[{1),
9 y qg)hz 6V_J‘ ~ —1 ~ (Vii Tpi)3/5 = DO_3/5, (259)
nt—g"—A ~ h = const (253) Vi Kupi
Oi

. . , where 7, is the cascade time [Eq_(256)] taken Jat p;.
whereey, is the entropy flux proportional to the fraction of the gy 4 recently established convention, the dimensionless nu
total turbulent powee (or Pex; see §3.4) that was diverted por pg = Yuir, is called the Dorland number. It plays

into the entropy cascade at the ion gyroscale, and is the casge role of Reynolds number for kinetic turbulence, mea-

cade time that we now need to find. ___suring the scale separation between the ion gyroscale and
By the critical-balance assumption, the decorrelatioretim ha collisional dissipation scalé_(Schekochihin é{ al. @10
of the electromagnetic fluctuations in KAW turbulence is gaw_d b).
comparable at each scale to the KAW period at that scale an '
to the nonlinear interaction time [E@.(239)]: 7.9.4. Parallel Phase Mixing
S € = 1+ 5 1/3'3/30;2/3)\4/3 254 Another assumption, which was made implicitly, was that
TRAWA ™ 7™\ exaw (1+/%) Va (254) " the parallel phase mixing due to the second term on the left-

The characteristic time associated with the nonl/inear farm P?”qt_Side of qulzg) could bte' ign(')tLe?H' Tblgs Irl?‘il_légﬁ jus-
Eq. [249) is longer thanw by a factor of f;/\)Y/2 due to ification, especially because it is wi is “ballisticgr

the ring averaging, which reduces the strenglth ofthe neatin  thatone tradmonally associates the emergence of sroalés
interaction. This weakness of the nonlinearity makes it pos Structure in the velocity space (e.| Hu _1994;
sible to develop a systematic analytical theory of the guytro Krommes 1999, Watanabe & Sugama 2004). The effect of
cascadel (Schekochihin & Cowléy 2009). It is also possible f[he parallel phase mixing is to produce small scales in veloc
to estimate the cascade time via a more qualitative argumently Spacedv; ~ 1/kjt. Let us assume that the KAW turbu-
analogous to that first devised by Kraichnan (1965) for the lence imparts its parallel deqorrelanorllscaldnitand use the
weak turbulence of Alfvén waves: during each KAW correla- Scaling re!atlonl) to estimaig ~ I3. Then, after one
tion time 7kaw », the nonlinearity changes the amplitudehpf ~ cascade time [EqL(256)h; is decorrelated on the parallel

by only a small amount: velocity scales
Ahjy ~ ()‘/pi)l/zhi)\ < hix; (255) 6VH |||>\ 1 1 260
these changes accumulate with time as a random walk, Vi Vi VBAFE) (260)

so after timet, the cumulative change in amplitude is ) . L
Ahix(t/7cawx)Y2; finally, the cascade time= is the time We conclude that the nonlinear perpendicular phase mixing

after which the cumulative change in amplitude is compara- [Eq. (259)] is more efficient than the linear parallel onet&No

- : o : that up to agi-dependent factor Eq_(Z60) is equivalent to a
ble to the amplitude itself, which gives, using Hq. [P54). critical-balance-like assumption fdy in the sense that the

' 1/3 |l/3 _1/3)\1/3 : X R K N
N &TKAWX N ( € ) (1+3)Y/3%0 p{/A . (256) propagation time is comparable to the cascade timie,\qr

A -1 [see Eq.[(249)].
Substituting this into Eq[{2%3), we get

1/2 1/6 16 7.10. Entropy Cascade in the Absence of KAW Turbulence
hiy ~ L[ Zh < ° > (1+/%) 1573 AYe, It is not currently known how one might determine ana-
v?hi € EKAW VB lytically what fraction of the turbulent power arriving fro

(257) the inertial range to the ion gyroscale is channelled into th
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KAW cascade and what fraction is dissipated via the kinetic a closed subset. Thus the kinetic ion-entropy cascadefis sel
ion-entropy cascade introduced i 8l7.9 (perhaps it can onlyregulating in the sense thhtis no longer passive (as it was
be determined by direct numerical simulations). It is cer- in the presence of KAW turbulence[§17.9) but is mixed by
tainly a fact that in many solar-wind measurements, the rel-the ring-averaged “electrostatic” fluctuations of the acab-
atively shallow magnetic-energy spectra associated wih t tential, which themselves are produced lyyaccording to
KAW cascade (E7]5) fail to appear and much steeper spectrég. (262).

are detected (close ko*; see Leamon et al. 1998; Smith etal.  The magnetic fluctuations are passive and determined by
[2006). In view of this evidence, it is interesting to ask what the electrostatic and entropy fluctuations via Eds. ](263)
would be the nature of electromagnetic fluctuations bel@v th and [264).

ion gyroscale if the KAW cascade failed to be launched, i.e.,

if all (or most) of the turbulent power were directed into the 7.10.2. Scalings

entropy cascade (i.e.,W ~W, in §[Z.8). From Eq.[26R), we can establish a correspondence between
®, andh;, (the electrostatic fluctuations and the fluctuations
of the ion-gyrocenter distribution function):

7.10.1. Equations

Itis again possible to derive a closed set of equations for al 12 12
fluctuating quantities. O oo [ hiavii (Vi)™ Vi had,  (267)
Let us assume (and verify posteriorj §ZI0.%) that the AT PR o \ Vini o
characteristic frequency of such fluctuations is much lower
than the KAW frequency [EqL{2B0)] so that the first term in Where the factor ofX/;)*/? comes from the Bessel function
Eq. (II8) is small and the equation reduces to the balance ofEq. (248)] and the factor ofd{, /vii)¥? results from the
the other two terms. This gives v, integration of the oscillatory factor in the Bessel funatio
times hj, which decorrelates on small scales in the velocity

ONe = %, (261) space and, therefore, its integral accumulates in a random-
Noe  Toe walk-like fashion. The velocity-space scales are relatetie
meaning that the electrons are purely Boltzmann=0 to ~ Spatial scales via EqL(252), which was arrived at by an ar-
lowest order; see EJ_{ID1)]. Then, from Eq.(118) gument not specific to KAW-like fluctuations and, therefore,
X ' ) ’ ' continues to hold.
Zep _ 20 _ T\~ ikr L 3 N Using Eq. [267), we find that the wave-particle interaction
To v (1+Z) ;el n_Oi/d Vdo(@)hi (262) torminthe right-hand side of Eq.{249) is subdominant: com-

paring it with 9h; /ot shows that it is smaller by a factor of
Using Eq. [26R), we find from Eq[{IRO) that the field- (\/p;)%2 < 1. Therefore, it is the nonlinear term in EG{249)
strength fluctuations are that controls the scalings of, and®.
5B _ — N2 Ji(a We now assume again the scale-space locality and con-
By __s dkr = dBVTLﬂ hik, (263) stancy of the entropy flux, so Eq.{253) holds. The cascade

Bo 2 p Noi Vi & (decorrelation) time is equal to the characteristic timmoas
o ated with the nonlinear term in EG_{249): (pi/\)Y/?)\?/®,.
which is smaller thaZep/Toi by a factor offi /k . pi. Substituting this into Eq[{25%3) and using iEE]ZG?), we ar-

Therefore, we can negleéB /By compared t@ne/Noe in ; ; ; ;
Eq. (LIT). Using Eq.{281). we get what is physically the rive at the _deswed scahng):relatmns for the entropy cascad

electron continuity equation:

Noi (en\Y3 1 13 1/6\1/6
- hix~ = (=) —=1g"p °AYS, 268
g;ﬁ+b~V<ﬁViA”+ui) =0, (264) TN (5) VB o (269)

Oe T
en\ Y3 Vini -1/3 1/6,7/6
jer 1 D~ (=) =l Pp A 269
Ui =Ze’k'rn—/d3VVHJo(ai)hik. (265) A (a) /B, o Pi ; ( )
oi

. “ ) e\ VB |2/3 1/3,1/3 270
Note that in terms of the stream and flux functions, Eq.(264) ~\z Ve O PN, (270)

takes the form

9 2 1 9  Ouy wherelg = V3 /e, as in £1.P. Note that since the existence
Er PpPV2 U= \/5 (%—E + pi 8—I> ,  (266) of this cascade depends on it not being overwhelmed by the
z Vihi z KAW fluctuations, we should havexaw < ¢ andep = ¢ —
i i ~ i ioin- EKAW €.
\évgséebv;esr?g\\llvi ?ﬁg;oééﬂgiﬁggﬂgz% which will, in The scaling for the ion-gyrocenter distribution function,

Together with the ion gyrokinetic equation, which deter- Ed. [268), implies & spectrum—the same as for the KAW

minesh;, Eqs. [Z6l[=264) form a closed set. They describe turbulence [Eq.[(257)]. The scaling for the the cascade,time
low-frequency fluctuations of the density and electromséigne  Eq. [270), is also similar to that for the KAW turbulence
field due solely to the presence of fluctuationsidfelow the  [Ed. (256)]. Therefore the velocity- and gyrocenter-spade

ion gyroscale. offs are still given by Eq.[{239), where, is now given by
It follows from Eq. [268) thatB)| /By contributes subdom-  Eq. (270) taken ak = p;.
inantly to (x)r, [EQ. (69) withs=i anda; > 1]. It will be A new feature is the scaling of the scalar potential, given by

verified a posteriori (8[Z.10.4) that the same is true fay. Eq. (269), which correspondstdg’{\m/3 spectrum (unlike the
Therefore, Eqs[(247) anf (249) continue to hold, as in the KAW spectrum, §7.5). This is a measurable prediction for the
case with KAW. This means that EqE. (249) ahd {262) form electrostatic fluctuations: the implied electric-field sjpem
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is K*®. From Eq. , we also conclude that the densit 2. 6B, /By < ki /K., s0b-V ~ 8/dzin Eq. [264). This
9 q Yy }t

fluctuations should have the same spectrum as the scalar po- means that field lines are not significantly perturbed.
tential kfo/s—another measurable prediction. 3. In the ex i
' . ) . . pression fofy)r; [Ed. (69)],v)A;/c < ¢, SO
_The scalings derived above for the spectra of the ion Eq. (2Z49) holds. This means that the electrostatic fluc-
distribution function and of the scalar potential have been tuations dominate the cascade.
confirmed in the numerical simulations by Tatsuno ét al.
(20094,b), who studied decaying electrostatic gyrokirterti- 7.11. Cascades Superposed?

bulence in two spatial dimensions. They also found velecity  t4q spectra of magnetic fluctuations obtained [ §7110.4
space scalings in accord with Eq._(252) (using a spectral,e very steep—steeper, in fact, than those normally obderv
representation of the correlation functions in #ie space iy, the dgissipation range of the solar wind(§8]2.5). One migh
ba;%}%gel transform of the distribution function; ghecyjate that the observed spectra may be due to a superposi
se 9). tion of the two cascades realizable below the ion gyroseale:
7.10.3. Parallel Cascade and Parallel Phase Mixing high-frequency cascade of KAW[(EY.5) and a low-frequency
We h o d the ballistic t (th q cascade of electrostatic fluctuations due to the ion entropy
€ have again ignored the ballistic term (ihe second onf),ctyations (§7.110). Such a superposition could happen if
the left-hand side) in EqL{219). We will estimate the effi- o hower going into the KAW cascade is relatively small,
ciency of the parallel spatial cascade of the ion entropyadnd ., < - ‘One then expects an electrostatic cascade to be
the associated parallel phase mixing by making a conjectureset yp just below the ion gyroscale with the KAW cascade
analogous to the critical balance: assuming that any twe per superseding it deeper into the dissipation range. Comgarin

pendicular planes only remain correl:_;ued provided p@ﬂuc} Egs. [24D) and(289), we can estimate the position of the-spec
can stream between them in one nonlinear decorrelation timgyg| preak:

(cf. 81.2 and §7.9]4), we conclude that the parallel paticl

- 2/3
streaming frequendy| v, should be comparable at each scale kipi~ (¢/ekaw)™". (274)
to the inverse nonlinear tinié, so Sincepi/pe ~ (Tm /me)Y/?/Z is not a very large number, the
K Vini ~ 1. (271) dissipation range is not very wide. It is then conceivable

. . . .. that the observed spectra are not true power laws but simply
As we explained in E7.914, the parallel scales in the veJocit ,qnagymptotic superpositions of the electrostatic and KAW
space generated via the ballistic term are related to tfelpar spectra with the observed range of “effective” spectraloexp
wave numbers byvy ~ 1/kit. From Eq. [Z711), we find that - onts que to varying values of the spectral bréakl(274) be-
after one cascade time , the typical parallel velocity s@le  {yeen the two cascadés.
dvy /vii ~ 1, so the parallel phase mixing is again much less - the yajue o« /= specific to any particular set of param-

efficient than the perpendicular one. t _ tc)) i t bv what h to ~1 (871
Note that Eq.[{Z71) combined with Ef. (270) means that thegeeerif.ﬁé |§ Saend:éBWS?or fi?&i?stj%cpﬂssiorg) '
anisotropy is again characterized by the scaling reldtjon ' - ' '

kll/S, similarly to the case of KAW turbulence [see EG_{P41) 7.12. Below the Electron Gyroscale: The Last Cascade

and §7.9.4]. Finally, let us consider what happens wHerpe > 1. At
, : , these scales, we have to return to the full gyrokinetic sys-
7.10.4. Scalings for the Magnetic Fluctuations tem of equations. The quasineutrality [EG.](61)], parallel

The scaling law for the fluctuations of the magnetic-field [Eq. (62)] and perpendicular [Eq.(66)] Ampére’s law become
strength follows immediately from Eq$§. (263) ahd (269): &0 7\t S
=- <1+_) Zék'rn— / d3vo(ae)he, (275)
T 0

5§||>\ Nﬁi i Dy - \/Elc—)l/fipi—ll/GAlS/G’ (272) Toe . e
0 Pi PiVihi c 1
whence the spectrum of these fluctuationis; 1'%, Jrero vis =) et r@ /dsVVHJo(ae)hm (276)
The scaling ofp| (the perpendicular magnetic fluctuations) k
depends on the relation betwelepandk, . Indeed, the ratio 0B _ fe dr 1 3 2V3 Ji(ae)
between the first and the third terms on the left-hand side of By 2 oo /d VK? hew, (277)

Eq. (264) [or, equivalently, between the first and secondser
ivht- i ; N1 o herefe = 3iZ/T. We have discarded the velocity integrals

on the right-hand side of Eq_{266)]4s (k;vini) . For a crit w e = pi .

ically balanced cascade, this makes the two terms comparabl©f hi both because the g)i;gaveragmg makes them subdom-

[Eq. (Z72)]. Using the first term to work out the scaling foeth ~ inant in powers of ifie,/m)~/= and because the fluctuations

perpendicular magnetic fluctuations, we get, using[Eq)(269 ©f hi are damped by collisions [assuming the collisional cut-
off given by Eq. [25P) lies above the electron gyroscale]. To

0By 1% i AP \/@51/3,).‘11/6/\13/6’ (273) Eqgs. [Z7H-277), we must append the gyrokinetic equation for
Bo A Va Pi PiVihi ' he [Eq. (57) withs= €], thus closing the system.
which is the same scaling as &8 /Bo [Eq. (272)]. The type of turbulence described by these equations is very
Using Eq. [27B) together with Eq$. (269) ahd (270), it is Similar to that discussed in[§7]10. It is easy to show from
now straightforward to confirm the three assumptions madeEgs. (278-277) that
in §[7.10.1 that we promised to verifyposteriori 6B, 4B Be €p

1. InEq.[IIB)pA) /ot < cb- Vi, so Eq.[[Z6M) holds (the Bo Bo  kipe Toe
electrons remain Boltzmann). This means thatno KAW 33 seyeral alternative theories that aim to explain the digiip-range
can be excited by the cascade. spectra exist: sed §8.2.6.

(278)
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Hence the magnetic fluctuations are subdominant in the ex{we are assuming; /T ~ 1 everywhere). The condition for

pression for(x)r, [Eg. (69) with s=e and as > 1], so
(X)r. =~ {¢)r.. The electron gyrokinetic equation then is

8he ahe C _ 8he
E+V\\E+B—O{<@>Reahe}— <E>c, (279)

where the wave-particle interaction term in the right-hside

has been dropped because it can be shown to be small via the

same argument as if 8 7.100.2.

Together with Eq[(245), EJ.{2I79) describes the kinetie cas

this still to be true at the electron gyroscale is

il 3/2(1+/3,)< >2.

— <<

|0 &
The ion entropy fluctuations passively mixed by the KAW tur-
bulence (§719) satisfy Ed. (287) at all scales down to the the
ion collisional cutoff [Eq.[(250)] if

-\ 34 p 1/4
< (—) B8 +3)3 (_') . (289)
EKAW IO

€

(288)

)\mfpi
lo

cade of electron entropy from the electron gyroscale down tongte that the condition for the ion collisional cutoff to lie

the scale at which electron collisions can dissipate itli&at.

This cascade the result of collisionless damping of KAW at

ki pe ~ 1, whereby the power in the KAW cascade is con-
verted into the electron-entropy fluctuations: indeed hia t
limit k; pe > 1, the generalized energy is simply

W= / d3v / d®Re Toeh _

2Foe Vi
(see Fig[h).

(280)

above the electron gyroscale is
1/3 m 5/6 ,
< ( ) VBi(L+5)YR (E) (lp—'

2/3

)
(290)

In the absence of KAW turbulence, the pure ion-entropy cas-

cade (§7.10) remains gyrokinetic for

3/2lo |o

/\mfpi

lo EKAW

Kipi < G (291)

The same scaling arguments asin §7.110.2 apply and scaling his is valid at all scales down to the ion collisional cutoff

relations analogous to EqE.(268-270), dnd{272) duly¥allo

Noe /ekaw \ Y3 [/ 1 me\ "2 -1/3 1
hex ~ — ——=) | /6AY® (281
. Vf’he( € ) (5em> o e -(281)
1/2
Oy~ (EKAW)1/3< 1 n'b) Vinel -1/3 1/6/\7/6 (282)
€ Be

m
“me

13/ m\Y2 s
)" (e ) e, (20

wherelo = V3 /¢, as in £LP. The formula for the collisional
cutoffs in the wave-number and velocity space is analogmust

Eq. (259):

VRS e
Vih ’

1

—_—

Vi Kipi
wherer,, is the cascade timg (2B3) taken\at pe.

(VeiTp.)*'®, (285)

7.13. Validity of Gyrokinetics in the Dissipation Range

As the kinetic cascade takes the (generalized) energy to eve

smaller scales, the frequengyof the fluctuations increases.
In applying the gyrokinetic theory, one must be mindful of
the need for this frequency to stay smaller tHan Using

the scaling formulae for the characteristic times of the-fluc

tuations derived above [Eq$§. (254), (270) dnd (283)], we can

determine the conditions fay < ;. Thus, for the gyroki-
netic theory to be valid everywhere in the inertial range, we
must have

5

at all scales down t&, pj ~ 1, i.e.,pi/lo < Bis/z,
stringent condition.

ko < B ( (286)

not a very

Below the ion gyroscale, the KAW cascadé(§7.5) remains/Denskat et a

in the gyrokinetic regime as long as

o o\4
kip < (—) 38(1+ )Y/t (
EKAW

lo

2

(287)

providedAmi /lo < 53(lo/ pi), an extremely weak condition,
which is always satisfied. This is because the ion-entropy
fluctuations in this case have much lower frequencies than in
the KAW regime. The ion collisional cutoff lies above the
electron gyroscale if, similarly to Ed. (290),

/\mfpi ( m )5/6 (pi )2/3

< VB (= 2) . (292)

lo Me lo
If the condition [29D) is satisfied, all fluctuations of thaio

distribution function are damped out above the electron gy-
roscale. This means that below this scale, we only need the
electron gyrokinetic equation to be valid, i.e. < Q. The
electron-entropy cascade[(§7.12), whose characteristi t
scale is given by Eq(2B3), satisfies this condition for

3/2
€ my |0
Kipe< [ — W(—) =, 293
Lpe (€KAW) € Me Pe ( )
This is valid at all scales down to the electron
collisional cutoff [Eq. [28b)] provided Amippe/lo <

(e/exaw)?B3(m /me)3(lo/ pe), which is always satisfied.

Within the formal expansion we have adoptéd 6 ~ 1
andky Ammi ~ /), it is not hard to see thatmgpi/lo ~ €2
and pi/lp ~ €. Since all other parameters{/m, 3, e
etc.) are order unity with respect ¢ all of the above con-
ditions for the validity of the gyrokinetics are asymptalily
correct by construction. However, in application to real as
trophysical plasmas, one should always check whether this
construction holds. For example, substituting the relepan
rameters for the solar wind shows that the gyrokinetic ap-
proximation is, in fact, likely to start breaking down some-
where between the ion and electron gyroscales (Howes et al.
[2008a)3* This releases a variety of high-frequency wave
modes, which may be participating in the turbulent cascade
around and below the electron gyroscale (see, e.g., thatrece
detailed observations of these scales in the magnetoshgath
Mangeney et al. 2006; Lacombe et'al. 2006 or the early mea-
surements of high- frequency fluctuations in the solar wiynnd b
al. 1982).

34 See this paper also for a set of numerical tests of the walifitgy-
rokinetics in the dissipation range, a linear theory of theversion of KAW
into ion-cyclotron-damped Bernstein waves, and a disoussi the potential
(un)importance of ion cyclotron damping for the dissipataf turbulence.
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oBy _
In this section, we have analyzed the turbulence in the-dissi BO 2 Noi Vthl

pation range, which turned out to have many more essentially. Wherea, = kJ_VJ_/Q' Equationsl237) an@2D8) form a closed
- I

kinetic features than the inertial range. 4
_system for® andh;. The rest of the fields, namedy,, ¥ and
At the ion gyroscalek, pi ~ 1, the kinetic cascade rear 5B, are slaved toy via Eqs. [Z99-301).

ranged itself into two distinct components: part of the @gen The fluid and kinetic models summarized above are valid

alized) energy arriving from the inertial range was caisi between the ion and electron gyroscales. Below the electron

lessly damped, giving rise to a purely kinetic cascade of ion . -
entrglpy flugtuati%ns g%he rest wgs co?'/lverted into a cascade 03Y0S¢ dle, the collisionless damping of the KAW cascade con
’ verts it into a cascade of electron entropy, similar in rator

Kinetic Alfvén Waves (KAW) (Fig[h; see[87.1 an@ §17.8). the ion-entropy cascadel§7112).

The KAW cascade is described by two fluid-like equa- The KAW cascade and the low-frequency turbulence asso-

tions for two scalar functions, the magnetic flux function . . . e X

U= -A /v/Armno and the scalar poter?ual expressed, for ciated with the ion-entropy cascade have distinct scalgg b
contlnwty with the results of [85, in terms of the function gawqrs. Fdor the KAV\]{I cascade, the sp(;céra of the electric,
® = (¢/Bo)p. The equations are (seE817.2) ensity and magnetic fluctuations aré (g 7.5)

0w 7\ . Ee(ki) oK%, En(ki) ok, Ea(ki) k. (302)
A ( > b-ve (294) For the ion- and electron-entropy cascadds (§ 7.9 &nd §,7.12)
o Va - 202 Ee(ki) ock3,  En(k1) oc k™3, Eg(ky) o k%3

- = " Dp-V(prV5VU 295 E\RL SR n\RL 18 ) B\KL 0 .

o 2+p(1+2Z/7) ( ) (295) (303)

. ) We argued in E7.11 that the observed spectra in the dissipa-
where b -V = 9/0z+ (1/va){¥,---}. The density and tion range of the solar wind could be the result of a superpo-
magnetic-field-strength fluctuations are directly reldtethe  sition of these two cascades, although a number of altemati

scalar potential: theories exist (E8.216).
ne__ 2 ¢ 0B _ VB (1+ E) e (296) 8. DISCUSSION OF ASTROPHYSICAL APPLICATIONS
Noe VB piva Bo PiVA We have so far only occasionally referred to some relevant
We call Egs.[(Z94-296) thElectron Reduced Magnetohydro- observational evidence for space and astrophysical pesma
dynamics (ERMHD) We now discuss in more detail how the theoretical framework
The ion-entropy cascade is described by the ion gyrokineticlaid out above applies to real plasma turbulence in space.
equation: Although we will discuss the interstellar medium, accre-
oh: oh tion disks and galaxy clusters towards the end of this sec-
ﬁl +v a_' +{(®)gr,,hi} = (Gi[h])g - (297) tion, the most rewarding source of observational infororati
Z 1

about plasma turbulence in astrophysical conditions isthe

The ion distribution function is mixed by the ring-averaged lar wind and the magnetosheath because only there direct
scalar potential and undergoes a cascade both in the welocitsitu measurements of all the interesting quantities are possi-
and gyrocenter space—this phase-space cascade is dssentide. Measurements of the fluctuating magnetic and velocity
for the conversion of the turbulent energy into the ion heat, fields in the solar wind have been available since the 1960s
which can ultimately only be done by collisions (sée 87.9). (Colemah 1968) and a vast literature now exists on their-spec

If the KAW cascade is strong (its powegaw is an order-  tra, anisotropy, Alfvénic character and many other aspects
unity fraction of the total injected turbulent powey, it de- short recent review is Horbury etlal. 2005; two long ones are
terminesd in Eq. (297T), so the ion-entropy cascade is passiveTu & Marsch[1995] Bruno & Carbohe 2005). It is not our
with respect to the KAW turbulence. Equatiohs (#941295) and aim here to provide a comprehensive survey of what is known
(297) form a closed system that determines the three func-about plasma turbulence in the solar wind. Instead, we shall
tions ®, ¥, h;, of which the latter is slaved to the first two. limit our discussion to a few points that we consider impor-
One can also comput@e andéBy, which are proportional  tant in light of the theoretical framework proposed in thés p
to @ [Eq. @)] The generalized energy conserved by theseper®® As we do this, we shall provide copious references to
equations is given by Ed. (2KU5). the main body of the paper, so this section can be read as a

If the KAW cascade is weakegaw < ¢), the ion-entropy  data-oriented guide to it, aimed both at a thorough reader wh
cascade dominates the turbulence in the dissipation rardye a has arrived here after going through the preceding sections
drives low-frequency mostly electrostatic fluctuationghva and an impatient one who has skipped to this one hoping to
subdominant magnetic component. These are given by theind out whether there is anything of “practical” use in the

following relations (see[§7.10) theoretical developments above.
= PV Z gl /d3vJ0(a.)h.k, (298) 8.1. Inertial-Range Turbulence in the Solar Wind
2(1+T/Z) Inthe inertial range, i.e., fd¢; pi < 1, the solar-wind turbu-
one _2Z & lence should be described by the reduced hybrid fluid-ldneti

ey (299)  theory derived in EI5 (KRMHD). Its applicability hinges on
e T PiVihi . ./ . /RN

" three key assumptions: (i) the turbulence is Alfvénic, ten-
U=pi/B Y e x sists of small §B/Bo < 1) low-frequency ¢ ~ kjva < )

1 1 i o J (a|) 35 An extended quantitative discussion of the applicabilitghe gyroki-
3 — 0 hv. (300 netic theory to the turbulence in the slow solar wind wasmlgHowes et .
ik » ( )
1+Z/T kH 8’[

Noi K2 p2 (2008h).
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perturbations of an ambient mean magnetic field and corre-nary recent result by Chapman & Hnat (2007); Podestal et al.
sponding velocity fluctuations; (ii) it is strongly anisojic, (2006) and J. E. Borovsky (2008, private communication),
ki > kj; (i) the equilibrium distribution can be approxi- who claim different spectral indices for velocity and mag-
mated or, at least, reasonably modelled by a Maxwellian-with netic fluctuations—k3/2 andk™>/3, respectively. This result
out loss of essential physics (this will be discussed[in 8.3 is puzzling because if it is asymptotically correct in therin

If these assumptions are satisfied, KRMHD (summarized intial range, it implies eithen; > éB, oru, < éB, anditis
§[5.7) is a rigorous set of dynamical equations for the iaérti  not clear how perpendicular velocity fluctuations in a near-
range, a set of Kolmogorov-style scaling predictions f@ th ideal plasma could fail to produce Alfvénic displacements
Alfvénic component of the turbulence can be produced (the and, therefore, perpendicular magnetic field fluctuatioitis w
GS theory, reviewed in[&1.2), while to the compressive fluc- matching energies. Plausible explanations may be eitlagr th
tuations, the considerations of1§ 6 apply. So let us examinethe velocity field in these measurements is polluted by a non-

the observational evidence. Alfvénic component parallel to the magnetic field (although
8.1.1. Alfvénic Nature of the Turbulence data analysis by Chapman & Hiat 2007 does not support this)

] . or that the flattening of the velocity spectrum is due to some
The presence of Alfvén waves in the solar wind was re- form of a finite-gyroradius effect or even an energy injettio
ported already the early works lof Unti & Neugebauer (1968) into the velocity fluctuations at scales approaching the ion
and_Belcher & Davis[(1971). Alfvén waves are detected al- gyroscale (e.g., from the pressure-anisotropy-drivetabi-
ready at very low frequencies (large scales)—and, at thesejes, §8.3).
low frequencies, have k™! spectrun?® This spectrum cor-
responds to a uniform distribution of scales/frequencies o 8.1.2. Energy Spectrum

waves launched by the coronal activity of the Sun. Nonlin- L
ear interaction of these waves gives rise to an Alfvénic tur- How :c,sc/)ls|d s L he stater_ner_lt_that the observed spectrum
fas ak scaling? In individual measurements of the

bulent cascade of the type that was discussed above. The e i " hiah e claimed
fective outer scale of this cascade can be detected as a spe?jagn.e IC-enérgy Spectra, very high accuracy IS claime
or this scaling: the measured spectral exponent is be-

tral break where th&™* scaling steepens to the Kolmogorov

slopek /3 (sed B [ 1982: M h&Tu 1990a: tween 1.6 and 1.7; agreement with Kolmogorov value 1.67

. " is often reported to be within a few percent (see, e.g.,
Horbury et al. 1996 for fast-wind results on the spectrahkre ! - ]
for a discussion of the effective outer scale in the slow wind IHor_burv etal..1996] Leamon eflal. 1998. Bale etlal. 2005;

at 1 AU, see_Howes etdl. 2008a). The particular scale a 12006 al. 200 tal

: . > X ; )). There is a somewhat wider scatter of spectral in-
which this happens increases with the distance from the Sun ices if one considers large sets of measurement intervals

(Bavassano et al. 1982), reflecting the more developed stat . . :
of the turbulence at later stages of evolution. At 1 AU, the Smith et 2l 2006), but ov_erall, thg _obzservanonal ew@enc
outer scale is roughly in the range ofSt010P km; thek /3 does not appear to be consistent wnlhﬁ spectrum consis-
; ' tently found in the MHD simulations with a strong mean field
range extends down to scales/frequencies that correspeand t - =
fewgtimes the ion gyroradius (16 1qO3 km; see TablEIl).p (Maron & Goldreich 2001 Muller et al. 2003 Mason el al.
The range between the outer scale (the spectral break) an ; ) and defended %ﬁ%?}%gfgté&nm
the ion gyroscale is the inertial range. In this randg,B, de- ) .
creases with scale because of the steep negative speapral sl modifications of the GS theory by Boldyl 06) and by
Therefore, the assumption of small fluctuatiofB/By < 1, Gogoberidz el.(&iﬂ) (see fpotn 10). This discrepancy be-
while not necessarily true at the outer scale, is increaging \Ween observations and simulations remains an unresolved
better satisfied further into the inertial range (df. 8 1.3). theoretical issue. It is probably best addressed by numeri-
Are these fluctuations Alfvénic? In a plasma such as the €@l modeling of the RMHD equations[(§2.2) and by a de-

solar wind, they ought to be because, as showed Il § 5.3, fof@iled comparison of the structure of the Alfvénic fluctoat
k. pi < 1, these fluctuations are rigorously described by the In SUch simulations and in the solar wind.
RMHD equations. The magnetic flux is frozen into the ion
motions, so displacing a parcel of plasma should produce a
matching (Alfvénic) perturbation of the magnetic field line  Building up evidence for anisotropy of turbulent fluctua-
and vice versa: in an Alfvén wave,, = +6B, //Z4rmng. tions has progressed from merely detecting their elongatio
The strongest confirmation that this is indeed true for the along the magnetic field (Belcher & Davis 1971)—to fitting
inertial-range fluctuations in the solar wind was achieved b data to anad hocmodel mixing a 2D perpendicular and a
.[(2005), who compared the spectra of electric and1D parallel (*slab”) turbulent components in some propor-
magnetic fluctuations and found that they both scale®8  tion®’ (Matthaeus et al. 1990; Bieber eflal. 1996; Dassolet al.
and follow each other with remarkable precision (see[Big. 1) '2005; Hamilton et &l. 2008)—to formal systematic unbiased
The electric field is a very good measure of the perpendicularanalyses showing the persistent presence of anisotrogy at a
velocity field because, fok, p; < 1, the plasma velocity is  Scalesl(Bigazzi et &l. 2006; Sorriso-Valvo et al. 2006)—ito d
the E x B drift velocity,u =cE x 2/Bo (see §5.1). rect measurements of three-dlmgnsmnal correlayon fonst
This picture of agreement between basic theory and ob-(Osman & Horbury 2007)—and finally to computing spectral

servations is upset in a disturbing fashion by an extraordi- €xponents at fixed angles betweerand Bo ) -
2008). The latter authors appear to have achieved the first

8.1.3. Anisotropy

36 Inferred from the frequency spectrufi® via the Taylor[(1938) hypoth-
esis, f ~ k- Vsw, whereVsy is the mean velocity at which the wind blows 37 These techniques originate from the view of MHD turbulense au-
past the spacecraft. The Taylor hypothesis is a good as&mfpt the so- perposition of a 2D turbulence and an admixture of Alfvén esiFyfe et dl.
lar wind becaus®sy (~ 800 km/s in the fast wind;» 300 km/s in the slow [1977;[Montgomery & TurnEr 1981). As we discussed [0_§ 1.2, wesitler
wind) is highly supersonic, super-Alfvénic and far exceéus fluctuating the[Goldreich & Sridhar (1995.1997) view of a critically &ated Alfvénic
velocities. cascade to be better physically justified.
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direct quantitative confirmation of the GS theory by demon- (e.g./Armstrong et al. 1990; Grall et/al. 1997; Woo & Habbal
H

wave numbers perpendicular to the mean field ank & compressive fluctuations at 1 AU is correlated with the coro-
[ nal activity, implying some form of memory of initial condi-

wave numbers parallel to it [consistent with the first salin = ;0o (Kiyani et all 2007: Hnat et al. 2007: Wicks et al. 2009

relation in I.Eq..[(]fl)]. This is the_closest }?at observatioseen We note, finally, that whether compressive fluctuations i)n

got to confirming the GS relatiok; ~ k7 ° [see Eq.[(5)] ina  the inertial range can develop short parallel scales staisir

real astrophysical turbulent plasma. tell us how much ion heating can result from their damping
(see §6.214).

8.1.4. Compressive Fluctuations

According to the theory developed i85, the density and 8.2 D|55|pat|on-RangeI\;lérb#é?ggﬁégthhe Solar Wind and the
magnetic-field-strength fluctuations are passive, enieajlst . 9 ]
decoupled from and mixed by the Alfvénic cascadg (85.5; At scales approaching the ion gyroscalep; ~ 1, effects
these are slow and entropy modes in the collisional MHD associated with the finite extent of ion gyroorbits start to
limit—see §2:% and €6l 1). These fluctuations are expected tanatter. Observationally, this transition manifests ftsel a
be pressure-balanced, as expressed by[Eh. (22) or, more gesglear break in the spectrum of magnetic fluctuations, wiéh th
erally in gyrokinetics, by EqL{87). There is, indeed, sgon inertial-rangek > scaling replaced by a steeper slope (see
evidence that magnetic and thermal pressures in the solaFig.[d). While the electrons at these scales can be treated as
wind are anticorrelated, although there are some indigatio an isothermal fluid (as long as we are considering fluctuation
of the presence of compressive, fast-wave-like fluctuatasy ~ above the electron gyroscale, pe < 1; see §4), the fully
well (Roberts 1990; Burlaga etlal. 1990; Marsch &[Tu 1993; gyrokinetic description (&3) has to be adopted for the ions.
IBavassano et al. 2004). It is, indeed, to understand plasma dynamics at and around

Measurements of density and field-strength fluctua- ki pi ~ 1 that gyrokinetics was first designed in fusion plasma
tions done by a variety of different methods both at theory(Frieman & Chen 1982; Brizard & Halm 2007). In or-

1 AU (Celnikier et al.[ 1983/ 1987; Marsch & Tu_1990b; der for gyrokinetics and further dissipation-range appra¢
[Bershadskii & Sreenivasan [ 2004; [ Hnatéetall _ 2005; tions that follow from it (§¥) to be a credible approach in
[Kellogg & Horbury [2005; [ Alexandrova et’al. _2008a) and the solar wind and other space plasmas, it has to be estab-
near the Surl (Lovelace et Al 1970; Woo & Armstiong 1979; lished that fluctuations at and below the ion gyroscale dte st
[Coles & Harmon 1989; Coles etlal. 1991) show fluctuation strongly anisotropick < k.. If that is the case, then their
levels of order 10% and spectra that appear to hake’/a frequenciesy ~ kjvak pi, see §7.3) will still be smaller than
scaling above scales of order?t910° km, which approxi-  the cyclotron frequency in at least a part of the “dissipatio
mately corresponds to the ion gyroscale. The Kolmogorov range®—the range of scalds, p; > 1 (see §7.13).

value of the spectral exponent is, as in the case of Alfvénic Note that additional information about the dissipation-
fluctuations, measured quite accurately in individual sase range turbulence can be extracted from the measurements in
(1.674 0.03 in [Celnikier et al.. 1987). Interestingly, the the magnetosheath—while scales above the ion gyroscale are
higher-order structure function exponents measured fer th probably nonuniversal there, the dissipation range aggear
magnetic-field strength show that it is a more intermittent display universal behavior, mostly similar to the solar avin
quantity than the velocity or the vector magnetic field (i.e. (see, e.gl. Alexandrava 2008). This complements the obser-
than the Alfvénic fluctuations) and that the scaling expo- vational picture emerging from the solar-wind data and al-
nents are quantitatively very close to the values found for lows us to learn more as fluctuation amplitudes in the mag-
passive scalars in neutral fluids_(Bershadskii & Sreenivasa netosheath are larger and much smaller scales can be probed
[2004;[Bruno et dll 2007). One might argue that this lends than in the solar wind (Mangeney eilal. 2006; Lacombelet al.
some support to the theoretical expectation of passive2006 8b).

magnetic-field-strength fluctuations.

Considering that in the collisionless regime these fluctua- ) . .
tions are supposed to be subject to strong kinetic damping We know with a fair degree of certainty that the fluctu-
(8[6.2.2), the presence of well-developed Kolmogorov-like ations that cascade down to the ion gyroscale from the in-
and apparently undamped turbulent spectra is more surgrisi  €rtial range are strongly anisotropic[(§811.3). While it ap
than has perhaps been publicly acknowledged. An extendedPears likely that the anisotropy persistskaip; ~ 1, it is ex-
discussion of this issue was given ifiL86.3. Without the in- tremely important to have a clear verdict on this assumption
clusion of the dissipation effects associated with thediiin ~ from solar wind measurements. While Leamon ét al. (1998)
gyroscale, the passive cascade of the density and fieldygtren and, more recently, Hamilton etlal. (2008) did present some
is purely perpendicular to the (exact) local magnetic fieid a  €vidence that magnetic fluctuations in the solar wind have a
does not lead to any scale refinement along the field. This im-degree of anisotropy below the ion gyroscale, no definitive
plies highly anisotropic field-aligned structures, whasegth ~ Study similar to Horbury et all (2008) or Bigazzi et al. (2p06
is determined by the initial conditions (i.e., conditionsthe = . [(2006) exists as yet. In the magne-
corona). The kinetic damping is inefficient for such fluctua- tosheath, where the dissipation-range scales are easiereto
tions. While this would seem to explain the presence of fully Sure than in the solar wind, recent analysis by Sahraoul et al
fledged power-law spectra, it is not entirely obvious that th (2006); | Alexandrova et al! (2008b) does show evidence of
parallel cascade is really absent once dissipation is taten  Strong anisotropy.
accountl(Lithwick & Goldreich 2001), so the issue is not yet

; ; ; ; 38 This term, customary in the space-physics literature, inesghat of
settled. This said, we note that there is plenty of eviderice o a misnomer because, as we have seer(in § 7. rich dissipasonlebulent

a high. degree of a'f]iSOtrOPy and field alignment of the den- gynamics are present in this range alongside what is noyrttught of as
sity microstructure in the inner solar wind and outer corona dissipation.

8.2.1. Anisotropy
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Besides confirming the presence of the anisotropy, it would break between the inertial and dissipation ranges occwes ha
be interesting to study its scaling characteristics: elgeck roduced claims that is a more likely candidate (Smith et/ al.

i ictiok, ~ kY3 [Eq. : 579. ), more comprehensive studies of the available data set

the scaling pr.ed|ct|_orITH KL . [Ea. (241); see a!so 2/3 4 conclude basically that it is hard to tell (Leamon €f al. 2000
and §7.1013] in a similar fashion as the GS relatpn- k/ Markovskii et al[ 2008).
[Eq. ()] was corroborated by Horbury et al. (2008). In the gyrokinetic approach advocated in this paper, the ion

In this paper, we have proceeded on the assumption thafnertia| scale does not play a special role (SEEE 7.1). The on
the anisotropy, and, therefore, low frequenciesg (%) do n5rameter regime in whicth does appear as a special scale
characterize fluctuations in the dissipation range—oea@t, s < T, (“cold ions”), when the Hall MHD approximation
that the low-frequency anisotropic fluctuatlon§ are a $igni  -an pe derived in a systematic way (see Appefdix E). This,
cant energy cascade channel and can be considered decouplg@yyever, is not the right limit for the solar wind or most athe
from any possible high-frequency dynamics. astrophysical plasmas of interest because ions are rately c
4 Hall MHD is discussed further in[&8.2.6 and Appenidix E.

8.2.2. Transition at the lon Gyroscale: Collisionless Damping an
Heating

If the fluctuations at the ion gyroscale hake< k. and

w < O (8B.21), they are not subject to the cyclotron res-  If gyrokinetics is valid at scales, p; > 1 (i.e., ifk; < kg,
onance ¢ — kv, = ), but are subject to the Landau one w < and it is acceptable to at least model the equilibrium
(w = kyv)). Alfvénic fluctuations at the ion gyroscale are distribution as a Maxwellian; sed §8.3), the electromagnet
no longer decoupled from the compressive fluctuations andfluctuations below the ion gyroscale will be described by the
can be Landau-damped[(§]7.1). It seems plausible that itfluid approximation that we derived if(§87.2 and referred to
is the inflow of energy from the Alfvénic cascade that ac- ERMHD. The wave solutions of this system of equations are
counts for a pronounced local flattening of the spectrum of the kinetic Alfvén waves (§87)3-7.4) and it is possible to ar
density fluctuations in the solar wind observed just above gue for a GS-style critically balanced cascade of KAW-like
the ion gyroscalel (Woo & Armstrohg 1979; Celnikier et al. electromagnetic fluctuations[(§87.5) between the ion antt ele
[1983,[198i7 Coles & Harmbh 1989; Marsch & Tu 1990b; tron gyroscales (Landau damped on electrofks at ~ 1; the

8.2.4. KAW Turbulence

Coles et al. 1991; Kellogg & Horbuty 2008). expression for the KAW damping rate in the gyrokinetic limit
In energetic terms, Landau damping amounts to a redis-is given in Howes et al. 2006; see also fip. 8). _
tribution of generalized energy from electromagnetic fiuct Individual KAW have, indeed, been detected in space

ations to entropy fluctuations [§8.4[§17.8). This gives rise plasmas (e.g.|_Grison etlal. 2005). ~ What about KAW
to the entropy cascade, ultimately transferring the Landau turbulence?—How does one tell whether any particular spec-
damped energy into ion heat[{§13.5. §7.9 ahd §|7.10). How-tral slope one is measuring corresponds to the KAW cascade
ever, only part of the inertial-range cascade is so damped beor fits some alternative scheme for the dissipation-range tu
cause an alternative, electron, cascade channel existgi-th  bulence (§8.216)? It appears to be a sensible programme to
netic Alfvén waves (887]2-7.8). The energy transferred int look for specific relationships between different fields-pre
the KAW-like fluctuations can cascade to the electron gy- dicted by theory (E7]2) and for the corresponding spectral
roscale, where it is Landau damped on electrons, convertingslopes and scaling relations for the anisotroply (E 7.5).s Thi
first into the electron entropy cascade and then electron heameans that simultaneous measurements of magnetic, electri
(8[712). density and magnetic-field-strength fluctuations are netede
Thus, the transition at the ion gyroscale ultimately de- For the solar wind, the spectra of electric and magnetic
cides in what proportion the turbulent energy arriving from fluctuations below the ion gyroscale reportedm%et al.
the inertial range is distributed between the ion and edectr  (2005) are consistent with the/? andk /3 scalings pre-
heat. How the fraction of power going into either depends on dicted for an anisotropic critically balanced KAW cascade
parameters—5;, Ti/Te, amplitudes, ...—is a key unanswered (§[Z.5; see Fig[]l for theoretical scaling fits superimposed
question both in space and astrophysical (see, €.g] §l&$)p on a plot taken froni_Bale etldl. 2005; note, however, that
mas. Gyrokinetics appears to be an ideal tool for addressin5 themselves interpreted their data in a some-
this question both analytically and numerically (Howeslét a what different way and that their resolution was in any case
2008b). Within the framework outlined in this paper, the min  not sufficient to be sure of the scalings). They were also able
imal model appropriate for studying the transition at the io to check that their fluctuations satisfied the KAW dispersion
gyroscale is the system of equations for isothermal elastro relation—for critically balanced fluctuations, this isdeed,
and gyrokinetic ions derived i 4 (it is summarized [N 8 4.9) plausible. Magnetic-fluctuation spectra recently repbtig
[.L(2008a) are only slightly steeper than th
theoreticalk "/ KAW spectrum. These authors also find a
It is often assumed in the space physics literature that it issignificant amount of magnetic-field-strength fluctuatioms
at the ion inertial scaled; = p; //;, rather than at the ion gy-  the dissipation range, with a spectrum that follows the same
roscalep; that the spectral break between the inertial and dis- scaling—this is again consistent with the theoretical et
sipation range occurs. The distinction betweleand p; be- of KAW turbulence [see Eq[{223)]. Measurements reported
comes noticeable whe# is significantly different from unity, by |Czaykowska et all (2001); Alexandrova et al. (2008b) for
a relatively rare occurrence in the solar wind. While some at the magnetosheath appear to present a similar picture.
tempts to determine at which of these two scales a spectral The density spectra measured by Celnikier etlal. (1983,
[1987) steepen below the ion gyroscale following the flatlene
39[Celnikier et al.[(1987) proposed that the flattening mighabe' spec- segment arounld, p; ~ 1 (discussed in[88.2.2). For a KAW

trum analogous to Batchelor's spectrum of passive scalaanee in the : C i
viscous-convective range. We think this analogy cannotyapgcause den- cascade, the densny spectrum shoulckie? (§|E)' with-

sity is not passive at or below the ion gyroscale. out KAW, k193 (§[7.10.2). The slope observed in the papers

8.2.3. lon Gyroscale vs. lon Inertial Scale




KINETIC TURBULENCE IN MAGNETIZED PLASMAS 43

cited above appears to be somewhat shallower evenkifan [2000] Maron & Goldreidh 2001; Cho etlal. 2002; Miiller et al.
(cf. a similar result by Spangler & Gwilin 1990 for the ISM; [2003). Solar-wind evidence that the perpendicular cascade
see §8.4]1), but, given imperfect resolution, neitheosesty dominates is quite strong for the inertial rangé(§8.1.3) an
in contradiction with the prediction based on the KAW cas- less so for the dissipation range[{§812.1). While, as stated
cade, nor sufficient to corroborate it. Unfortunately, weéna in §[8.2.1, one cannot yet definitely claim that observations
not found published simultaneous measurements of densitytell us thatw < € at k; pj ~ 1, it has been argued that

and magnetic- or electric-fluctuation spectra. observations do not appear to be consistent with cyclotron
o damping being the main mechanism for the dissipation of
8.2.5. Variability of the Spectral Slope the inertial-range Alfvénic turbulence at the ion gyroscal

While many measurements consistent with the KAW pic- (Leamon et al 8, 2000; Smith etlal. 2001). lon-cyclotron
ture can be found, there are also many in which the spectra€sonance could conceivably be reached somewhere in the
are much steeper (Denskat et/al. 1983; Leamonl &t al] 1998)dissipation range (sed §7113). At this point ﬁmk'ne“"ﬂ; w
Analysis of a large set of measurements of the magnetic-formally break down, although, as argued by Howes et al.
fluctuation spectra in the dissipation range of the soladwin (2008&, see their §3.6), this does not necessarily mean that
reveals a wide spread in the spectral indices: roughly ketwe ion cyclotron damping will become the dominant dissipation
-1 and-4 (Smith et al[ 2006). There is evidence of a weak channelfor the turbulence.

pozit::/_eﬁorr_elation between steeperdissipatiog—grgpget? her Parallel whistler cascade— A parallel magnetosonic/whistler
and higher ion temperaturés (Leamon et al. 1 or NI@N€reascade eventually damped by the electron cyclotron

cascade rates calculated from the inertial range (Smith et a S ; ;
. 1 , resonance | (Stawicki etlal. 2001) is also excluded in the
2006). This suggests that a larger amount of ion heating may )

\ tructi f kinetics. Th histl de h
correspond to a fully or partially suppressed KAW cascade cONSHLCtion o1 gyroxinetics e whister cascade has

A . . . : "been given some consideration in the Hall MHD approxi-
whichiis in line with our view of the ion heating and the KAW o400 (further discussed at the end of this section). Both

cascade as the two competing channels of the overall kinetiGy o5k -turbulence theory (Galtier 2006) and 3D numerical
cascade (E718). With a weakened KAW cascade, all or part ofginations [(Cho & Lazarian_2004) concluded that, like
the dissipation range would be dominated by the ion entropy;, MHD, the turbulent cascade is highly anisotropic, with

cascade—a purely kinetic phenomenon manifested by préyernendicular energy transfer dominating over the pdralle
dominantly electrostatic fluctuations and very steep mégne ;240 The same conclusion appears to have been reached

energy spectra (8 7.1L0). This might account both for thepstee | t 2D kinetic PIC simulati by Gary et al. (2008);
ness of the observed spectra and for the spread in theieimdic i recen .ﬁ;.lcThusS;w: ﬁjlr%rl]lsece ;graiﬁ seems to)be

(8[Z13), although many other theories exist (See §18.2.6). AN — : ;
While we may thus have a plausible argument, this is notdnven into the gyrokinetically accessible regime.
yet a satisfactory quantitative theory that would allow as t
predict when the KAW cascade is present and when itis not or
what dissipation-range spectrum should be expected fengiv
values of the solar-wind parametefs, (T /Te, etc.). Resolu-
tion of this issue again appears to hinge on the questionwf ho
much turbulent power is diverted into the ion entropy cascad
(equivalently, into ion heat) at the ion gyroscale (sEe 88.2

While theory and numerical simulations appear to make
arguing in favor of a parallel cascade and cyclotron heat-
ing difficult, there exists some observational evidenceujp+s
port of them, especially for the near-Sun solar wind (e.g.,

5). Thus, the presence or relative im-
portance of the cyclotron heating in the solar wind and, more
generally, the mechanism(s) responsible for the obserged p
pendicular ion heating (Marsch et al. 1983) remain a largely
open problem. Besides the theories mentioned above, many

A number of alternative theories and models have been putother ideas have been proposed, some of which attempted
forward to explain the observed spectral slopes (and taeir v to reconcile the dominance of the low-frequency perpendic-
ability) in the dissipation range. Itis not our aim to review  ylar cascade with the possibility of cyclotron heating (e.g

critique them all in detail, but perhaps it is useful to pae/a  [Chandra 2005t; Markovskii etlal. 2006; $ee Hollweg 2008
few brief comments about some of them in light of the theo- for a concise recent review of the problem).

retical framework constructed in this paper. _ _
This entire theoretical framework hinges on adopting gy- Mirror cascade— [Sahraoui et al. (2006) analyzed a set of
rokinetics as a valid description or, at least, a sensibldeho  Cluster multi-spacecraft measurements in the magnettishea
that does not miss any significant channels of energy cascadend reported a broad power-law k®/2) spectrum of mirror
and dissipation. While we obviously believe this to be the structures at and below the ion gyroscale. They claim that
right approach, it is worth spelling out what effects are lef these areot KAW-like fluctuations because their frequency
out “by construction.” is zero in the plasma frame. Although these structures are
highly anisotropic withk < k., they cannot be described by
the gyrokinetic theory in its present form becaasg /By is
very large ¢ 40%, occasionally reaching unity) and because
at all scales,kj < ki, and, thereforew < €, so the  ho"narticle trapping by fluctuations, which is likely to be
cyclotron resonances are ordered out. However, if onejmnarant in the nonlinear physics of the mirror instabil-
insists on routing the Alfvén-wave energy into a paral- jv " (ivelson & Southwood! 1996] Pokhotelov ef 4l 2008;
lel cascade, e.g., by forcibly setting, =0, it is pos-  |Rincon etall 2009), is ordered out in gyrokinetics. Thus, if
sible to construct a weak turbulence thh It “mirror cascade” exists, it is not captured in our descoipti

is_dissipated by the ion cyclotron damping Hang Ilv. the effect of th -anisotropvati
2008). Numerical simulations of 3D MHD turbulence do ore generally, the efiect of the pressure-anisotropyearl

not support the possibility of a parallel Alfvén-wave Cma 40 |t is possible to produce a parallel cascade artificially byning 1D
I : al. 1094; Cho & Vishniac simulations[(Matthaeus etlal. 2008b).

8.2.6. Alternative Theories of the Dissipation Range

Parallel Alfvén-wave cascade and ion cyclotron dampingThe
use of gyrokinetics assumes that fluctuations stay anisiatro
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instabilities on the turbulence in the dissipation range is turbulence theory for Hall MHD[(Galtidr 2006) and by 3D
ﬂ

wide open area, requiring further analytical effort (s€€3.8 numerical simulations of the Electron MHD (Cho & Lazarian
2004).

If ky < k., w< Q, andoB/By < 1 are accepted for the Thus, the gyrokinetic theory and its rigorous limits, such
dissipation range and plasma instabilities at the ion gyales  as ERMHD (&7.R), supersede Hall MHD for anisotropic tur-
(8[8:3) are ignored, the formal gyrokinetic theory and its bulence. Since ions are generally not cold in the solar wind
asymptotic consequences derived above should hold. Theréor any other plasma discussed here), Hall MHD is not for-
are two essential features of the linear physics at and belowmally a relevant approximation. It also entirely misses the
the ion gyroscale that must play some role: the collisianles kinetic damping and the associated entropy cascade channel
(Landau) damping and the dispersive nature of the wave sodeading to particle heating [§7.1[&F.9 arld §7.10). However
lutions isee Figl8 and[&17.3; cf., e.g., Leamon et al. 1999;Hall MHD does capture the Alfvén waves becoming disper-
: 2001). Both of these features have been em-sive and numerical simulations of it do show a spectral break
ployed to explain the spectral break at the ion gyroscale andalthough, technically speaking, at the wrong scdlar(stead
the spectral slopes below it. of pi; see §71). Although Hall MHD cannot be rigorously

used as quantitative theory of the spectral break and tlee ass
Landau damping and instrumental effests.In most of our dis-  ciated change in the nature of the turbulent cascade, tHe Hal
cussion, (§17, 8€8.2/4-8.2.5), we effectively assumedttfeat ~MHD equations in the limikd >> 1 are mathematically sim-
Landau damping is only importantlat pi ~ 1 andk pe ~ 1, ilar to our ERMHD equations (sed 8.2 and Apperidix E) to
but not in between, so we could talk about asymptotic scal- within constant coefficients probably not essential forligua
ings and dissipationless cascades. However, as was notethtive models of turbulence. Therefore, results of nunagric
in 8[Z.6, a properly asymptotic scaling behavior in the dis- simulations of Hall and Electron MHD cited above are di-
sipation range is probably impossible in nature because theectly useful for understanding the KAW cascade—and, in-
scale separation between the ion and electron gyroscales igleed, in the limikd > 1, kd. < 1, they are mostly consistent
only about (n/me)*/2 ~ 43. In particular, there is not always ~ with the scaling arguments of §7.5.
a wide scale interval where the kinetic damping is negligi- ) ) . . -
bly small (especially at lows;; see Fig[B; Cije_a.Lgmg—m_e_L?al Alfvén vortices— Finally we mention an argument pertaining
[1999). [Howes et al[ (2008a) proposed a model of how theto the dissipation-range spectra that is not based on energy

; : e cascades at all. Based on the evidence of Alfvén vortices in
presence of damping combined with instrumental effects (a
resolution floor) could lead to measured spectra that ldak li the magnetosheath, Alexandrova (2008) speculated tregt ste

<7/3 i . . power-law spectra observed in the dissipation range at leas
power laws steeper thdn", with the effective spectral ex n some cases could reflect the geometry of the ion-gyroscale

,E) onhent depending on plasma parameters (we refer the read diructures rather than a local energy cascade. If Alfvén vor
0 that paper for a discussion of how this compares with PT€tices are a common feature, this possibility cannot be ex-
vious models of a similar kind, e.d., Lief] 01). A key = POSSIDILY .

. : L —— ! cluded. However, the resulting geometrical spectra are2qui
physical assumption of theirs and similar models is that thesteep k% and steeper), so they can become important only

amount of power drained from the Alfven-wave and KAW if the KAW cascade is weak or suppressed—somewhat simi-

cascades into the ion heat is set by the strength ofirtlear : :
damping. Whether this is justified is not yet clear. I(%rly to)the steep spectra associated with the entropy dasca

Hall and Electron MHD— If Landau damping is deemed 8.3. Is Equilibrium Distribution Isotropic and Maxwellian?

unimportant in some part of the dissipation range (which

can be true in some regimes; see M. 8 et al. In rigorous theoretical terms, the weakest point of this pa-
[2006,[20084]b) and the wave dispersion is considered toper is the use of a Maxwellian equilibrium. Formally, this is
be the salient feature, it might appear that a fluid, rather only justified when the collisions are weak but not too weak:
than kinetic, description should be sufficient. Hall MHD we ordered the collision frequency as similar to the fluctu-
(Mahajan & Yoshida 1998) or itkd, > 1 limit the Electron ation frequency [Eq.[{49)]. This degree of collisionality i
MHD (Kingsep et all. 1990) have been embraced by many au-sufficient to prove that a Ma_xwellian equilibrium distrilmr _
thors as such a description, suitable both for analytigiar ~ Fos(v) does indeed emerge in the lowest order of the gyroki-
ments [(Goldreich & Reisenegier 1992; Krishan & Mahajan netic expansion_(Howes etlal. 2006). This argument works
[2004; | Gogoberidze 2005; i riee_2003; well for plasmas such as the ISM[(§B.4), where collisions are
[Galtiel 20061 Alexandrova et'dl. 2008a) and numerical sim- weak Qmi > pi) but nonnegligible kmfpi < L). In space
ulations (Biskamp et all 1906, 1999: Ghosh étlal. 1996; plasmas, the mean free path is of the order of 1 AU—the dis-
Na et al[ 2003} Cho & Lazarian 2004; Shaikh & ZEnk 2005; tance between the Sun and the Earth (see Table 1). Strictly

in[20077f Matthaeus etlal. 2008b). speaking, in so highly collisionless a plasma, the equilib-
To what extent does this constitute an approaltbrna- rium distribution does not have to be either Maxwellian or
tive to (and better than?) gyrokinetics (as suggested, e.g., byisotropic.
Matthaeus et al. 200Bb)? For fluctuations with< k. , Hall The conservation of the first adiabatic invarignt v4 /2B,

MHD is merely a particular limit of gyrokinetics} << 1and  suggests that temperature anisotropy with respect to the
Ti/Te < 1 (cold-ion limit; see AppendiXIE). I, is not small magnetic-field directionTo, 7 Tp ) may exist. When the
compared tk  , then the gyrokinetics is not valid, while Hall  relative anisotropy is larger than (roughly)4, it triggers
MHD continues to describe the cold-ion limit correctly (.9 several very fast growing plasma instabilities: most promi
Ito et all 2004; Hirose et &l. 2004), capturing in particukes nently the firehoselp, < To) and mirror o, > To) modes
whistler branch of the dispersion relation. However, as we (e.g., 6). T\weir growth rates peak around the
have already mentioned above, the dominance of the perpenion gyroscale, thus giving rise to additional energy inpatct
dicular energy transfek( < k) is supported both by weak-  atk, pj ~ 1.
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No definitive analytical theory of how these fluctuations sat accuracy and resolution of this analysis are due to improve
urate, cascade and affect the equilibrium distributiondesn rapidly thanks to many new observatories, e.g., LOFAR,
proposed. It appears to be a reasonable expectation that thelanck (EnRlin et al. 2006), and, in more distant future, the
fluctuations resulting from temperature anisotropy witusa ~ SKA (Lazio et al[ 2004).
rate by limiting this anisotropy. This idea has some support The ISM is a spatiallyinhomogeneous environment consist-
in solar-wind observations: while the degree of anisotropy ing of several phases that have different temperaturesj-den
of the core particle distribution functions varies conside ties and degrees of ionizatidn (Ferrl&re 2081 )We will use
ably between data sets, the observed anisotropies do seetihe Warm ISM phase (see Taljle 1) as our fiducial interstel-
to populate the part of the parameter plaifg (To), 3) cir- lar plasma and discuss briefly what is known about the two
cumscribed in a rather precise way by the marginal stabil- main observationally accessible quantities—the eleasn
ity boundaries for the mirror and firehose (Gary et al. 2001; sity and magnetic fields—and how this information fits into
IKasper et dl. 2002; Marsch et al. 2004; Hellinger et al. 2006; the theoretical framework proposed here.

Matteini et all 2007}

If we want to study turbulence in data sets that do not lie 8.4.1. Electron Density Fluctuations
too close to these stability boundaries, assuming an jsiatro
Maxwellian equilibrium distribution [Eq.[(34)] is probapbl

The electron-density fluctuations inferred from the inter-
P : : stellar scintillation measurements appear to have a spactr
an acceptable simplification, although not an entirely rrigo with an exponent- —1.7, consistent with the Kolmogorov

ous one. Further theoretical work is clearly possible oa thi . :

H . H H H 1 . . . .
subject: thus, it is not a problem to formulate gyrokinetics ﬁnggerAgigzgan eév:dégcg‘ﬁg—'—w Lazio tal. 2 %%‘é ?Neﬁc’)
with an arbitrary equilibrium distributio en  oim a spectral e>? onent closbﬁmlmMEerﬂ 5) ThisLaL_QhoIds over
[1982) and starting from that, once can generalize the gesult P P N

0 -
of this paper (for the KRMHD system[% 5, this has been done about 5 decades of scalesc (10°, 10°) km. Other observa
ﬁ

- . D tional evidence at larger and smaller scales supports e ca
by [Chen et all 2009). Treating the instabilities themselves . 9=
might prove more difficult, requiring the gyrokinetic order for this presumed inertial range to be extended over as many

5 i
ing to be modified and the expansion carried to higher orders?® 12 decades) € (107,10™) km, a fine example of scale

to incorporate features that are not captured by gyrokisgti separation that prompted an impressed astrophysicistiio du

e.g., short parallel scaleﬁl(Ro;in tfal. 2009), partice-tr the density scaling “The Great Power Law in the Sky.” The

ping (Pokl [ 2008 R { . 2009), or nonlin- upper cutoff here is consistent with the estimates of the su-

e ; : le of order 100 pc—presumably the outer scale of
ear finite-gyroradius effect5 (Califano etlal. 2008). Notatt ~ Pernovasca d(Norman & Ferrdra 19
the theory of the dissipation-range turbulence will prdipab the turbulenc 96) and also roughly the

need to be modified to account for the additional energy in- scale height of the galactic disk (obviously the upper bound

jection from the instabilities and for the (yet unclear) way on the validity of any homageneous model of the ISM tur-

. : ; it " bulence). The lower cutoff is an estimate for the inner scale
which this energy makes its way to dissipation and into heat. below which the logarithmic slope of the density spectrum

Besides the anisotropies, the particle distribution fiomst steepens to abot® (Spangler & Gwini 1990).

in the solar wind (especially the electron one) exhibit non- : - .
Maxwellian suprathermal tails (see_Maksimovic et al. 2005; (1984) was the first to realize that the electron-

Marsch 2006, and references therein). These contain Smalfiensity quctua_tions in the_ISM could be aj[tributed to a cas-
(~ 5% of the total density) populations of energetic particles cade of a passive trgcer mixed by the ambient turbulence (the
MHD entropy mode; see[§2.6). This idea was brought to ma-

Both the origin of these particles and their effect on tuebgke . Litt k & Goldrei .

have to be modelled kinetically. Again, it is possible to-for ;lf\;gycg)écades of the slow ansjz%%r:-r)c,) Wh%gzjued;eig ttgee E‘)?asrhe-

mulate gyrokinetics for general equilibrium distribut®of work of the GS theory (see al50 Mar%);l & Goldréich 2001)

this kind and examine the interaction between them and theIfthe turbulence is as}s/umed anisotronic. as in the GS theor

turbulent fluctuations, but we leave such a theory outside th ; ; PIC, ¢ : heory

scope of this paper the passive nature of the density fluctuations with respect t
Thus, much remains to be done to incorporate realistic equi-g:ﬁt %%?ﬁﬂglﬁH%f\Eg%?\;ga‘;?\%z Zﬁgsvrzgsaabg\'%or%ufh;e'

librium distribution functions into the gyrokinetic degation " PO . ’

of the solar wind plasma. In the megzwhile we beﬁﬂve that mcl)lr.e. genlerlal gyrok&usc) dXS(_:rlptlon ap;prr]oprllate fwak

A . . P . collisional plasmas .5). Anisotropy of the electromsigy
the gyrokinetic theory based on a Maxwellian equilibriurg-di fluctuations in the ISM is, indeed, observationally supgort

tribution as presented in this paper, while idealized arjakim S d =
fect, is nevertheless a step forward in the analytical tneat (Wilkinson et all 1994; Trotter et Al. 19 I 1998 Rickett el al02 R|ck| egttogsalsoeg also

of the space-plasma turbulence compared to the fluid descrip = . ; . ;
tions that have prevailed thus far, [Lazio et al 2004 for a concise discussion), although cedail
scale-by-scale measurements are not currently possible.

If the underlying Alfvén-wave turbulence in the ISM has

a kf/g spectrum, as predicted by GS, so should the elec-

While the solar wind is unmatched by other astrophysical tron density (see[§2.6). As we discussed [0 % 6.3, the phys-
plasmas in the level of detail with which turbulence in it can ical nature of the inner scale for the density fluctuations de
be measured, the interstellar medium (ISM) also offers an ob pends on whether they have a cascaddirand are effi-
server a number of ways of diagnosing plasma turbulence ciently damped wherkAmgpi ~ 1 or fail to develop small
which, in the case of the ISM, is thought to be primarily ex- parallel scales and can, therefore, rech; ~ 1. The ob-
cited by supernova explosions (Norman & Ferlrara 1996). The

8.4. Interstellar Medium

42 http://www.lofar.org

41 Note that Kellogg et al[ (2006) measure the electric-fieldtélations 43 And, therefore, different degrees of importance of the rbyiarticles
in the ion-cyclotron frequency range, estimate the rasyltielocity-space and the associated ambipolar damping effects—these wilbealiscussed
diffusion and argue that it is sufficient to isotropize the @istribution here; sek Lithwick & Goldre 1.
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servationally estimated inner scale is consistent withidhe  ferentially rotating plasmas—the magnetorotationalah#t
gyroscale,p; ~ 10° km (see Tabl&]1l; note that the ion iner- ity (MRI)—amplifies magnetic fields and gives rise to MHD
tial scaled; = pi/+/; is similar top; at the moderate values turbulence in astrophysical disks (Balbus & Hawley 1998).
of 3 characteristic of the ISM—see further discussion of the Magnetic stresses due to this turbulence transport angudar
(inrelevance ofd; in §[7.1, €8.2.8 and Appendix E). How- mentum, allowing plasma to accrete. The MRI converts the
ever, since the mean free path in the ISM is not huge (Ta-gravitational potential energy of the inflowing plasma into
ble[), it is not possible to distinguish this from the perpen turbulence at the outer scale that is comparable to the scale
dicular cutoffi;t ~ A¥2 1772 ~ 500 km implied by the par-  height of the disk. This energy is then cascaded to small

mfpi

, - les and dissipated into heat—powering the radiation tha
allel cutoff atk \mii ~ 1 [see Eq.[[220)], as advocated by S¢@ . . . :

Lithwick & Goldreich (2001). Note that the relatively short we see from accretion flows. Fluid MHD S|mulat|ons S.hOW
mean free path means that much of the scale range spanned at the MRI-generated turbulence in disks is subsonic and
the Great Power Law in the Sky is, in fact, well described by eS8 ~ 10-100. Thus, on scales much smaller than the scale

the MHD approximation either with adiabatid(§g 2) or isother height of the disk, homogeneous turbulence in the parameter
mal (6.1 and AppendXID) electrons. regimes considered in this paper is a valid idealization and

Below the ion gyroscale, the2 spectral exponent reported the kinetic models developed above should represent a step

: ; o ; forward compared to the purely fluid approach.
bylSpangler & Gwinn[(1990) is measured sufficiently impre- ; ! "
cisely to be consistent with th€7/3 expected for the density Turbulence is not yet directly observable in disks, so mOd.'
fluctuations in the KAW cascadel[E7.5). However, given the €IS Of turbulence are mostly used to produce testable predic
high degree of uncertainty about what happens in this “dis- 1OnS of observable properties of disks such as their X-ray a
sipation range” even in the much better resolved case of theadio emission. One of the best observed cases is the (pre-
solar wind (§82), it would probably be wise to reserve judge sumed) accretion flow onto the black hole coincident with the

; : : radio source Sgr Ain the center of our Galaxy (see review
ment until better data is available. by3).

Depending on the rate of heating and cooling in the inflow-
_ . ing plasma (which in turn depend on accretion rate and other
_ The second main observable type of turbulent fluctuationsproperties of the system under consideration), there &eg-di
via the measurements of the Faraday rotation of the polar-fiows onto a central object. In one class of models, a geometri
ization angle of the pulsar light travelling through the ISM  ca)ly thin optically thick accretion disk (Shakura & Sunyae
The structure function of the rotation measure (RM) should ). the inflowing plasma is cold and dense and well de-

have the Kolmogorov slope of/3 if the magnetic fluctua-  scriped as an MHD fluid. When applied to Sgt,Ahese
tions are due to Alfvénic turbulence described by the GS the-mogels produce a prediction for its total luminosity that is
ory. There is a considerable uncertainty in interpretingy th several orders of magnitude larger than observed. Another
available data, primarily due to insufficient spatial resion  ¢jass of models, which appears to be more consistent with the
(rarely better than a few parsec). Structure function slope gpserved properties of Sgr-Ais called radiatively inefficient
consistent with 23 have been reported (Minter & Spangler accretion flows (RIAFs; sde Rees etlal. 1982; Narayan & Vi
[1996), but, depending on where one looks, shallower Struc{1995 and review by Quataert 2003 of the applications and ob-
ture functions that seem to steepen at scales of a few parsegeryational constraints in Sgr'p In these models, the in-
are also observed (Haverkorn et al. 2004). _ flowing plasma near the black hole is believed to adopt a two-
A recent study by Haverkorn etlal. (2005) detected an in- temperature configuration, with the ior§ £ 101 - 1012 K)
teresting trend: the RM structure functions computed fer re potter than the electrondy~ 10° - 10 K).#* The electron
gions that lie in the galactic spiral arms are nearly pelfect anq jon thermodynamics decouple because the densities are
flat down to the resolution limit, while in the interarm reg& so low that the temperature equalization time;Z! is longer
they have detectable slopes (although these are mostly shakhan the time for the plasma to flow into the black hole. Thus,
lower that 2/3). Observations of magnetic fields in external |ike the solar wind, RIAFs are macroscopically collisicsge
galaxies also reveal a marked_dlfference in the ma_lgnelnt-fle plasmas (see Tablé 1 for plasma parameters in the Galactic
structure between arms and interarms: the spatially regula center; note that these parameters are so extreme that-the gy
(mean) fields are stronger in the interarms, while in the arms qkinetic description, while probably better than the floite,
the stochastic fields dominafe (BEck 2007). This qualiéativ cannot be expected to be rigorously valid; at the very légst,
difference between the magnetic-field structure in the armspeeds to be reformulated in a relativistic form). At the high
and interarms has been attributed to smaller effectiveroute temperatures appropriate to RIAFs, electrons radiateggner
scale in the arms~( 1 pc, compared te- 10 pc in the in- mych more efficiently than the ions (by virtue of their much
terarms; see Haverkorn et/al. 2008) or to the turbulencesin th gmaller mass) and are, therefore, expected to contribute do
arms and interarms belonging to the two distinct asymptotic jnantly to the observed emission, while the thermal enefgy o
regimes described in[81.3: closer to the anisotropic Alivén ihe ions is swallowed by the black hole. Since the plasma
turbulence with a strong mean field in the interarms and to thejg ¢ollisionless, the electron heating by turbulence Igrde-

isotropic saturated state of small-scale dynamo in the armsermines the thermodynamics of the electrons and thus the

8.4.2. Magnetic Fluctuations

Schekochihin et al. 2007). observable properties of RIAFs. The question of which frac-
_ ) tion of the turbulent energy goes into ion and which into elec
8.5. Accretion Disks tron heating is, therefore, crucial for understanding eiion

Accretion of plasma onto a central black hole or neutron flows—and the answer to this question depends on the de-

star is responsible for many of the most energetic phenomena
observed in astrophysics (see, €.9., Narayan & Quitaeft 200 ** It is partly with this application in mind that we carried theneral

for a review). It is now believed that a linear instabilitydif- temperature ratio in our calculations; see footfiofe 17.
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tailed properties of the small-scale kinetic turbulencg.(e  roscale. As was pointed out by Schekochihin étlal. (2005),
Quataert & Gruzindv 1999; Sharma et al. 2007), as well as onthese are, in fact, an inevitable consequence of any largle-s
the linear properties of the collisionless Mmt fluid motions that change the strength of the magnetic field.
] 03). Although a number of interesting and plausible arguments
Since all of the turbulent power coming down the cascade can be made about the way the instabilities might determine
must be dissipated into either ion or electron heat, it is re- the magnetic-field structure_(Schekochihin & Cowley 2006;
ally the amount of generalized energy diverted at the ion gy-/Schekochihin et &l._2008a; Rosin et al. 2009; Rinconlet al.
roscale into the ion entropy cascade[(88[7.8-7.9) that dscid [2009), it is not currently understood how the small-scale
how much energy is left to heat the electrons via the KAW fluctuations resulting from these instabilities coexistwihe
cascade (§8712-4.5[&87112). Again, as in the case of the solaAlfvénic cascade.
wind (88.2.2 and E8.215), the transition around the ion gy- The uncertainties that result from this imperfect under-
roscale from the Alfvénic turbulencelat p; < 1 to the KAW standing of the nature of the intracluster medium are exempl
turbulence ak, pi > 1 emerges as a key unsolved problem. fied by the problem of its thermal conductivity. The magnetic
field reversal scale in clusters is certainly not larger tten
8.6. Galaxy Clusters electron diffusion scaleng /me)Y/?Amepi, which varies from a
few kpc in the cores to a few hundred kpc in the bulk. There-
fore, one would expect that the approximation of isothermal
electron fluid (§%) should certainly apply at all scales helo
the reversal scale, whet® < By presumably holds. Even

Galaxy clusters are the largest plasma objects in the Uni-
verse. Like the other examples discussed above, the ing-acl
ter plasma is in the weakly collisional regime (see Téble 1).

Fluctuations of electron density, temperature and of mBgne s however, is not absolutely clear. One could imagine
fields are measured in clusters by X-ray and radio observaihe electrons being effectively adiabatic if (or in the g

']Eo_rilesl,) butdthe Tesolutionfi;sl only just enqat & where) the plasma instabilities give rise to large fluctrai
alrly broad scale range o uctuations exists (Schueckal e of the magnetic fleld&B/Bo ~ 1) at the ion gyroscale re-

12004 i 5). No power-law scalings have yet §,cing th f th o (Schekochinin et al
been established beyond reasonable doubt. ucmgmmfaﬂjbggfcéugilutua-

What fundamentally hampers quantitative modeling of tur- 4i5ns cannot be described by the gyrokinetics in its current

bulence and related effects in clusters is that we do not havg, ., The current state of the observational evidence does
a definite theory of the basic properties of the intracluster ot aji0w one to exclude either of these possibilities. Both
medium: its (effective) viscosity, magnetic diffusivity ther- isothermal [(Fabian et 41. 2006 Sanders & Fahian 2006) and
mal conductivity. In a weakly collisional and strongly mag- nonisothermal (Markevitch & Vikhlinih 2007) coherent stru

netized plasma, all of these depend on the structure of they, a5 that appear to be shocks are observed. DisorderagHfluct
magnetic field((Braginskii 1965), which is shaped by the tur- 4tions of temperature can also be detected, which allows one

bulence. If (or at scales where) a reasonaljigiori aSsump- 5 infer an upper limit for the scale at which the isothermal

tion can be made about the field structure, further analytica 551 oximation can start being valid: thlis, Markevitch ét al
progress is possible: thus, the theoretical models pregemt ) find temperature variations at all scales down-to

this paper assume that the magnetic field is a sum of a slowly3 5 kpe which is the statistical limit that defines the spa-
varying in space “mean field” and small low-frequency per- 5| resolution of their temperature map. In none of these or

turbations ¢B < Bo). similar measurements is the magnetic field data availabte th

In fact, since clusters do not have mean fields of any mag-\qy|d make possible a pointwise comparison of the magnetic
nitude that could be considered dynamically significant, bu 544 thermal structure.

do have stochastic fields, the outer-scale MHD turbulence in Because of this lack of information about the state of the

clusters falls into the weak-mean-field category (s&e181.3) magnetized plasma in clusters, theories of the intraafuste
The magnetic field should be highly filamentary, organized e giym are not sufficiently constrained by observations, so
n Iolngkfolded ?:recgon-reyersmg structurels. élét| IS Qot-cu no one theory is in a position to prevail. This uncertainestat
rently known what determines the reversal scaleObser- ¢ affairs might be improved by analyzing the observatignal
vations, while tentatively confirming the existence of very \,ch petter resolved case of the solar wind, which should be
long filaments (Clarke & Enlin 2006), suggest that the re- o jite similar to the intracluster medium at very small ssale

versal scale is much larger than the ion gyroscale: thus, the(except for somewhat lower values @fin the solar wind).
magnetic-energy spectrum for the Hydra A cluster core re-

ported by Vogt & EnRlin[(2005) peaks at around 1 kpc, com- 9. CONCLUSION
pared top; ~ 10° km. Below this scale, an Alfvén-wave cas- . In this paper, we have considered magnetized plasma tur-
cade should exist (as is, indeed, suggested by Vogt & EsBlin’ 1, ,jence in the astrophysically prevalent regime of weak col
spectrum being roughly consistent wkf?/3 at scales below Jisionality. We have shown how the energy injected at the
the peak). As these scales are collisionlesg ~ 100 pcin  outer scale cascades in phase space, eventually to in¢hease
the cores and- 10 kpc in the bulk of the clusters), it is to this  entropy of the system and heat the particles. In the process,
turbulence that the theory developed in this paper should beye have explained how one combines plasma physics tools—
applicable. o _ o _ _in particular, the gyrokinetic theory—with the ideas of &tu
Another complication exists, similar to that discussed in pulent cascade of energy to arrive at a hierarchy of tragtabl
§[8.3: pressure anisotropies could give rise to fast plasmamodels of turbulence in various physically distinct scaie i
instabilities whose growth rate peaks just above the ion gy-tervals. These models represent the branching pathways of a

i _ _ generalized energy cascade in phase space (the “kinetic cas
”. H 1~1 k. H ” “l, 1A
_* Seel Schekochihin & Cowley (2006) for a detailed presematibour 546" see Figl]5) and make explicit the “fluid” and “kinetic
views on the interplay between turbulence, magnetic field plasma ef-

fects in cluster; for further discussions and disagreesyesaté EnRlin & Vot aspects Qf plasm.a turbulence. . )
(2006){Subramanian efld[. (2006). Brunefii & Lazérfan (300 A detailed outline of these developments was given in the
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Introduction. Intermediate technical summaries were pro- titative comparisons of the theory and simulation resulth w
vided in §4.9, §5J7, and[§7114. An astrophysical summary observational evidence. The objective of all this work retea
and discussion of the observational evidence was givehlin § 8a quantitative characterization of the scaling-range @riigs
with a particular emphasis on space plasma&(8E811-8.3). Ou(spectra, anisotropy, nature of fluctuations and theiraate
view of how the transformation of the large-scale turbulent tions), the ion and electron heating, and the transportgyrop
energy into heat occurs was encapsulated in the concept ofies of the magnetized plasma turbulence.

a kinetic cascade of generalized energy. It was previewed in

§[1.4 and developed quantitatively in[§8]8.4}3.6, 8 4[7,. 8 5.6

§806.2.3:6.215, 857187112, Appendi€esID.2 and E.2.

Following a series of analytical contributions that set We thank O. Alexandrova, S. Bale, J. Borovsky, T. Carter,
up a theoretical framework for astrophysical gyrokinetics S. Chapman, C. Chen, E. Churazov, T. Enf3lin, A. Fabian,
(Howes et all. 2006, 2008a; Schekochihin et al. 2007, 2008b,A. Finoguenov, A. Fletcher, M. Haverkorn, B. Hnat, T. Hor-
and this paper), an extensive programme of fluid, hy- bury, K. Issautier, C. Lacombe, M. Markevitch, K. Osman,
brid fluid-kinetic, and fully gyrokinetit® numerical simu-  T. Passot, F. Sahraoui, A. Shukurov, and A. Vikhlinin for
lations of magnetized plasma turbulence is now underwayhelpful discussions of experimental and observationad;dat
(for the first results of this programme, see Howes ket al. I. Abel, M. Barnes, D. Ernst, J. Hastie, P. Ricci, C. Roach,
[2008b; [ Tatsuno et al._2000a,b).  Careful comparisons ofand B. Rogers for discussions of collisions in gyrokingtics
the fully gyrokinetic simulations with simulations based o and G. Plunk for discussions of the theory of gyrokinetie tur
the more readily computable models derived in this paperbulence in two spatial dimensions. The authors’ travel was
(RMHD—8[Z, isothermal electron fluid—£§ 4, KRMHD—E8 5, supported by the US DOE Center for Multiscale Plasma Dy-
ERMHD—§[4, HRMHD—AppendiXE) as well as with the namics and by the Leverhulme Trust (UK) International Aca-
numerical studies based on various Landau fluid (Snydef et aldemic Network for Magnetized Plasma Turbulence. A.A.S.

1997; Goswami et al. 2005; Ranios 2005; Sharmalet all 2006was supported in part by a PPARC/STFC Advanced Fellow-
lZQ_O_T [Passot & Sulém_2007) and gyrofluid (Hammett kbt al. ship and by the STFC Grant ST/F002505/1. He also thanks

mammmwammmmmom the UCLA Plasma Group for its hospitality on several occa-
[Scotil 20017) closures appear to be the way forward in develop-sions. S.C.C. and W.D. thank the Kavli Institute for The-
mg a comprehensive numerical model of the kinetic turbulen oretical Physics and the Aspen Center for Physics for their
cascade from the outer scale to the electron gyroscale.€Of th hospitality. G.W.H. was supported by the US DOE contract
many astrophysical plasmas to which these results ap@y, th DE-AC02-76CH03073. G.G.H. and T.T. were supported by
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quality of turbulence measurements possible in them, appeaand G.G.H. were supported in part by the David and Lucille
to be the most suitable testbeds for direct and detailed-quanPackard Foundation.

APPENDIX
A. BRAGINSKII'STWO-FLUID EQUATIONS AND REDUCED MHD

Here we explain how the standard one-fluid MHD equations uiseg and the collisional limit of the KRMHD system
(8[6.1, derived in AppendiXID) both emerge as limiting casethe two-fluid theory. For the case of anisotropic fluctuasio
K /kL < 1, all of this can, of course, be derived from gyrokinetiast ib is useful to provide a connection to the more well
known fluid description of collisional plasmas.

A.1. Two-Fluid Equations

The rigorous derivation of the fluid equations for a colligbplasma was done in the classic papér of Braginskii (1965)
equations, valid fow /vy < 1, K Ammi < 1,k pi <1 (see FiglB), evolve the densities mean velocitiesls and temperatures
Ts of each plasma species< i, eﬂ:

0
<_+Us'v> Ns=-NsV - Us, (A1)
ot
MsNs (% +Us- V) USZ—VDS—V-ﬁ5+q5n5 (E+ Usz B) +Fs, (A2)
3 0 ~
éns a"'us'v Ts=—psV - Us—V -T's—1ls: Vus+Qs, (A3)

whereps = ngTs and the expressions for the viscous stress teligahe friction forcers, the heat fluX's and the interspecies heat
exchange&)s are given iré@iimzs). Equatioris KIJA3) are coerpented with the quasineutrality condition,= Zn,
and the Faraday and Ampere laws, which are (in the nonria¢ilimit)
OB o _VXE. j=en(ui-u)=-VxB. (Ad)
ot 47
Because of quasineutrality, we only need one of the corjimgjuations, say the ion one. We can also use the electrorentam
equation [Eq.[[AR)s = €] to expressE, which we then substitute into the ion momentum equationthad=araday law. The
resulting system is

—:—pV'U, (A5)
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du _ 82 . B VB Zrm a

oB j xB cVpe cV-Ile CFe cm. /0

— = - + + Ly T

it =V x x B en e en en o (3'[ Ue V) Ue| , (A7)

wherep =mn;, u=uj, p=p; + pe, =TT +1le, Us = U— j/en, ne=2Zn,d/dt=0/0t+u-V. The ion and electron temperatures
continue to satisfy EqL(A3).

A.2. Strongly Magnetized Limit

In this form, the two-fluid theory starts resembling the s one-fluid MHD, which was our starting point il§ 2: EgSS(A
[A7) already look similar to the continuity, momentum andintion equations. The additional terms that appear in th@sations
and the temperature equatiohs {A3) are brought under ddmtroonsidering how they depend on a number of dimensionless
parametersw/vj, K| Amfpis K1 pi, (me/m)l/z. While all these are small in Braginskii's calculation, resamption is made as to
how they compare to each other. We now specify that

w K Amfpi [Me
— ~—— kip<kidmmpi~ ]/ — <1 A8
i NG L i (| Amfpi m (A8)
(see Figl¥). Note that the first of these relations is egeivab assuming that the fluctuation frequencies are Alfiéiihe same
assumption as in gyrokinetics [E. {49)]. The second reteith Eq. [A8) will be referred to by us as tlserongly magnetized
limit. Under the assumptioris {A8), the two-fluid equations redalee following closed set*

dp _
a— pV u, (Ag)
du B2 1 R 1 ~n ~n 1 B-VB
pa:— [p+§+§pyi (beu—§Vu)] +V-[bbpui (bb:vu_§V'U>:|+ ar (AlO)
%—B=B-Vu—BV-u, (A11)
dT_ 2 1 . 2 - 1 2
a“éT'v u+pv (bpmHib-VTi)—Vie(Ti—Te)+§mV||i (bb:Vu—§V.u) , (A12)
dT 2 1 ~ n 1
d_te =—3TeV-u+ ;V - (bprjeb - VTe) - > Vie(Te=T), (A13)

wherev; = 0.90vin Ampi is the parallel ion viscositys; = 2.45vin Amgpi parallel ion thermal diffusivityse = 1.40vthe Amipe ~

(22/7%2) (m /me) Y2k &‘, parallel electron thermal diffusivity [herengi = vini /vi with v defined in Eq.[{5R)], andie ion-electron
collision rate [defined in EqC(51)]. Note that the last temfi. [EEE) represents the viscous heating of the ions.

A.3. One-Fluid Equations (MHD)

If we now restrict ourselves to the low-frequency regime rehien-electron collisions dominate over all other termshie
ion-temperature equatiopn (Al12),

w kH)\mfpi m

=~ <1 Al4d

Y (A14)
[see Egs[(AB) and[(51)], we have, to lowest order in this ndvssnary expansiofl; = To=T. We can now writgp = (nj+ne) T =
(1+2)pT/m and, adding Eqs_-{A12) and(Al13), find the equation for pnessu

2
‘Zf+5pv u=V- (bneH||e6-VT)+§ml/||i (66:Vu—%v-u) 5 (A15)

where we have neglected the ion thermal diffusivity com@dcethe electron one, but kept the ion heating term to maintai
energy conservation. Equatidn (A15) together with HgsHAAT]) constitutes the conventional one-fluid MHD systemththe
dissipative terms [which are small because of Eq. {A14)]ewtgd, this was the starting point for our fluid derivatidriRMHD

in 8[2.
Note that the electrons in this regime are adiabatic bedheselectron thermal diffusion is small

Foiek?
H; L Ky At v/ /% <1, (A16)

provided Eq.[(AT#) holds ang is order unity. If we takes; > 1 instead, we can still satisfy Eq.(A14), $o= T, follows from
the ion temperature equatidn (A12) and the one-fluid equatmerge as an expansion in highHowever, these equations now
describe two physical regimes: the adiabatic long-wagtteregime that satisfies EQ.(A16) and the shorter-wavéteregime
inwhich (me/m)Y/2/ /B < KjAmipi < (Me/m)¥2\/;, so the fluid is isothermal, = To = const,p=[(1+Z)To/m]p = c2p [Eq. (3)
holds with~y = 1].
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A.4. Two-Fluid Equations with Isothermal Electrons

Let us now consider the regime in which the coupling betwéenion and electron temperatures is small and the electron
diffusion is large [the limit opposite to Eq$._(Al14) ahd (A6

2
w K Ampi [ ek m

R ! ~ KA v/ By [ > 1, AL7
Vie fﬁi me w II mfpl\/a Me ( )

Then the electrons are isotherm®l,= Tpe = const (with the usual assumption of stochastic field liseh - VT. =0 implies
VT, =0, as in §44), while the ion temperature satisfies

dT _ 2 f 2 fo 1 2

ot ——§TiV-u+;V- (prHib-VTi) +§I'T]VHi (bb . Vu—§V'u) . (A18)
Equation [AIB) together with Eq$. (A9-AlL1) amd= p(Ti + ZToe)/m are a closed system that describes an MHD-like fluid of
adiabatic ions and isothermal electrons. Applying the ondeof §2.1 to these equations and carrying out an exparision
kj/kL < 1 entirely analogously to the way it was done {0l § 2, we arrihe RMHD equationd (1[7-18) for the Alfvén waves
and the following system for the compressive fluctuatiofmy(®nd entropy modes):

:t(ig 5;”)+b VU, =0, (A19)
R e Rt V(b vU,|+%%5_§>, (A20)
-2 =y 6V ), (A21)
and the pressure balance
(2) 2522 w325

Recall that these equations, being the consequence ofrBlais two-fluid equations (&A]1), are an expansiorkjt\mpi < 1
correct up to first order in this small parameter. Since tlssigative terms are small, we can replagtdf)dp/ po in the viscous

terms of Eqs[{A20) and{A22) by its value computed from HAL9), (A21) and[(A22) in neglect of dissipatiord (dt)dp/ po =
Vu; /(1+c2/v3) [cf. Eq. (28)], where the speed of soundis defined by Eq.[(I86). Substituting this into EJs_(A20)
and ), we recover the collisional limit of KRMHD derivéu AppendiXD, see Eqd_(DIB-DR0) aid ()22).

B. COLLISIONSIN GYROKINETICS
The general collision operator that appears in Ed. (36) andali 1936)

2~2 - (V'
(50) e S fovd (150 [Auen -2 ™80 e

wherew = v -V’ and InA is the Coulomb logarithm. We now take into account the exjoansf the distribution function (34),
use the fact that the collision operator vanishes when & @eta Maxwellian, and retain only first-order terms in theogymetic

expansion. This gives us the general form of the collisiomte Eq. [5T): it is the ring-averaged linearized form of ttendau

collision operator(BL),dhs/0t)c = (Cs[h]) g, Where

a9 1 ww vi_ 190 v 1 0
=2 3 S ol (=37 )[R (5 ) =Rl (3 v g ) )| @2

Note that the velocny derivatives are taken at constant., the gyrocenter distribution functions that appeathie integrand
should be understood ag(v) = hs(t,r +v, x 2/Qs, v, ,Vv)). The explicit form of the gyrokinetic collision operatarchbe derived
in k space as follows:

(%) ~(e[sem]) -Seepm ereeen). e

k k k

whereps(v) = -V, x 2/QsandRs=r —ps(Vv). Angle brackets with no subscript refer to averages oegifioangle} of quantities
that do not depend on spatial coordinates. Note that insie®peratoCy[...], h occurs both with indexs and velocityv and
with index s’ and velocityv’ (over which summation/integration is done). In the latt@sesp = py (V') = -V/| x 2/Qg in the
exponential factor inside the operator.

Most of the properties of the collision operator that aredusethe main body of this paper to order the collision terms
can be established in general, already on the basis of E§.(88B.1EB.2). If the explicit form of the collision operats
required, we could, in principle, perform the ring averagelwe linearized operat@ [Eq. (B2)] and derive an explicit form of
(0hs/0t)c. In practice, in gyrokinetics, as in the rest of plasma ptgghe full collision operator is only used when it is absely
unavoidable. In most problems of interest, further simgaifions are possible: the same-species collisions are witeleled by
simpler operators that share the full collision operatoosservation properties[(8B.3), while the interspecidissoan operators
are expanded in the electron-ion mass rat[o (% B.4).
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B.1. Velocity-Space Integral of the Gyrokinetic Collision Ogir

Many of our calculations involve integrating the gyrokieetquation[(5l7) over the velocity space while keepingpnstant.
Here we estimate the size of the integral of the collisiomtamenk ps < 1. Using Eq.[(BB),

/ds <(6hs> > zz/dsveik.r—ik.ps(v) (&rIC [ Ph,])
S
:Zék-fzﬁ/mdww/ v (e (gt (e rhy )
k 0 -

= 3Tkt [ttt denticy [ = 3 ek [ dvan(adet e, [
k k

i z 1 vix2\? 1 /kvi)? ;
= gkr [ g3 1—.k-£—— kL— -z LVl . rik-op, 1. B4
Xk: / v l k-—5—"5 o i\ o Cs [e"™ hy] (B4)
Since the (linearized) collision operatOt conserves particle number, the first term in the expansioiskas. The operator
Cs = Css+Csq is a sum of the same-species collision operator§thes part of the sum in Eq[{B2)] and the interspecies collision

operator (thes' Z s part). The former conserves total momentum of the partiofespeciess, so it gives no contribution to the
second term in the expansion in Egq.1B4). Therefore,

[dviicadndyn, ~ v p2ons (5)

The interspecies collisions do contribute to the second farEq. [B4) due to momentum exchange with the spegieghis
contribution is readily inferred from the standard formfdathe linearized friction force (see, e.g., Helander &Baj 2002):

ms / dvvCsy [ Phy] =- / d3vv [msygf (v)e K rsMhg +mS,1/§S(v)e"ik"’sJ(")hs/k} , (B6)
, 2 2/ 3
)= V2 EE A e (1) fert (o) e ()] ®7)
me/° 1Y v My Vihs ) Vi Vins'

where erff) = (2//7) fgdyexp(—yz) is the error function. From this, via a calculation of ringeeages analogous to EQ. (B17),
we get

/ oy <—ik-vLQX2) Coe [ 7h] =- / ey {uég(v)<ik-ps(v)e‘ik'Ps(V)>h +%%VSS(V)<IK pe (V)™ Ps'<v>>hs/k}

= _/d3 |: (V)a9]1(as)hsk + q_ Vs S(V)a»s/Jl(a»s/)hs/k] ~ Vsg kip§5ns+ Vs’skipg/ ong. (BS)

For the ion-electron collisionssE i, § =€), using Egs.[(d5) and (1), we find that both terms aréme/m)*/?u; K2 p2on;.
Thus, besides an extra factorldfp?, the ion-electron collisions are also subdominant by odewin the mass-ratio expansion
compared to the ion-ion collisions. The same estimate Holdthe interspecies contributions to the third and fouethrts in
Eq. (B4). In a similar fashion, the integral of the election-collision operator§=g, s’ =i), is ~ veik? p2dne, Which is the same
order as the integral of the electron-electron collisions.

The conclusion of this section is that, both for ion and facélon collisions, the velocity-space integral (at constaof the
gyrokinetic collision operator is higher order than thdis@n operator itself by two orders &f_ps. This is the property that we
relied on in neglecting collision terms in Eqs, (104) andA13

B.2. Ordering of Collision Terms in Eq4. (IR5) ad (137)

In 88, we claimed that the contribution to the ion-ion cadlisterm due to theZe{p)r, /Toi)Foi part of the ion distribution
function [Eq. [12#%)] was one order &f p; smaller than the contributions from the resthpf This was used to order collision

terms in Eqs[(125) an@(1B7). Indeed, from Eqg.l(B3),

<qi [ZGMR' Fo|]> Zém (€ Gy [ Jo(@)Fol] ) ?ﬁ’k

a?
_Zelle e'kpl 1-ik- pi— _(k'Pi)Z__ Foi Zepk Vii i_ FZEFO| (Bg)
Toi Toi

This estimate holds because, as it is easy to ascertain Esin{B2), the operato€; annihilates the first two terms in the
expansion and only acts nontrivially on an expression thaecond order ik, p;. With the aid of Eq.[(4]7), the desired ordering
of the term [B9) in Eq.[(125) follows. When E{. (B9) is integw over velocity space, the result picks up two extra orifers
k. pi [a general effect of integrating the gyroaveraged coltisiperator over the velocity space; see Eql (B4)]:

1 Ze&(p)w Zep

— | 2 L Fy ~ vikd p? B10

nm/ V<C" [ Toi OI]> R I (B10)
so the resulting term in EJ._(137) is third order, as state8l5i8.
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B.3. Model Pitch-Angle-Scattering Operator for Same-Spec@isions

A popular model operator for same-species collisions thaserves particle number, momentum, and energy is cotetiuc
by taking the test-particle pitch-angle-scattering ofmrand correcting it with an additional term that ensuresnantum con-

servation|(Rosenbluth etlal. 1972; see also Helander & Sigo@R):

B 1[0 . »0h . 1 0%h] 2v-U[hJ 3 [dBvvisv)hs
CM[hS]"”DS(V){i {6_ (-8 5 * e 6192] T, FOS}’ =2 T wvpgrem O
Vihs 1st IVis ., [ V V2rnosgdIn A

VDS(V) VSS( i/ ) |:< 5 \t/h ) erf (Vths> +§tTerf <th):| ) Vss— %, (512)

where the velocity derivatives are at constant The gyrokinetic version of this operator is (¢f._Catto & mgd1977;
IDimits & Cohen 1994)

0 8h 21 2
(Culhd)e, =3 &R S(V){zag( ) e V(szhf)k shact2

k

vy Ji(as)U . [h] +VHJo(as)U|| [hsk]
Vths

§fd3vvlJ1(aS) v v)hse (v, V) Ui[had = §fd3vaJo(aS) v (Mhsc(v, V)

2 [V V)W) T 2T T dY (v ving s (Fos(Y)

whereas =k, v, /Qs. The velocity derivatives are now at const&at The spatial diffusion term appearing in the ring-averaged

collision operator is physically due to the fact that a cheaimga particle’s velocity resulting from a collision cande@®@ a change
in the spatial position of its gyrocenter.

In order to derive Eq[(B13), we use Ef._(B3). Singdy) = (—)A(v\/l—gzsinﬁ+9v\/1—§2c0519) /€, it is not hard to see
that

} , (B13)

U, [h«] =

O gikeplipy = gikns) [ﬁ_ § ki (vix )]hsk, a%e"k"’smhsﬁ ko) <3+'kL Vl>hsk- (B14)

o0& 0 1-¢2 Qs oY Qs
Therefore,
0 : o) Oohg V22 ; 9% v (1-¢?)
k- ps(v) 2 |k ps(V) 2 sk 2 k-ps(v) =2 amik-ps(v) =— 2
<e' 85(1 5) 5 he > 85(1 5) o€ 2sz hsi <e' 8192e hsk> 202 k7 hg.

Combining these formulae, we obtain the first two terms in(B43). Now let us work out th&) term:

<eik-ps(v)v,/dsvxvxygs(\/)e—ik.ps(w)hsk(VL\/)> <ve'k PS(V)> 271'/ dv, v / d\/”VDS(\/)< gk ps(v)>hsk(\/b\/”).
0

. . . . (B16)
Since(vetikr) = 7y (eFkrsW)) + (v, etk e where(et»:) = Jy(as) and

; . . . V| XZ . 0 . V| X2Z .Zzxk
<vLei""”S(")>:z><<(VL><z)exp<:F|kL- LQS )>:i|QSzxm<exp<$|kl- le >>::|:I klelJl(aS), (B17)

we obtain the third term in Eq_(B13).
It is useful to give the lowest-order form of the operafor8gih the limitk ps < 1:

ohs | 3v) [ A3V (V) he(V, . V))
5 Ik d3v’v’21/D5(v’)F05(v’)

This is the operator that can be used in the right-hand sié®ofI45) (as, e.g., is done in the calculation of collisidrensport
terms in Appendik D).

In practical numerical computations of gyrokinetic tuute, the pitch-angle scattering operator is not suffitientuse the
distribution function develops small scales not only ibut also inv (M. Barnes, W. Dorland and T. Tatsuno 2006, unpublished).
This is, indeed, expected because the phase-space enasgade produces small scales in rather than just i (see §7.9]1).

In order to provide a cut off in, an energy-diffusion operator must be added to the pitgjieascattering operator derived above.
A numerically tractable model gyrokinetic energy-diffoisioperator was proposed by Abel et al. (2009); Barnes é2@09)*8

s| +O(K3 pd). (B18)

<CM[hs]> =15(V) l =£ )

32¢

B.4. Electron-lon Collision Operator

This operator can be expandechis/m and to the lowest order is (see, el.g., Helander & Sigmar/2002)
0 oh 1 0%he] 2v-uy v
) — €i 2 e e i the
Ceilh] VD(v){ [ag( 5)_65 e (w] v FOQ} V() = ye.( : ) . (B19)

the
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The corrections to this form al®me/m;). This is second order in the expansion &1 § 4 and, therefeeaieed not keep these
corrections. The operatdr (Bi19) is mathematically sintibethe model operator for the same-species collisions [Ef3)]. The
gyrokinetic version of this operator is derived in the waglagous to the calculation in AppendixB.3. The result is

kRe ei 2 Oheg V2(1+§2)
Cul =3 80 |7 (-6 T - S

st Vi Jl(ae) 2 21 [ ,2vF Jl(a1) 4 2ViJo(@e)Uki

2 F()ek d k > F()e .
m Vihe

At scales not too close to the electron gyroscale, namentjn EhatkLpe ~ (me/m)l/z, the second and third terms are manifestly

second order inn,/m)Y2, so have to be neglected along with ot¥m./m) contributions to the electron-ion collisioA%The

remaining two terms are first order in the mass-ratio exjpemshe first term vanishes fbg, = hO [Eq. (I01)], so its contribution

is first order; in the fourth term, we can use ElEI(S?) to expuesin terms of quantities that are also first order. Keeping only
the first-order terms, the gyrokinetic electron-ion cadiisoperator is
2v Uyi
(1-¢9) 2 o FOE} . (B21)

e, =580 (-6 G+
the

Note that the ion drag term is essential to represent theeliectron friction correctly and, therefore, to capture @iemic
resistivity (which, however, is rarely more important farfreezing flux than the electron inertia and the finitenesh®@tlectron
gyroradius; see[§7.7).

K3 p2hex

(B20)
Vthl & Vihe

C. AHEURISTIC DERIVATION OF THE ELECTRON EQUATIONS

Here we show how the equatiofs (I164117) bf §4 and the ERMHRtsans [226-227) of @7 can be derived heuristically
from electron fluid dynamics and a number of physical assiongt without the use of gyrokinetics[(§C.1). This derigatis
notrigorous. Its role is to provide an intuitive route to thetlsrmal electron fluid and ERMHD approximations.

C.1. Derivation of Eqs.[(16-117)
We start with the following three equations:

0B _ One _ UexB _ Vpe
7 cV x E, ot +V - (nele) =0, E+ c e
These are Faraday’s law, the electron continuity equagod, the generalized Ohm’s law, which is the electron mommentu
equation with all electron inertia terms neglected (i.Beatively, the lowest order in the expansion in the electmasan,). The
electron pressure is assumed to be scaldiabythis can be justified in certain limits: for example in thédlisional limit, as in
AppendiXA, or for the isothermal electron fluid approxinasatiderived in §4). The electron-pressure term in the rigimehof
Ohm’s law is sometimes called the thermoelectric term. We assume the same static uniform equilibritgg,= 0, Bg = BpZ,
that we have used throughout this paper and apply to Egs 1€ Fundamental ordering discussed [0 8 3.1.
First consider the projection of Ohm’s law onto ttetal magnetic fieldB, use the definition oE [Eq. (37)], and keep the
leading-order terms in theexpansion:

(C1)

" 1 - 10A) - 5pe
E-b=-—»h- ———+b- = C2
en Vpe = c ot V= erbe (C2)
This turns into Eq.[{116) if we also assume isothermal edestid p. = ToedNe [S€€ EQ.[(TO3)].
With the aid of Ohm'’s law, Faraday’s law turns into
%t—B:VX(UQXB):_UE'VB+B'VUQ_BV'UE (C3)
Keeping the leading-order terms, we find, for the componeiEsy. (C3) perpendicular and parallel to the mean field,
0 0B, _~ 0 0B dne ~
—+ . - = — 4+ - - = . .
(81: Ule VJ_) By =b- VU e, (6t Uje* VJ_) ( B, oo b VU”e (C4)
In the last equation, we have used the electron continuitpaton to write
0 OoNe
Ue=—| —+ . -
V- Ue (8’[ Ule VJ_) Moo (C5)
From Ohm’s law, we have, to lowest order,
c oPe ) _ c 0 Pe
=-7x — + = — (- .
Ule= ZXBO (EJ_ VJ_erbe) ZXVJ_BO (QO e (C6)

Using this expression in the second of the equationk (Ce)sgiv

d 6BH _6ne §pe 58” 5pe ONe
a(?o o) VU o B B Lo e ) (©7)
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whered/dt is defined in the usual way [Ed._(122)]. Assuming isotherntetteons §pe = ToedNe) annihilates the second term on
the right-hand side and turns the above equation into[Eql)(14s for the first of the equations {C4), the use of [EQ.](C@&) an
substitution 0B =-2 x V| A turns it into the previously derived E@.{C2), whence foltoiq. [116).

Thus, we have shown that EqE_(I[164117) can be derived aget donsequence of Faraday’s law, electron fluid dynamics
(electron continuity equation and the electron force begaa. k. a. the generalized Ohm'’s law), and the assumpticothfermal
electrons—all taken to the leading order in the gyrokinetatering given in §311 (i.e., assuming strongly interagimisotropic
fluctuations withk < k).

We have just proved that Eq§.(116) ahd (117) are simply tiggpelicular and parallel part, respectively, of HEq.J(C3heT
latter equation means that the magnetic-field lines areefromto the electron flow velocitye, i.e., the flux is conserved, the
result formally proven in €413 [see Eq._{99)].

C.2. Electron MHD and the Derivation of Eq$. (226-227)

One route to Eqs[(286-2P7), already explained[in B 7.2, s&ad with Eqs.[(CR2) and (C7) and assume Boltzmann electrons
and ions and the total pressure balance. Another approamie, standard in the literature on the Hall and Electron MHpi
start with Eq.[[CB), which states that the magnetic fielddzén into the electron flow. The electron velocity can betemiin
terms of the ion velocity and the current density, and thteddhen related to the magnetic field via Ampeére’s law:

I

en 4rens
To the leading order in, the perpendicular and parallel parts of Eq.](C3) are Eg®), (€spectively, where the perpendicular and
parallel electron velocities are [from E@.(C8)]

Ue = Uj V x B. (C8)

Ui

5 c
47Terbez>< VJ_(SB”, u“e=u||i+mViAH. (C9)
The relative size of the two terms in each of these express®nontrolled by the size d&, di, whered; = p;/\/f; is the ion
inertial scale. Wheik, d;, > 1, we may seti; = 0. Note, however, that the ion motion is not totally negdelctindeed, in the
second of the equations (IC4), the./ne terms comes, via Eq_(C5), from the divergence of the ionaridfrom Eq. (C8),
V-u; = V-ue]. To complete the derivation, we relaiee to 6B via the assumption of total pressure balance, as explaimed i
§[7.2, giving us Eq[{225). Substituting this equation and.Eﬁﬁﬁ) into Eqs[(Q4), we obtain

ov §B|| g ﬂ B di ~

Ezv’z*d‘b'vs_o’ at Bo '_1+2/5i(1+2/7)b

whereV¥ =-A, /\/4rmng. Equations[(CTI0) evolve the perturbed magnetic field. Thgsations become the ERMHD equations
(228227) ifoB)| /By is expressed in terms of the scalar potential via Eq.1(223).

Note that there are two special limits in which the assunmptibimmobile ions suffices to derive EqE._(C10) from Hg.](C3)
without the need for the pressure balange:> 1 (incompressible ions) or = Tg/Tee < 1 (cold ions) butfe = 5iZ/7 > 1.
In both cases, EqL{2R5) shows thiak/nee < 6B /Bo, so the density perturbation can be ignored and the coeffioiethe
right-hand-side of the second of the equatiéns {C10) isl¢quia The limit of cold ions is discussed further in Appenlx

Uie=Uyit

VV2 U, (C10)

D. FLUID LIMIT OF THE KINETIC RMHD

Taking the fluid (collisional) limit of the KRMHD system (sumarized in §5.7) means carrying out another subsidiary
expansion—this time ik Ampi < 1. The expansion only affects the equations for the density raagnetic-field-strength
fluctuations (§5.5) because the Alfvén waves are indiffei@nollisional effects.

The calculation presented below follows a standard peatiob algorithm used in the kinetic theory of gases and ismlka
physics to derive fluid equations with collisional trangpmwefficients [(Chapman & Cowling 1970). For magnetized ipkas
this calculation was carried out in full generality by Bragkil (1965), whose starting point was the full plasma Kinéteory
[Egs. [38E39)]. While what we do below is, strictly speakintgrely a particular case of his calculation (see Appendpithas
the advantage of relative simplicity and also serves to shaw the fluid limit is recovered from the gyrokinetic fornsti—a
demonstration that we believe to be of value. ~

It will be convenient to use the KRMHD system written in terofghe functiondf; = g+(v2l/vt2hi)(6BH/Bo)F0i, which is the
perturbation of the local Maxwellian in the frame of the Adfvwaves [Eqs[{130-152)]. We want to expand Eg.](150) in ppwe

of ky Amipi, S0 we letsf; = 660 +5f0+.., B = 5B +5BV+.., etc.

D.1. Zeroth Order: Ideal Fluid Equations
Since [see Eq[{49)]
w kva  KAdmpio Ky kgvin

Vi U VB T i Vi
to zeroth order Eq[(1%0) becomé@i [éﬂ(o)D = 0. The zero mode of the collision operator is a Maxwelliaheiefore, we

~ I(|| /\mfpia (Dl)

Ri
may write the full ion distribution function up to zeroth @mdn k; Ami as follows [see EqL{144)]
i Vi —Ug)?+ (v —uy)?
f :#wexp{—m[( - E;T M ”)]}, (D2)
(27TTi/m) i
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wheren; = ngi +on; andT; = Ty +47T; include both the unperturbed quantities and their pertiobs. TheE x B drift velocity ug
comes from the Alfvén waves (se€ &]5.4) and does not concerares Since the perturbatiofis;, u; andsT; are small in the
original gyrokinetic expansion, Eq.(ID2) is equivalent to

. © 23\ oT@ 2v
50 = | 2T (VT__) il + Sl | R, (D3)
Noe Vi 2/ To Vg

where we have used quasineutrality to repl&ggng = dne/nee- This automatically satisfies EQ. (151), while Hq. (152)gius
an expression for the ion-temperature perturbation:

T (1+z) o _ 2 98]
Toi Nee G Bo '

Note that this is consistent with the interpretation of tleependicular Ampere’s law [Eq_(b3), which is the progenitd
Eq. (I52)] as the pressure balance [see Eq. (67)]: indeed]lirgy that the electron pressure perturbatiod i = ToedNe

[Eq. (I03)], we have

(D4)

T

0o == ==0Pe=dpi = ~0NeToe =N To —Noid i, (DS)
0

whence follows Eq[{D4) by way of quasineutraligr{ = ng) and the definitions o, 7, 3, [Eqgs. [40E4DR)].
Since the collision operator conserves particle numbemergum and energy, we can obtain evolution equation&@h/ne,

uflo) and 6Bff)/Bo by multiplying Eq. [I5D) by 1y, v2/va,, respectively, and integrating over the velocity spacee Triree
moments that emerge this way are

0
i/dSV5f~-(O)=6n—(eO) L[ @duvof@ = 4@ 1 d‘°’vﬁ6f~-(°)=§ 6n—(e0)+6T‘() . (D6)
Noi ! Noe ’ Noi I I Noi va, ! 2\ nee To

The three evolution equations for these moments are
(0)
d (6n® BT\ o 0.
dt < e Bo +b-Vu©=0, (D7)
ap . o
T‘szxb'VB—c): : (D8)
(0)
d [3[on® 1@\ 5B7] 5.
—|= + ! -= +>b.-vu@=0. D9
dt [2 ( Noe Toi 2 By 2 VU” ( )

These allow us to recover the fluid equations we derived @8 Eq. [D8) is the parallel component of the MHD momentum
equation[(27); combining Eq§_(D7]. (D9) ahd {D4), we obthcontinuity equation and the parallel component of tdeation
equation—these are the same as Hgs. (25)[and (26):

(0)
d ong _ 1 5 o d 6BH - 1 ¢ ()
dt noe — 1+c2/\ VU GtRy T 1+v,§/cgb'vuu ’ (D10)
where the sound speeglis defined by Eq[{186). From EqE. (D7) ahd[D9), we also findatiedog of the entropy equatidn {23):
doT® 2dan® o das®_ o 580 a0 2600 (5 7\ (o0 ;o8 (D11)
dt To — 3dt ne dt s, 7 s To 3Me \3 7T Nee €& Bo |

This implies that the temperature changes due to compresdieating only.

D.2. Generalized Energy: Five RMHD Cascades Recovered

We now calculate the generalized energy by substitutinffom Eq. [D3) into Eq.[[I53) and using EqS._(D4) ahd (D11):
[ s | mngug  6B2  mnguf  0Bf v\ 3 1+Z/1 0
w= [ o lT*sT?*T*sTT" (2+2) *z”‘”“mg]
1+72/r
5/3+Z/1
The first two terms are the Alfvén-wave energy [Hg. (154)]e Toilowing two terms are the slow-wave energy, which sjifite
the independently cascaded energiestdfand “—” waves (see E2]5):

_ miNoi _
Wew =W+ W5, = [ o U (1Z7+127). (D13)

3
=Waw +Waw +Wa, +We,, + = Noi To W (D12)

The last term is the total variance of the entropy mode. Tieshave recovered the five cascades of the RMHD systéml(§2.7;
Fig.[d maps out the fate of these cascades at kinetic scales).
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D.3. First Order: Collisional Transport

Now let us compute the collisional transport terms for theagipns derived above. In order to do this, we have to detegmi
the first-order perturbed distribution functiéfp(l), which satisfies [see Eq._(150)]

- - 5B 0)
(G [57)), = % <5fi<°>— i =L ) +v/b- v <5f<°>+ z 5:6 F0i> . (D14)

2
Vthl 0

We now use Eq[{O3) to substitute féﬁ(o) and Eqgs.[(DI0-D11) and(D8) to compute the time derivatiieguation [DI#)
becomes

. _ V2 2/3+C2/V3 A V2 6T(0)
(i [ﬁimbai = [—(1—352) Y BTNV <Vh. 2) b-v—— | Fa(v). (D15)

> 212
Vi 1+c5/va t

where¢ = v /v. Note that the right-hand side gives zero when multiplied by orV? and integrated over the velocity space, as
it must do because the collision operator in the left-hadd sbnserves particle number, momentum and energy.

Solving Eqg. [DIb) requires inverting the collision operat/hile this can be done for the general Landau collisionrafoe
(see Braginskii 1965), for our purposes, it is sufficientse the model operator given in AppendixB.3, Eq. (B18). Timgpodifies
calculations at the expense of an order-one inaccuracindimerical values of the transport coefficients. As the texalae of
these coefficients will never be crucial for us, this is aneptable loss of precision. Inverting the collision operatcEq. (DIB)
then gives

} 2 \2 2 ©)
NI ll 3¢V 2/3+ &M o €V< 2>b v(:— Fo (V). (D16)
thl

W |8 G 12

whereuji (v) is a collision frequency defined in EG{B12) and we have ehdbe constants of integration in such a way that the
three conservation laws are respectgdt®v6f™ = 0, [d3vvsf® =0, [ dvv?5f® = 0. These relations mean th&il) = 0
ufll) =0, 6T(1) =0 and that, in view of Eq[{1%2), we have

5B 12 2 12
I __ 1 2/3+c5/va o
Bo 3 1+c2/\2 VeV, (b17)
wherey; is defined below [Eq[(D21)]. Equatioris (Bl6-D17) are nowdisecalculate the first-order corrections to the moment
equations[(DIf-D9). They become

5ne 58”
dt (n()e By +b VUH 0 (D18)
du ~ 0B 2/3+CNZ .
e R S v i T/ S - :
dt Vib \Y% Bo 1+C§/V2 Vi b-Vv (b VU”) , (Dlg)
doéTi 2d 5ne 6T
where we have introduced the coefficients of paraIIeI viggasd paraIIeI thermal diffusivity:
21 v 21 [, V [V 5
W= ta [ Mg O s i (5 3) RO (21

All perturbed quantities are now accurate up to first ordekikymi. Note that in Eq.[(DI9), we used E§. (D17) to express
68(0) = 6B —dB". We do the same in E{D4) and obtain

Il
one _ 0T _2 (B 1 2/3+C/NV2 -
1+ -y =2 sUA D . D22

( T) Noe TOi ﬁi ( Bo BV%\ 1+C§/V§\ Vi qu ( )

This equation completes the systém (ID18-D20), which allesv® determinéne, uj, 6T; andéBy. In §[6.1, we use the equations
derived above, but absorb the prefactof32cZ/v3)/(1+c3/va) into the definition of;. The same system of equations can also
be derived from Braginskii's two-fluid theory (Appendix 4,4rom which we can borrow the quantitatively correct valoé the
viscosity and ion thermal diffusivityz; = 0.90vg, /vii, /i = 2. 45vm,/uII , Wherey; is defined in Eq[{52).

E. HALL REDUCED MHD

The popular Hall MHD approximation consists in assuming tha magnetic field is frozen into the electron flow velocity
[Eqg. (C3)]. The latter is calculated from the ion flow velgaitnd the current determined by Ampére’s law [Eq.1(C8)]:

0B c
E—VX[( _vaB>XB:|, (El)
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where the ion flow velocity; satisfies the conventional MHD momentum equatidn (8). THENHED is an appealing theoretical
model that appears to capture both the MHD behavior at longeleagths (whem ~ u;) and some of the kinetic effects that
become important at small scales due to decoupling betweerléctron and ion flows (the appearance of dispersive Wwaves
without bringing in the full complexity of the kinetic thepr However, unlike the kinetic theory, it completely ignsréhe
collisionless damping effects and suggests that the keyl-scale physical change is associated with the ion inlestale
di = pi/+/Gi (or, whenBe < 1, the ion sound scale = pi/Z/27; see §EB), rather than the ion gyroscalds this an acceptable
model for plasma turbulence? Figlie 8 illustrates the featatr ~ 1, the ion inertial scale doemt play a special role linearly,
the MHD Alfvén wave becomes dispersive at the ion gyroseadé atd;, and that the collisionless damping cannot in general
be neglected. A detailed comparison of the Hall MHD lineapétrsion relation with full hot plasma dispersion relatiesds to
the conclusion that Hall MHD is only a valid approximationtire limit of cold ions, namelyr = Ty /Toe < 1 (lto et al[ 2004

[ 2004). In this Appendix, we show that a redutmg-frequency, anisotropic) version of Hall MHD can, mdebe
derived from gyrokinetics in the limit < 1.°° This demonstrates that the Hall MHD model fits into the théocaéframework
proposed in this paper as a special limit. However, the patantegime that gives rise to this special limit is not comno
space and astrophysical plasmas of interest.

E.1. Gyrokinetic Derivation of Hall Reduced MHD

Let us start with the equations of isothermal electron fl&gs. [I18-1211), i.e., work within the assumptions thatvedid us
to carry out the mass-ratio expansiofi (8 4.8). In Eq.](126)gendicular Ampére’s law, or gyrokinetic pressure badyniaking
the limit 7 < 1 gives

5BI| ker 3 __Bedne
- {To. e =/ dvao(a)h.k} 2o (E2)

where we have used E{.(118) to expressl’thetegral and the expression for the electron bita 5Z/7. Note that the above
equation is simply the statement of a balance between theetiagand electron thermal pressure (the ions are relstoat,

so they have fallen out of the pressure balance). Using E3).t(Eexpressne in terms ofoB; in Eqgs. [116) and(117) and also
substituting fom e from Eq. [II9) [or, equivalently, E].{B7)], we get

ov . 3B d 0By _
E'VAb'V(%VAd' BO) dt B 1+2/ﬁ

where we have used our usual definitions of the stream anddhtibns [Eq.[(135)] and of the full derivatives [Ef._(160)]
These equations determine the evolution of the magneti; fieit we still need the ion gyrokinetic equati@n (121) tacoidte
the ion motion ¢ = cyp/Bo andu;) via Eqgs. [1IB) and(88). There are two limits in which the kimetics can be reduced to
simple fluid models.

b V(U”, d.Vl ) (E3)

E.1.1. High-lon-Beta Limit,3 > 1
In this limit, k, p; =k, div/5; > 1 as long ak, d; is not small. Then the ion motion can be neglected becauseavieraged out
by the Bessel functions in Eq§.(118) afd](88)—in the sameagan §7.2. So we geb = (1/Z)vadidBy /By [using Eq. [ER);
this is ther < 1 limit of Eq. (223)] anduy; = 0. Noting that3e = 5Z/7 > 1 in this limit, we find that Eqs[{B3) reduce to

ov 6B, d 0B
T vzdeB ﬁs—o_dbvv (E4)

which is ther < 1 limit of our ERMHD equationd(226-227) [or, equivalentigs. [CID)].

E.1.2. Low-lon-Beta Limit5 ~ 7 < 1 (the Hall Limit)

This limit is similar to the RMHD limit worked out in BI5: we tak for now,k; d ~ 1 andBe ~ 1 (in which subsidiary
expansions can be carried out later), and expand the iorkigytics ink, p; =k, di1/53 < 1. Note that orderinge ~ 1 means
that we have orderef] ~ 7 < 1. We now proceed analogously to the way we did[ih § 5: exphesion distribution in terms of
theg function defined by Eq[{I24) and, using the relatlonl (E2)vieeniB; /By anddne/noe, Write Eqs. [I2B-127) as follows:

og . 99, cC VAL VAL e
5t +v) 5 + B { < © c c 0 (Cii [g]>Ri
Ri

~— Y~ ~N Y~ Y—
@ © @ © @) ©
_Ze _1 T0925B|| vV, -A| ) g _VL~AL )
{322 ) el 22 ) o
—_——— —— ! ~ —— i
@) @ @) @) ®
27 6By A 1
- {Fl(oéi)*'a] B—! [1-To(a |)} Bk = /dngo(a.)gk, Ujki = n—m/dSVV”Jo(ai)gk- (E6)
~~
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All terms in these equations can be ordered with respecttsitnall parametey/3; (an expansion subsidiary to the gyrokinetic
expansion ire and the Hall expansion in < 1). The lowest order to which they enter is indicated undattmeach term. The
ordering we use is the same as in_§ 5.2, but now we count therpaf¢/5F; and order formalljk di ~ 1 andge ~ 1. It is easy
to check that this ordering can be summarized as follows
Zep 108 oBL 0B g u 1B (E7)
To 6B’ Bo Bo’ Fi Vv 7 Bo
and that the ion and electron terms in Efs](E3) are compatatuler this ordering, so their competition is retained it fthis
could be used as the underlying assumption behind the agjefihe fluctuation frequency continues to be ordered aAlflién
frequencyyw ~ kyva. The collision terms are ordered vigv; ~ kH)\mfpi/\/E andk; Ammpi ~ 1, although the latter assumption is
not essential for what follows, because collisions turntoute negligible and it is fine to take Amg,i > 1 from the outset and
neglect them completely.

In Egs. [E6), we use Eq$.(129) and(1130) to to writel'b(ci) ~ a; = k2 p?/2 andl'1(«) =~ 1. These equations imply that if
we expandy =g +g@+.. ., we must have d3vgt™ = 0, so the contribution to the right-hand side of the firsthef equations
(EQ) (the quasineutrality equation) comes frgifi, while the parallel ion flow is determined lgf?). Retaining only the lowest
(minus first) order terms in EJ._(E5), we find the equatiorg‘()%), thev moment of which gives an equation fay;:

agV 1) 9B d“HI 9By
+ — = b-V—F =\ib-V—".
i {79 b= V|| VB o = Bo
Now integrating Eq.[(E5) over the velocny space (at constanusing the first of the equations (E6) to express the integra
9@, and retaining only the lowest (zeroth) order terms, we find

d[ 1 4 2\ /B d N
i@ [ VA Tef (1+ ﬁe> } +h-vui=0 = Lvie=wb.vviv, (E9)
where we have used the second of the equatiods (E3) to extpestisie derivative 05B| /Bo.

Together with Eqs[{B3), Eq$. (E8) and [E9) form a closedesystvhich it is natural to calHall Reduced MHD (HRMHD)
because these equations can be straightforwardly derivagfilying the RMHD ordering (82.1) to the MHD equatiohl (@1
with the induction equatiof (10) replaced by Hq.J(E1). Intjésys. [EB) and(B9) exactly coincide with Es.](27) &ndl,(@B)ch
are the parallel and perpendicular components of the MHD emtom equatior {8) under the RMHD ordering; Egs](E3) should
be compared Eqd. (1L 7) arfd[26) while noticing that, in thetlim< 1, the sound speed &g = va\/(e/2 [see Eq.[[186)]. The
incompressible case (Mahajan & Yoshida 1998) is recover#ius subsidiary limitse > 1 (i.e., 1> G, > 7).

(E8)

E.2. Generalized Energy for Hall RMHD and the Passive Entropy &lod

To work out the generalized energy(813.4) for the HRMHD regjinve start with the generalized energy for the isothermal
electron fluid [Eq.[(I09)] and use E€.(E?2) to express theitepsrturbation:

Toiof?  oB% 5B
3 3,000 L 921 L (14 |}
we foe| oI5 L (1 2) 2, €10
wheredB, =2x V| ¥. The perturbed ion distribution function can be writtentia same form as it was done in&15.4 [Eq.(143)]:
to lowest order in the/3 expansion (EE.112),

2V, -ug 2V, -ug 2V|| ll

F + g( V= FOI
2
Vi Vini Vi

whereu, =2 x V| ®. The last equality above is achieved by noticing that, suice satisfies Eq[{B8), we may split it into a
perturbed Maxwellian with parallel velocﬂyﬁnd the remaindeg? = szuHiFOi/Vtzhi +@. Thengis the homogeneous solution

5 fi(—l)

Foi +8, (E11)

of the leading-order kinetic equation [see (E8)]:
§+{q>,g}=o, /d3vg=o. (E12)
Substituting Eq.[{E11) into EJ.(EILO) and keeping only theellag-order terms in the/3; expansion, we get
2
- 3. | Mnouy ﬁ mnOiu|| 6B 3 / 3 To.g
W/dr[ et 87T 1+ﬁe d3v P (E13)

The first four terms are the energy of the Alfvénic and slowsavpolarized fluctuations [cf. Eq._(DIL2)]. Unlike in RMHDhese
are not decoupled in HRMHD, unless a further subsidiary laiagelength limit is taken (sed §E.4). It is easy to verifgttthe
sum of these four terms is indeed conserved by Eqs. (E3) aE8[ED). The last term in Eq._{E13) is an individually conselr
kinetic quantity. Its conservation reflects the fact tas decoupled from the wave dynamics and passively advegteded
Alfvénic velocities via Eq.[(E12}*

The passive kinetic modgcan be thought of as a kinetic version of the MHD entropy matutf andeed, reduces to it if the
collision operator in EqL(B5) is upgraded to the leadingeohy orderingu /v ~ 1 (i.e., by considering long parallel wavelengths,
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Ky Amipi ~ v/Bi). In such a collisional limitg has to be a perturbed Maxwellian with no density or velocéytprbation [because
[ d*vg =0, while the velocity perturbation is explicitly sepamfeom g in Eq. (E11)]. Therefore,

[\ 3\ 4T d o . / s Ta? / ! 5T2
S e d&r [ d d3r Sng Ty E14
9= (vthl 2> T dt T / VoR, g ol T2 (E14)

This is to be compared with thg ~ 7 < 1 limit of Egs. [DI1) and[{DI2). As we have established, in {}& expansion,

5T =0T, om =on, 6By = 6Bf‘°), so to lowest ordefs/sy = 6T/ Toi and Eq.[ET¥) describes the entropy mode in the Hall limit.

E.3. Hall RMHD Dispersion Relation

Linearizing the Hall RMHD equation§ (E3], (E8) and [E9) (ded in §E. 1.2 assuming the orderifig~ T < 1), we obtain
the following dispersion relatioff

K22 2 42
(wz—kﬁv,i) <w2— [ )zwzkzvz kid (E15)

When the coupling term on the right-hand side is negligikle) /\/1+2/ e < 1, we recover the MHD Alfvén wave,? = kﬁv,i,
and the MHD slow wave,? = kﬁvf\/(1+v/§/c§) [Eq. (I67)], wherees = vay/Be/2 in the limit T < 1 [Eq. (I66)]. In the opposite
limit, we get the kinetic Alfvén wave,? = k3vak? d?/(1+2/3e) [same as Eq[{230) with < 1].

The solution of the dispersion relati 15)is
k2v2 2 42 4
2o A |y, 1k, )1 <1+1> @ g+ LA | (E16)
1+2/0e |7 Be 2 72 Be 4
The corresponding eigenfunctions then saftisfy
Ky V. 0B kv 6B kv
\I/:—M [ORAVN i_” R UHi:—M—H, (I):—M\I/. (El?)
w Bo w By w
Equation[(ETP) takes a particularly simple form in the sdiasy limits of high and low electron beta = 3Z/7:
K2 o2 K2 d2)\ ® kfcs
B> 11 w? =IO [1+§ + <1+ X ) —1] L Be<<1:w?=KhA (1418 p2) andw? = 1+'|'({pg, (E18)

whereps = di\/Be/2 = pi\/Z/27 = ¢5/$Y is called the ion sound scale. The Alfvén wave and the slowewgmown as the ion
acoustic wave in the limit of <« 1, fe < 1) become dispersive at the ion inertial scded; ~ 1) whenge > 1 and at the ion
sound scalel(; ps ~ 1) whenge < 1.

E.4. Summary of Hall RMHD and the Role of the lon Inertial and loniSbScales

We have shown that in the limit of cold ions and low ion beta~< 7 < 1, “the Hall limit”), gyrokinetic turbulence can be
described by five scalar functions: the stream and flux fonstb and W for the Alfvénic fluctuations, the parallel velocity and
magnetic-field perturbations; andJB, for the slow-wave-polarized fluctuations, agdhe zero-density, zero-velocity part of
the ion distribution function, which is the kinetic versiohthe MHD entropy mode. The first four of these functionsfgta
closed set of four fluid-like equations, derived in 8JE.1 aolected here:

ov _6BH d 5BH _ 1 ~ 2

E—VAb V(®+VAd|B—O>, aB—O— 1+2/ﬁebV(U||| d|VL\I/), (Elg)
d " du . _0B

GVie=vib-vViv dt‘" =\2b. vB—O”. (E20)

We call these equations thall Reduced Magnetohydrodynamics (HRMHD) fully account for the generalized energy cas-
cade, one must append to the four HRMHD equations the fiftretlkd equation[(E12) fog, which is energetically decoupled
from HRMHD and slaved to the Alfvénic velocity fluctuatior§i.2).

The equations given above are valid above the ion gyroskaje,< 1. They contain a special scald//1+2/., which
is the ion inertial scale; for 5. > 1 and the ion sound scalg = ¢;/Q; for S < 1. As becomes clear from the linear theory
(8[E.3), the Alfvén and slow waves become dispersive at ttates Nonlinearly, this scale marks the transition fromribhgime
in which the Alfvénic and slow-wave-polarized fluctuati@re decoupled to the regime in which they are mixed. Naméignwv
ki di/\/1+2/3e < 1, HRMHD turns into RMHD: Eqs[{E19) become Eds.](17) dnd (26)ile Egs. [E2D) remain unchanged
and identical to Eqs[(18) and {27); in the opposite Iirk\itd-/iél+2/ﬂe > 1, the ion motion decouples from the magnetic-field
evolution and Eqs[{E19) turn into the ERMHD equati )

Since we are con3|der|ng the cagex 1, bothd, andps are much larger than the ion gyroscale In the opposite limit of
G > 1 (8E.1.1), whiled; is the only scale that appears explicitly in Eqs.](E4), weelthw p; and the equations themselves
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represent the dynamics at scales much smaller than the fosapje, so the transition between the RMHD and ERMHD regime
occurs atk pi ~ 1. The same is true fg¥; ~ 1, whend; ~ p;. The ion sound scalgs > p; does not play a special role when
Gi is not small: it is not hard to see that fbr ps ~ 1, the ion motion terms in Eq4. (E19) dominate and we simptpver the
inertial-range KRMHD model (&l5) by expandingkn pi =k, ps/27/Z < 1.

Various theories of the dissipation-range turbulencedaseHall and Electron MHD are further discussed in §8.2.6.

F. TWO-DIMENSIONAL INVARIANTS IN GYROKINETICS

Since gyrokinetics is in a sense a “quasi-two-dimensioapfiroximation, it is natural to inquire if this gives riseadditional
conservation properties (besides the conservation oféherglized energy discussed in_ 83.4) and how they are bimkéme
presence of parallel propagation terms. It is importantipleasize that, except in a few special cases, these int@gemonly
invariants in 2D, so gyrokinetic turbulence in 2D and 3D hasffamentally different properties, despite its seemitgasi-2D”
nature. It is, therefore, generally not correct to thinkted gyrokinetic turbulence (or its special case the MHD tiehce) as
essentially a 2D turbulence with an admixture of parall@igagating waves (Fyfe etlal. 1977; Montgomery & Tulner 981

In this Appendix, we work out the 2D invariants. Without atigting to present a complete analysis of the 2D conservation
properties of gyrokinetics, we limit our discussion to sktayvhow some more familiar fluid invariants (most notably,gnetic
helicity) emerge from the general 2D invariants in the appiaie asymptotic limits.

F.1. General 2D Invariants

In deriving the generalized energy invariant, we used tieetfaat [ d*Rshs{(x)r,,hs} = 0, so Eq.[(5F) after multiplication
by Toshs/Fos and integration over space contains no contribution froenRbisson-bracket nonlinearity. Since we also have
[ dBRs (x)r.{ (X)Rrs,hs} = 0, multiplying Eq. [5F) byas(x)r, and integrating over space has a similar outcome. Subiatite
latter integrated equation from the former and rearranga'mgs gives

ANs 0 Tos _Gs(X)Rs >Rs ah T0 _ Gs(0Rs >Rs onh

We see thatin a purely 2D situation, Wh@fﬁz 0, we have an infinite famlly of |nvar|ant§: |S(VL,V||) whose conservation (for
each species and for every value/Qfande 1) is broken only by collisions. In 3D, the parallel partltsiEeamlng (propagation)
term in the gyrokinetic equation generally breaks thesariawnts, although special cases may arise in which theéinst obn the
right-hand side of Eq[{F1) vanishes and a genuine 3D invaaippears.

F.2. “Aﬁ-Stuff”

Let apply the mass-ratio expansiorf (84.1) to Eq] (F1) focted®s. Using the solutiod (ID1) for the electron distribnt
function, we find

BlengOeFoe/dgr (%_iVAII _ﬁﬁ)zz_ lez" Foe [ 4o rAH ey FOe/dSrA (5ne 5Bll) 1

E ot 2 Noe T()e C Vtzhe Bo ot c? T()e 2 Noe Vthe Bo
V(A 2 0B viA ohd] e
:‘9\4|/d3 [< lal _Toe VA ||) 9 <5ne e@)FOe_ 1A 8he] ‘4|/O|srAH <%) 7 (F2)
e vthe Bo / 02\ Noe Toe c 0z c ot ).
where we have kept terms to two leading orders in the expanﬁmlowest order, the above equation reduces to
Toe 6N

4 Al L / dra L (el ) F3
dt / ' 62 € Nge —f (F3)

This equation can also be obtained directly from [Eq. (116)lGpiy by A; and integrate). In 2D, it expresses a well known
conservation law of theAﬁ-stuﬁ.” As this 2D invariant exists already on the level bétmass-ratio expansion of the electron

kinetics, with no assumptions about the ions, it is inhdrtteth by the RMHD equations in the limit &f, p; < 1 (85.3) and

by the ERMHD equations in the limit d€, p; > 1 (87.2). In the former limitgne/nee on the right-hand side of EJ_(F3) is

neghglble (under the ordering explained in"&l5.2); in theslalimit, it is expressed in terms ef via Eq. [221). The conservation
“As-stuff” is a uniquely 2D feature, broken by the parallel prgption term in 3D.

F.3. Magnetic Helicity in the Electron Fluid

If we now divide Eq.[(ER) through b9\4|/c and integrate over velocities, we get, after some integmatby parts, another
relation that becomes a conservation law in 2D and that cneasily be derived directly from the equations of the isotial

electron fluid [T1B-117):
dne 6B e dp OB 9 [Toedn ou
3 e 90| 3 e 0P 0P| 10e Olle lle
dt/d A”(noe ) /d {n()eaz Bo 6z(e Noe ) A 0z } (F4)
In the ERMHD limitk, p; > 1 (8[Z.2), we use Eqd._(201-223) to simplify the above eqnatind find that the integral on the
right-hand side vanishes and we get a genuine 3D consamiatio

% / d®r A 6B =0. (F5)
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This can also be derived directly from the ERMHD equati€@8{22T) [using Eq[{223)]. The conserved quantity is reeskien
to be the helicity of the perturbed magnetic field:

F.4. Magnetic Helicity in the RMHD Limit

Unlike in the case of ERMHD, the helicity of the perturbed metic field in RMHD is conserved only in 2D. This is because
the induction equation for the perturbed field has an inhaenegus term associated with the mean field [Ed. (10) ®ith
Boz + 6B] (this issue has been extensively discussed in the literated Matthaeus & Goldstdin 1982; Stribling ef al. 1994;

Bergel 1997; Montgomery & Bales 1999; Brandenburg & Matiisa2004). Directly from the induction equation or from its
RMHD descendants Eq§.(17) ahd](26), we obtain [note theitlefia (135)]

d 3 _ 3 BéBH B()AH (9U||
a/d rA||6BH —/d r (C(p 0z 1+V,?_\/C§E s (F?)

so helicity is conserved only #/0z=0.

For completeness, let us now show that this 2D conservadiond a particular case of EQ.(F1) for ions. Let us consider th
inertial range K. pi < 1). We substitute Eq[{124) into Eq.{F1) for ions and expantiio leading orders ik, p; using the
ordering explained in[§5.2:

BI._ 9 Toi 3 Zev||<AH> 2_ Zzesz FOI/ A|| VH/ 3
8t2F0./d Ri ( . i) cml e A

__ ViR [, L Jo V3 9By 3 (o, VIA) 99,289 [ o, (0N
=R e (g ) e [ () R [ (R), e

The lowest-order terms in the above equations (all propoati to HFoi) simply reproduce the 2D conservation (ﬁH“-stuff,”
given by Eq.[[EB). We now subtract E_{F3) multiplied By, /c)*Foi/Toi from Eq. [EB). This leaves us with

O [ a3 n_ [ ( VAN / 3, (Z0ne VA 0B OAy / 3 ohi
at/CI I'AHg—C/d r ((p c aZ+VHFOI d°r P +Vt2hi By 9z + [d rA” o C. (Fg)

This equation is a general 2D conservation law of the KRMHDagipns (see[85.7) and can also be derived directly from them
If we integrate it over velocities and use Eds. (146) andl14@ simply recover Eq[{F4). However, since Hg.l(F9) holts f
every value ol andv_, it carries much more information than EQ.{F4).

To make connection to MHD, let us consider the fluid (colligif) limit of KRMHD worked out in AppendikD. The distribu-

tion function to lowest order in thig Amgi < 1 expansion ig = (V2 /vtzh,)(SBH/Bo+5f,(°), Wheredf,(o) is the perturbed Maxwellian
given by Eq.[[DB). We can substitute this expression intoE®). Since in this expansion the collision integral is éﬂlﬂ)tO(Sﬁ(l)
and is the same order as the rest of the terms (Se€ § D.3) reatise laws are best derived by takingv}, andv?/v3; moments
of Eq. [E9) so as to make the collision term vanish. In pakgicunultiplying Eq. [E®) by ¥ (27 /3Z)v?/va,, integrating over
velocities and using Eqd.(ID4) arid (D6), we obtain the elmfLequation for[ d3rA||6BH which coincides with Eq[{F7). Note

that, either proceeding in an analogous way, one can demitasequations for[ d3rA |0Ne and [ d3 A |u—these are also 2D
invariants of the RMHD system, broken in 3D by the presendb®fropagation terms The same res \t can be derivedlgirect
from from the evolution equations (ID8) aid (I)10).

F.5. Electrostatic Invariant

Interestingly, the existence of the general 2D invariamioduced in §F]1 alongside the generalized energy invagiaen by
Eg. (Z3) means that one can construct a 2D invariant of ggetkds that does not involve any velocity-space quantitiesrder
to do that, one must integrate EG.{F1) over velocities, suer species, and subtract Elq.](73) from the resulting eguigthus
removing then? integrals). The result is not particularly edifying in thergral case, but it takes a simple form if one considers
electrostatic perturbationsB = 0). In this casey = ¢, and the manipulations described above lead to the follpwguation

( /d3v|s ): dtz qsnos[l To(as)] [ox[? -/d rEj) - qu/d v/dSRs (‘%S)c, (F10)

whereE| =-0¢/0z, as= k% p2/2 andly is defined by Eq[{129). In 2[F =0 and the above equation expresses a conservation
law broken only by collisions. The complete derivation andIyS|s of 2D conservation properties of gyrokinetics ia ¢hectro-
static limit, including the invarianf{E10), the electratit version of Eq.[(H1), and their consequences for scatimgl cascades,
was given bl-9) Here we briefly consider arigavant limits.

Fork, pi < 1, we havdg(a 2) 1-as+..., so the invariant given by Eq_{F110) is simply the kineticrggyeof theE x B flows:
Y=% (msnOS/Z)fd3r |V @7, where® = cso/Bo In the limitk, pi > 1, K1 pe < 1, we haveY = —ng [ d°r Z262¢?/2Tgi. In
the limit k| pe > 1, we haveY = —(1+Z/7)nge [ d®r €29?/2Toe. Whereas we are not interested in electrostatic fluctusiiothe




62 SCHEKOCHIHIN ET AL.

inertial range, electrostatic turbulence in the dissgpatange was discussed i §4.10 ahd §l7.12. The electro3bfivariant
in the limitsk, pi > 1,k pe < 1 andk, pe > 1 can also be derived directly from the equations given tfierthe former limit,
use Eq.[(Z64) to express; in terms ofj; in order to get Eq{E10)].

Note that, taken separately and integrated over velogcifigs [E1) for ions (wherk, p; > 1, k Kipe < 1) and for electrons
(whenk pe > 1), reduces to lowest order to the statement of 3D conservafi [ d®v [ d®R; Toh?/2F, [W, in Eq. (24%)] and

[ dBv [ d®ReToeh2/2F0e [Eq. (280)], respectively.
F.6. Implications for Turbulent Cascades and Scalings

Since invariants other than the generalized energy or iist@aent parts are present in 2D and, in some limits, alSbinone
might ask how their presence affects the turbulent cascautescalings. As an example, let us consider the magnetatiréh
KAW turbulence, which is a 3D invariant of the ERMHD equasd8E3).

A Kolmogorov-style analysis of a local KAW cascade based oaorsstant flux of helicity gives (proceeding as in §7.5):

WX¢A A @i @i EH 1/3,\1/3
~y/1+5 5 ~y/I+G—2 ~ey=const = By~ ——— 58, F11
TKAW \ B Pi TKAW A Bi pi/\ H A (1 5)1/6 Pi ( )
whereey is the helicity flux (omitting constant dimensional factdiee helicity is now defined afd® ¥® and assumed to be

non-zero). This corresponds tck:af/g spectrum of magnetic energy.

In order to decide whether we expect the scalings to be datethby the constant-helicity flux or by the constant-energy
flux (as assumed in[§1.5), we adapt a standard argument altjgotue to| Fjgrtoft[(1953). If the helicity flux of the KAW
turbulence originating at the ion gyroscale (via partiahasion from the inertial-range turbulence; séé 8§ Bnisits energy
flux is exaw ~ en [SEtA = pj in Eq. (EI1) and compare with Eq._(238)]. If the cascade betwke ion and electron gyroscales
is controlled by maintaining a constant flux of helicity, thie helicity flux arriving to the electron gyroscale islstj, while
the associated energy fluxds pi/pe > ekaw, i-€., more energy arrives i@ than there was af;! This is clearly impossible in
a stationary state. The way to resolve this contradictida onclude that the helicity cascade is, in fact, inverse, (directed
towards larger scales), while the energy cascade is di@snfaller scales). A similar argument based on the congt@iite
energy fluxekaw then leads to the conclusion that the helicity flux arriviagtte electron gyroscale ésgaw pe/pi < €n ~ ekaw,
i.e., the helicity indeed does not cascade to smaller sciiléses not, in fact, cascade to large scales either betheseRMHD
equations are not valid above the ion gyroscale and theityatitthe perturbed magnetic field in the inertial range i$ adD
invariant (§E4). The situation would be different if an emesource existed either at the electron gyroscale or sdaenin
betweerpe andp;. In such a case, one would expect an inverse helicity casuatithe consequent shallower scaling [Eq.{F11)]
between the energy-injection scale and the ion gyroscale.

Other invariants introduced above can in a similar fashieralgued to give rise to inverse cascades in the hypotheiizal
situations where they are valid and provided there is enijggtion at small scales (for the electrostatic case
2009). The view of turbulence advanced in this paper doeg@agrally allow for this to happen. First, the fundamemgtamD
nature of the turbulence is imposed via the critical balartgecture and supported by the argument that “twodimeasiy”
can only be maintained across parallel distances that dexceed the distance a parallel-propagating wave (or psstfeaming
particles) travels over one nonlinear decorrelation tisee(§81.P, E715 and §7.1D.3). Secondly, the lack of smak-srergy
injection was assumed at the outset. This can, howeverdieed in real astrophysical plasmas by various smallesgiEisma
instabilities (e.g., triggered by pressure anisotromes;discussion in[§8.3). Treatment of such effects fallsideithe scope of
this paper and remains a matter for future work.

46 Using the publicly availabl&S2 code (developed originally for fusion applications; se:ifgs2.sourceforge.riet) and the purpose-tsit r oGK code
(see http://www.physics.uiowa.edu/~ ghowes/astrogk/).

47 The structure of the momentum equatibn (A10) is best unoledsby realizing thapu; (56 :Vu-V- u/3) = pL —py|, the difference between the perpen-
dicular and parallel (ion) pressures. Since the total presis p = (2/3)p +(1/3)p;, Eq. [ATQ) can be written

du B? . B-VB
pEZ—V<pL+§)+V-[bb(pL—p“)]+ . (12)
This is the general form of the momentum equation that is eddid for collisionless plasmas, whén pi < 1 butk; Amgpi is order unity or even large. Equa-
tion (I2) together with the continuity equatidn (A10), theliction equatior {A71) and a kinetic equation for the phatilistribution function (from the solution
of which p, andp are determined) form the system known as Kinetic MHD (KMHBg/&ulsruld 1964, 1983). The collisional limky Amfpi < 1, of KMHD
is again Eqgs ).

48 The collision operator now used ti@S2 and Ast r oGK codes (see footnofe U6) is their energy-diffusion operplios the pitch-angle-scattering opera-
tor .
4 The)z third term in Eq.[{B20) is, in fact, never important: at tlectron scaless; pe ~ 1, it is negligible because of the Bessel function in the cigjo
integral [Abel et dl. 2009).

50 Note that, strictly speaking, our ordering of the collisfoequency does not allow us to take this limit (see footfidlg hut this is a minor betrayal of rigor,
which does not, in fact, invalidate the results.

51 A similar splitting of the generalized energy cascade irflaid-like cascade plus a passive cascade of a zero-demsitpfthe distribution function occurs
in the Hasegawa—Mima regime, which is the electrostatisiwarof the Hall limit [Plunk et d[. 2009).

52 The full gyrokinetic dispersion relation in a similar limitas worked out il Howes etlal. (2006), Appendix D.2.1.

53 Note that wave packets with | | =k, and satisfying Eq[{E17) witky va/w as a function ok given by Eq. [(EIb) are exact nonlinear solutions of
the HRMHD equatlonslIE3) anf(JE8ZE9). This can be shown vialeutation analogous to that i 8.3 (for the incompressiall MHD, this was done by

5).
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