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Comments on “Guiding center plasma models in three dimensions”
[Phys. Plasmas 15, 092112 (2008)]

John A. Krommes∗

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ 08543–0451

(Dated: May 28, 2009)

Recent assertions that guiding-center theory breaks down at second order for 3D magnetic fields
with nonzero torsion are argued to be incorrect.

Recently Sugiyama (LS) has argued1 that the asymp-
totic expansion for guiding-center (GC) motion, which
underlies all of modern nonlinear gyrokinetic (GK)
theory,2 “may be undefined even when good magnetic
flux surfaces exist,” the problem supposedly arising for

3D magnetic fields B with nonzero torsion b̂ · ∇ × b̂

(b̂
.
= B/ |B|). One implication is that for such fields the

magnetic moment µ cannot be shown to be adiabatically
conserved beyond first order in the expansion in mag-
netic inhomogeneity ε. [The overline distinguishes the
conserved quantity from its lowest-order approximation
µ

.
= 1

2v2
⊥

/ωc(x).] Her conclusions present a serious chal-
lenge to long-held beliefs about one of the most funda-
mental analytical formalisms of plasma physics. I argue
here that, in a restricted sense, GC theory is well-defined
and correct. However, LS’s paper remains a valuable ref-
erence for the interpretation of some of the unusual terms
that arise. [See also the earlier work of Littlejohn (RL).3]

In GC theory, the state of a gyrating particle is de-
scribed with the aid of unit vectors ê1 and ê2, arbitrary

except that the frame field F
.
= (ê1, ê2, b̂) must form

an orthonormal triad. LS asserts that the e’s cannot be
defined consistently for general 3D B (e.g., torsional or
stochastic). In the language of differential geometry,4,5

she is concerned that F is in general anholonomic (the
unit vectors do not commute). Locally, that implies that
certain “rectangular” circuits with side ∆X do not close
at O(∆X2). Globally, F may rotate as it is transported
along a field line, not necessarily returning to its original
orientation after one circuit around a torus.

That rotation is well known. It manifests itself via the
appearance at second (relative) order in ε of RL’s gyro-
gauge vector R

.
= (∇ê1) · ê2 = (∇ĉ) · â (â is in the

direction of the gyroradius ρ and ĉ
.
= â × b̂). LS asserts

that for anholonomic F (in 3D) R cannot be defined be-
cause the F ’s on neighboring field lines do not fit together
consistently. To ensure that they do, she requires that F
be integrable or that the affine connection be flat; that
implies that the torsion must vanish, a severe constraint.

RL3,6 has discussed in detail the interpretation of R

and its role in guaranteeing the gyrogauge invariance of
the theory. (LS did not cite those papers.) He showed
that physical quantities (e.g., µ) are independent of the
choice of the e’s, and that R is the only gyrogauge-
dependent quantity that appears in the formalism.

With regard to the invariance of µ, a physical rebuttal
to the concern about anholonomic F is as follows. Sup-

pose that spatially local calculations show that µ is adi-
abatically conserved through some order in a gyrogauge-
invariant (GGI) way (as they do). Then it cannot mat-
ter that F rotates because a spiraling particle does not
know where it is going; it makes many nearly closed gy-
rations before transiting the torus once. It does not ex-
plore the magnetic geometry globally (conserving µ all
the while), then retroactively decide that µ should not
have been conserved during the early part of the motion.
Of course, one must ultimately face up to all of the dif-
ficulties of Hamiltonian chaos7; resonances between the
gyration and slower degrees of freedom8 can break the
invariance of µ, which is why it is only an “adiabatic”
invariant and its construction is only asymptotic. These
serious and challenging issues are not addressed here.

LS asserts that certain effects are cumulative, thus may
break the asymptotic ordering. But the modern pertur-
bation theories are explicitly designed to prevent that
by removing secular terms order by order. In the La-
grangian approach,9 one works with a set of generating
fields gσ

n and gauge functions S(n) that are chosen to re-
move gyrophase (ζ) dependence from all components of

the one-form γ (not to eliminate terms containing b̂·∇×b̂

as LS asserted); then Noether’s theorem10 shows that
µ is conserved to the highest order calculated. (Here
σ indexes the GC variables and n indicates the order
in ε.) One might be concerned that this construction
would fail if unsolvable equations were encountered (at-
tempts to transform R entirely away fail for precisely
that reason) or if the formalism would constrain F to
be holonomic. Suppose, for example, that one had to

solve an equation of the form b̂ · ∇S(n) = f (n), where
f (n) is known, in order to remove ζ dependence from
some component of γ(n). It could well be that this mag-
netic differential equation would be unsolvable due to
global constraints. But no such equation or constraint
arises. I recall the procedure outlined by RL9 and imple-
mented by him11 and Brizard.12,13 A preparatory trans-
formation is made from z

.
= {x, v} to lowest-order GC

variables Z
.
= {X, µ, U, ζ}, where X

.
= x, U

.
= v · b̂,

and ζ
.
= tan−1(−v · ê1/−v · ê2). (In Brizard’s version

of the method, described here, the lowest-order GC po-
sition is the particle position; ρ is not subtracted.) Then
the transformation9,10 γ = T−1γ + dS is implemented
perturbatively. With Ln ≡ Lgn

[cf. Eq. (2)], one has

γ(−1) = γ(−1) + dS(−1), (1a)

γ(0) = γ(0) + dS(0) − L1γ
(−1), (1b)
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γ(1) = γ(1) + dS(1) − L1γ
(0) + ( 1

2L2
1 − L2)γ

(−1), (1c)

γ(2) = γ(2) + dS(2) − L1γ
(1) + ( 1

2L2
1 − L2)γ

(0)

+ (−L3 + L2L1 −
1
6L3

1)γ
(−1), (1d)

etc., where γ(−1) .
= A · dx and γ(0) .

= (U b̂ + v⊥ĉ) · dx−
[ 12U2 + µωc(x)]dt. At any order, gyrogauge invariance is

ensured3,6 by choosing gζ = gX · R + ∆gζ , where ∆gζ

is GGI. At zeroth order [Eq. (1b)], gX

1,⊥ is chosen to

eliminate phase dependence from γ
(0)
x ; one finds gX

1,⊥ =

−ρ [this is the familiar result X = x−ρ+O(ε2)]. At first

order, the choice S(1) = 0 eliminates γ(1)
µ and γ

(1)
ζ . δGU

1

is chosen to remove the fluctuating (δ) part of γ
(1)
x · b̂,

and gX

2,⊥ is chosen to remove the GGI part of γ
(1)
x,⊥. Then

δgµ
1 is chosen to remove the δ part of γ

(1)
t , and gX

1 · b̂ is

chosen to set γ
(1)
U = 0. At second order, δS(2) is chosen

to remove the δ part of γ
(2)
ζ and 〈gµ

1 〉 is chosen to set

γ
(2)
ζ = 0. Then ∆gζ

1 is chosen to remove the δ part of

γ
(2)
µ , and 〈S(2)〉 is chosen to set γ

(2)
µ = 0. Finally, gX

2 · b̂

is chosen to set γ
(2)
U = 0. There is some arbitrariness in

the choice of 〈gU
1 〉; the most physical one sets γ

(1)
t = 0.

One can proceed systematically to higher order. (The
first-order results are recorded in Appendix A of Ref. 2.)

There are two key features of this strategy. (i) The
expansion is GGI; that is, gX

n , gµ
n, gU

n , and ∆gζ
n are

constructed to be R-independent. (ii) Determination of
the g’s and S’s involves only local integrations in ζ and µ;
no nonlocal spatial integrations are required. [In partic-

ular, S(n) is not determined from γ
(n)
X

, although ∇S(n)

appears in the X component. This is possible because
gX

n,⊥ is determined at O(εn−1).] Thus no difficulty arises
in determining higher-order corrections to µ:

µ(X, µ, U, ζ) =

(
1 + L1 + L2 +

1

2
L2

1

)
µ = µ + gµ

1 + gµ
2

+
1

2

(
gX

1 · ∇ + gµ
1

∂

∂µ
+ gU

1

∂

∂U
+ gζ

1

∂

∂ζ

)
gµ
1 + · · · . (2)

This µ is GGI (contains no R) because the operator
∇
∗ .

= ∇ + R ∂ζ is GGI. The gX
1 · ∇ term taken

alone generates R dependence, but that is canceled

by the R-dependent part of the gζ
1∂ζ term. This can

be easily proven in general3,6 and can also be shown
explicitly by applying ∇

∗ to an arbitrary quantity

Q(â(X, ζ), b̂(X), ĉ(X, ζ)) and using the chain rule. By
construction, the explicit µ given by Eq. (2) is conserved
through second order.

LS asserts that “the equations of motion . . . require the
curl and gradients of [the effective vector potential] A∗,
in the phase space spatial variables.” That is incorrect;
they require just the curl, since A∗ ≡ γX . But one may
worry that gradients of R other than its curl (∇ × R is

GGI) will appear in γ
(n)
X

or γ
(n)
t for n ≥ 2. That does not

happen, however, as a consequence of GGI. It is not hard
to show that by explicit calculation for n = 2 [Eq. (1d)].
Consequently the drift equations are GGI.

One can now address LS’s concern about integrability
as follows. The formalism works with just one field line
(and its immediate neighborhood) at a time. Locally,
∇êi requires just first-order information about êi(X) at
a point X; thus second-order issues related to anholo-
nomic F do not matter and R is well-defined. Globally,
even if a drift trajectory returns close to its spatial start-
ing point after a toroidal circuit, it has not returned to
a nearby point in phase space. Given all GC coordinates
(including ζ) at time t, one could in principle trace back
along the motion and undo the rotation to find the initial
state. Thus integrability is not required. That is, the êi’s
need not be a coordinate basis: êi 6= ∂ui

.

When electromagnetic potentials are included2,12,14–17

(the essence of GK, as opposed to GC, theory), the per-
turbation procedure outlined above must be modified to
deal with fluctuations with k⊥ρ = O(1). But the theory
remains local and encounters no difficulty of construction
at the second order. For example, the polarization terms
in the GK Poisson equation can be shown to be GGI.

Finally, here I have said nothing that is conceptually
original. It is impossible to overstate the importance of
Littlejohn’s pioneering research and the subsequent ex-
tensions and applications reviewed in Ref. 2, which have
placed the asymptotics of charged-particle motion in a
strong, weakly inhomogeneous magnetic field on a very
firm and systematic footing.

I am grateful for informative discussions with L.
Sugiyama, and for expert comments from A. Brizard, T.-
S. Hahm, and H. Qin. This work was supported by U.S.
Dept. of Energy Contract No. DE–AC02–09CH11466.
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