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DC-like phase space manipulation and particle acceleration using chirped AC fields

P. F. Schmit and N. J. Fisch
Princeton Plasma Physics Laboratory

Princeton, NJ 08543

Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field
also accelerates particles, but without a resonance discrimination, which makes the acceleration
mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an
accelerating potential waveform, which could, for example, represent the average ponderomotive
effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent
DC-like time-asymptotic response of the distribution in regimes where the potential structure is
accelerated adiabatically. A highly resonant population within the distribution is always present,
and we characterize its nonadiabatic response during wave-particle resonance using an integral
method in the noninertial reference frame moving with the wave. Finally, we show that in the limit
of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response
of the bulk distribution becomes identical to the response of a distribution to a uniform DC field.

PACS numbers:

I. INTRODUCTION

Through their work with autoresonant BGK modes in
plasmas, Friedland et al uncovered an interesting phe-
nomenon involving accelerated waves that has the ap-
parent effect of shifting an entire particle distribution
by a fixed displacement in velocity space, regardless of
the initial configuration of the distribution [1, 2]. By
adiabatically accelerating a sinusoidal wavetrain through
a quasineutral particle distribution such that the initial
and final phase velocities are far out of resonance with the
electron distribution and on opposite sides of the distri-
bution’s boundaries in velocity space, the field induced in
the plasma can become phase-locked with the drive field,
creating a coherent accelerating wave structure. These
waves can carry empty “holes” of phase space through
the electron distribution, resulting in a net displacement
of the entire electron distribution in the direction op-
posite to the acceleration of the wave. The effect was
noted to have potential use as a current drive scheme
in confined plasmas, and such an effect could also be
used to develop high quality dense, monoenergetic par-
ticle beams. An even more fundamental physical notion
underlies this phenomenon: it appears that under certain
circumstances, a wave can produce an effect on a distri-
bution indistinguishable from that of a uniform DC field.
The consequence is that an AC field that time-averages
to zero can potentially have an effect on a distribution
identical to a DC field with non-vanishing time-average.

As it turns out, there are some caveats to this state-
ment; in particular, for any accelerating wave scheme
there exists a fraction of the initial distribution that is
highly resonant with the accelerating wave and does not
exhibit the adiabatic shift noted by Friedland. In a cur-
rent drive or particle acceleration scheme, these highly
resonant particles represent an inefficiency in the accel-
eration process, creating a counter-current in the case of
a current drive scenario and a second beam population
in the beam production scenario. This paper sets out to

describe rigorously the full nature of the effect noted by
Friedland et al, and in particular focuses on the behav-
ior of these highly-resonant particles and shows that in a
certain limit, their effects can be negated entirely. Fur-
thermore, Friedland’s adiabatic invariant model focuses
primarily on the dynamics of the distribution boundary;
consequently, we seek to prove explicitly that in certain
limits, not only do the boundaries of the distribution ob-
tain a DC-like constant impulse, but rather every particle
throughout the distribution receives the same impulse.

One of the interesting features of a DC electric field
is that it drives very efficiently electrical current, since
during momentum transfer between the particles and
the field, some particles lose energy and some particles
gain energy. This feature is absent in most current drive
schemes by waves, so that radiofrequency (RF) current
drive methods generally are less efficient [3]. Therefore,
to the extent that RF waves could possibly mimic the
acceleration produced by DC fields, there may be oppor-
tunities for more efficient RF current drive.

The idea of using filled phase space holes to accel-
erate uniformly bunches of trapped particles originated
with Sessler and Symon [4, 5]. Here, the accelerating
wave was used to accelerate uniformly a small bucket
of phase space, rather than the full distribution that we
consider, with the aim of getting small beam spread. Hof-
mann made an explicit calculation for the acceleration of
bunches of charges via the displacement of empty phase
space buckets from the high energy side to the low energy
side [6]. This effect is roughly the same effect observed by
Friedland in the autoresonant BGK modes. In the case
of free electron lasers [7], the phase space deceleration
similarly makes use of a ponderomotive hole in phase
space accelerated through a beam, so as to slow down
the beam. The idea of producing holes in phase space
through BGK modes was explored both experimentally
and theoretically [8–10].

In the case of interest for us, instead of accelerating just
one bucket of particles in phase space, our question is the
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extent to which we can accelerate the full distribution like
a DC electric field. Here, not only is it of interest that
each bit of phase space can be uniformly accelerated like
a DC electric field would do, but also that the inevitable
regions of phase space that undergo excess acceleration
be kept vanishingly small.

To explore the extent to which waves can act like DC
fields, we introduce what we call the τ -integral formalism
in Section II. Then, in Section III, a simplified form of
Friedland’s results will be presented using the adiabatic
invariant global model on a noninteracting Hamiltonian
distribution in order to provide an intuitive perspective
of the problem and motivate our rigorous result. Data
from numerical simulations will be presented that lend
credence to Friedland’s model while simultaneously indi-
cating its limitations and the need for a rigorous deriva-
tion to prove the apparent AC-DC correspondence. In
Sections IV and V, the analytical solution for the peak
resonant impulse delivered by an accelerating wave to a
particle with arbitrary initial conditions will be derived,
and in the limit of infinitely slow acceleration we will
show that AC fields do indeed produce an effect on an
arbitrary distribution of particles that is indistinguish-
able from that resulting from a momentary application
of a uniform DC field. Finally, in sections VI and VII,
we explore various means of particle acceleration utiliz-
ing waves and the potential benefits of using waves to
mimic DC fields.

II. ACCELERATING POTENTIALS AND THE
τ -INTEGRAL FORMALISM

This paper will examine the effect of a potential of the
form

Φ(x, t) = Φ0 cos [k (x− Ψ(t))], (1)

on an arbitrary one-dimensional distribution of nonin-
teracting classical particles. This potential is very sim-
ilar to that used by Friedland et al as well as Shneider
et al to approximate the effects of an accelerating beat
wave, or optical lattice, generated by two counterpropa-
gating frequency-chirped electromagnetic waves [1, 2, 11].
The salient features of the physical process are retained
without requiring a self-interacting distribution with self-
consistent fields, as would be needed in a plasma, which
will help simplify the analysis. Friedland showed it is pos-
sible for an externally-driven plasma to produce a phase-
locked self-field that retains the coherent structure of the
original drive wave. Thus, the effect of the total field on
the distribution is structurally similar to the effect of an
external drive field on a noninteracting distribution [1, 2].

We begin by considering a general accelerating one-
dimensional potential of the form φ (x− ψ (t)), with ψ
an arbitrary function of time. An ideal reference frame
in which to perform analysis would be the noninertial
rest frame of the potential, whose coordinate is defined

by s ≡ x−ψ (t). In this coordinate system, the equation
of motion becomes

mẍ = m
(
s̈+ ψ̈

)
= −∂φ

∂x
= −∂φ

∂s
. (2)

A conserved quasi-energy E can be identified in the case
of constant acceleration of the potential, i.e. ψ (t) =
1
2at

2+v0t+x0. The quasi-energy is found by multiplying
Eq. 2 by ṡ:

d

dt

(
1
2
mṡ2 + φ(s) +mψ̈s

)
≡ dE

dt
= ms

...
ψ. (3)

The term on the right hand side of Eq. 3 can be thought
of as a driving term for the quasi-energy, but in the case
of a potential accelerating at the constant rate a, we
have

...
ψ = 0, and so the quasi-energy is conserved. Thus,

the dynamics arising from the accelerating potential are
taken into account by the introduction of an additional
linear potential mψ̈s = mas into the quasi-energy in the
noninertial frame of reference moving with the potential.

We can calculate the impulse delivered to a classical
particle by an accelerating potential by solving what we
shall define as a τ -integral. We note that

∆ẋ =
∫ tf

ti

ẍ dt =
∫ tf

ti

(
s̈+ ψ̈

)
dt

=
∫ tf

ti

s̈ dt+
∫ sf

si

ψ̈

ṡ
ds

= ṡ(tf ) − ṡ(ti) + a

∫ sf

si

ds

ṡ
,

where we have switched to the coordinate represen-
tation s ≡ x − ψ(t) and used the equation ψ(t) ≡
1/2at2 + v0t+ x0 for the constant acceleration case. We
also used s(ti) ≡ si and s(tf ) ≡ sf . In this reference
frame, we know the quasi-energy defined in Eq. 3 is
conserved, and so if ṡ(ti) = ṡ(si(ti)) ≡ ṡi is specified
by an initial condition, we can immediately determine
ṡ(tf ) = ṡ(sf (tf )) ≡ ṡf . To simplify notation, we define
the quantity τ as

τ ≡
∫ sf

si

ds

ṡ
+

1
a

(ṡf − ṡi) , (4)

with

ṡ =
[

2
m

(E − φ(s) −mas)
]1/2

,

and E is the conserved quasi-energy in the noninertial
frame of reference. According to this definition,

∆ẋ = aτ. (5)

Thus, by calculating τ , defined in the noninertial refer-
ence frame, it is possible to determine the impulse de-
livered to a classical particle in the laboratory reference
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frame under the influence of a fixed-profile, accelerat-
ing potential over any interaction range. Time asymp-
totic impulses can be calculated by setting one bound of
the integral at the classical turning point in the quasi-
potential and the other at the infinity toward which the
potential becomes increasingly negative, due to the pres-
ence of the extra linear term, and multiplying the result
by two. This corresponds to the scenario where the wave
starts with an infinite phase velocity in one direction and
accelerates until it has an infinite phase velocity in the
opposite direction.

III. THE CONSERVED ACTION MODEL AND
ITS LIMITATIONS

The effect of the potential defined in Eq. 1 on a distri-
bution of noninteracting particles in phase space in the
limit of adiabatic, monotonic acceleration of the wave-
form can be determined approximately by a few simple
arguments; note that this calculation follows the assump-
tions made by Friedland et al in [2]. By adiabatic accel-
eration we mean that the acceleration is small enough so
that for most of the interaction period the change in the
wave phase velocity during the time it take the particle
to traverse one period of the wave is small compared to
the relative velocity between the particle and the wave,
vrel, or in other words:

2πa
kvrel

1
vrel

∼ a

kv2
rel

� 1. (6)

In the limit of adiabatic acceleration of the waveform we
can examine the particle interaction with the wave over
time scales comparable to 2π/kvrel, the particle transit
time in the wave, during which time the wave phase ve-
locity Ψ̇ remains approximately constant. In this case,
all phase space trajectories are given by the equation

ẋ±(t) = Ψ̇(t) ±
[
2Φ0

m
(α− cos [k (x− Ψ(t))])

]1/2

, (7)

where

α ≡ 1
Φ0

[
1/2m(ẋ− Ψ̇)2 + Φ0 cos[k(x− Ψ)]

]
(8)

is a conserved quantity on this time scale and represents
the ratio of the energy of a particle in the inertial rest
frame of the wave to the maximum strength of the po-
tential. Orbits with α > 1 are topologically open, orbits
with α < 1 are topologically closed, and the orbit given
by α = 1 defines the separatrix dividing phase space into
regions of purely untrapped versus purely trapped orbits.
An example snapshot of the various phase space trajec-
tories for transit-time scales is depicted in Fig. 1. Notice
that trajectories for particles traveling at a velocity sub-
stantially different from the instantaneous velocity of the
waveform, i.e. α � 1, can be represented as approx-
imately straight, fixed-velocity lines, since they are far

FIG. 1: Snapshot of phase space trajectories during transit-
time scales, for which Ψ̇ ≈ constant. Separatrices are denoted
by dashed line, instantaneous wave phase velocity Ψ̇ is de-
noted by the dotted line, and the direction of translation of
the orbits is indicated by the arrows.

out of resonance with the wave and hence barely feel its
effects. This will be useful to us in the calculation that
follows.

We now envision a flat continuum particle distribu-
tion extending infinitely in one-dimensional configuration
space but only across a finite range of velocity space,
forming what is often called a “waterbag” distribution.
When the wave is far out of resonance with the distri-
bution, or in other words, when the wave phase velocity
is substantially different from the velocity of any particle
in the distribution, the waterbag is approximately un-
changed in time. For example, if the distribution were
rectangular, then it remains roughly rectangular, and the
separatrices of the wave reside far outside the distribu-
tion. Thus all particle orbits are open, and the trapped-
particle states confined within the wave’s separatrices
start out empty. We assume the wave is adiabatically
accelerated, so that as the separatrices move across ve-
locity space toward the distribution, the trapped particle
states remain inaccessible to particles in the distribution,
which all began on open orbits.

Now consider the situation where the wave has res-
onantly interacted with one velocity-space boundary of
the distribution such that the separatrices now lie in the
middle of the distribution. Because the waveform accel-
eration is presumed to be adiabatic, the closed-orbit tra-
jectories remain unpopulated and the separatrices form
the boundaries of empty holes inside the distribution.
If the edges of the distribution in velocity space are
far enough apart that neither is resonantly interacting
with the wave, then they will both have the approxi-
mate asymptotic form of a straight line. We know that
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only the boundary of the distribution through which the
separatrices came can be changed from the original pic-
ture, while the other boundary has yet to resonantly in-
teract with the waveform. By Liouville’s Theorem we
must preserve the phase space volume of the distribu-
tion, and so the boundary that has already resonantly
interacted with the wave must be displaced in order to
account for the empty volume inserted into the distribu-
tion by the empty trapped-particle states. The action, or
phase space volume

∫
p dq, per unit wavelength λ = 2π/k

of a straight line, which describes the non-resonantly in-
teracting boundaries of the distribution, is given simply
by Jsl = λmẋ, while the phase space volume of the sep-
aratrices is found to be

Jsep =

[
m

∫ λ

0

(ẋ+ − ẋ−) dx

]
α=1

= 16
√
mΦ0

k
(9)

(cf. Eq. 7). The conservation of action per unit wave-
length of the distribution before and after the resonant
interaction is stated simply as the jump condition

Jsl,f = Jsl,i + Jsep, (10)

yielding the final result for the distribution boundary:

|∆ẋ| =
8
π

√
Φ0

m
, (11)

with the direction of the impulse opposite the direction
of acceleration of the wave phase velocity. After the sep-
aratrices pass through the trailing boundary of the dis-
tribution and time-asymptotically travel off to infinity in
velocity space, similar arguments reveal that the trailing
boundary undergoes a shift in velocity space identical to
the shift of the leading boundary, leaving another wa-
terbag distribution of the same dimensions as the initial
distribution, but displaced in velocity space. This is the
result stated by Friedland et al [1, 2], and it led to his
suggestion that this phenomenon could be used as a vi-
able current drive scheme in plasmas.

However, this is not the whole story. Numerical sim-
ulations of particle motion reveal that for any small but
nonzero acceleration, to be defined rigorously in the next
section, the resulting impulse delivered to a distribution
demonstrates a noticeable departure from the prediction
calculated in Eq. 11, including the formation of tendrils
of the distribution that extends as far in velocity space
as the wave phase velocity is accelerated past resonance,
opposite the direction of the adiabatic impulse, cf. Fig.
2. Note that due to the periodic symmetry of the po-
tential in Eq. 1 under translations of 2π/k in x and the
assumption of an infinitely extensive distribution in con-
figuration space, we expect the patterns shown in Fig. 2
to be periodic across the distribution as well, and thus
only one period of each pattern is shown.

Apparently, no matter how slow the acceleration, this
highly resonant tendril never disappears completely. We
will consider the structure of this nonadiabatically ac-
celerated portion of the particle distribution in the next
section.

X
0
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0 π/2 π 3π/2 2π
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
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III.

FIG. 2: Numerical simulations reveal the time-asymptotic im-
pulse delivered to one period of the initial distribution for: I,
ε = 10−1 and II, ε = 10−2, cf. Eq. 13. Line III shows the
conserved action prediction for the impulse from Eq. 11.

IV. PHASE SPACE FIDELITY AND THE
RESONANT IMPULSE

It is easy to see that parts of the distribution will not
demonstrate the simple jump condition predicted in Eq.
11. We can rewrite the nonlinear equation of motion for
a particle in the potential given by Eq. 1 in terms of a
phase variable η, given by η ≡ k (x− ψ(t)):

η̈ = φ̃ [sin η − ε] = − df

dη
, (12)

with

φ̃ ≡ acritk,

ε ≡ a/acrit,

acrit ≡ Φ0k

m
. (13)

The quasi-potential with the added linear term repre-
sented in dimensionless form is given by:

f(η) = φ̃ (cos η + εη) (14)

and is plotted for φ̃ = 1 and several values of ε in Fig. 3.
Notice in Fig. 3 that any time the wave is accelerated

such that ε ≤ 1, points of unstable equilibrium arise in
the quasi-potential, i.e. df/dη = 0 and d2f/dη2 < 0, rep-
resenting energies for which particles will resonantly in-
teract with the wave for as long as the wave exists. In the
language of the τ -integral formalism, particles with clas-
sical turning points at these points of the quasi-potential
have time-asymptotic values aτ = ∞ and are accelerated
along with the wave indefinitely. In a situation where
it is desirable to impart as much momentum to the dis-
tribution in the direction of the adiabatic bulk impulse
as possible, these highly-resonant particles for which aτ



5

FIG. 3: Quasi-potential in dynamic variable η plotted for
φ̃ = 1 and several values of ε, cf. Eq. 14.

diverges represent an inefficiency in the process. These
“infinitely resonant” particles are connected to the bulk
distribution by the continuous tendrils of phase space
observed in our numerical simulations, cf. Fig. 2. The
particles in these tendrils lessen the efficiency of the adia-
batic impulse, leaving behind a continuous, topologically
closed distribution with many tendrils extending away
from the adiabatically displaced bulk as far in velocity
space as the drive wave is accelerated.

Is there any limit in which the time-asymptotic effect
of the chirped wave on the distribution is effectively in-
distinguishable from the effect of a DC field in a time-
asymptotic sense? In other words, can a waveform with
a vanishing time-averaged field mimic the cumulative ef-
fect of a DC field on an arbitrary particle distribution?
To answer this question we look at the τ -integral for an
arbitrary particle accelerated by the chirped wave.

The time-asymptotic τ -integral for a particle in the
quasi-potential f(η), assuming ε > 0, is given by

τ∞ = 2
(∫ ηt

−∞

dη

η̇
− |η̇−∞|

ka

)

= 21/2

∫ ηt

−∞

dη

[E − f(η)]1/2

− 2 |η̇−∞|
ka

(15)

with

η̇ = [2 (E − f(η))]1/2
, (16)

f(η) being the quasi-potential given in Eq. 14. Note that
ηt signifies the phase of the classical turning point of the

! !"# $ $"# % %"# & &"# ’ ’"#

()$!
’

!&"#

!&

!%"#

!%

!$"#

!$

!!"#

!

!"#

$

*

!
)+

(a)

!"#$ !"#$% !"#& !"#&% !"## !"##%

’(!)
*

!+"%

!+

!,"%

!,

!!"%

!!

!)"%

)

)"%

!

-

!
(.

(b)

!"#$$% !"#$$$ !"#$# !"#$#& !"#$#’ !"#$#% !"#$#$ !"## !"##(&

)*!(
+

!,"+

!,

!&"+

!&

!!"+

!!

!("+

(

("+

!

!

"
*-

(c)

FIG. 4: (a) Net impulse delivered to initially stationary par-
ticle at the origin in the laboratory reference frame vs. time.
(b) Close-up of impulse vs. time near the resonance. (c)
Close-up of impulse vs. phase variable η, showing largest
net impulse delivered during the fluctuation leading to exact
wave-particle resonance. The dotted line shows predicted ∆ẋ
according to time-asymptotic conservation of action, cf. Eq.
11.

particle in the quasi-potential, which itself depends on
the relationship between the particle quasi-energy E, φ̃,
and ε. This form of τ∞ is justified by the fact that if we
assume the particle starts and ends infinitely far from the
wave peak with which it will resonantly interact, then we
observe from Eq. 4 that the “uphill” and “downhill” com-
ponents of τ∞ will be symmetric and of the same sign.
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FIG. 5: Graphic illustrating the different stages of the wave-
particle interaction: pre-resonance, resonance, and post-
resonance.

The integral in Eq. 15 corresponds to the amount of time
it takes the particle to move from minus infinity to the
turning point and back again, and |η̇−∞| corresponds to
the particle speed at minus infinity, all in the noninertial
frame of reference moving with the wave. This is an in-
convenient and ambiguous form for τ∞, because we are
forced to find the difference between two infinite quanities
to get a finite result. However, numerical simulations of
particles interacting with an accelerating potential have
shown that the majority of the net impulse delivered to
the particle occurs when the particle is less than roughly
half a wavelength from the point of exact wave-particle
resonance; c.f. Fig. 4 for example. The particle is in
exact resonance with the wave when it is traveling at
the same instantaneous velocity as the wave, which cor-
responds to when the particle is at the classical turning
point in the quasi-potential picture. The reason each η-
value in Fig. 4(c) has two values for ∆V is illustrated
in Fig. 5. Essentially, the particle starts off traveling
faster in one direction than the wave, but as the wave
accelerates, its phase velocity catches up to that of the
particle, until finally the wave and particle are traveling
at the same velocity. After passing through wave-particle
resonance, the wave phase velocity continues to acceler-
ate past the particle’s velocity, meaning wave crests that
the particle passed prior to resonance catch back up to
the particle after resonance. Thus the particle interacts
with each wave crest twice, and we observe two values
for ∆V during the interaction: one pre-resonance and
one post-resonance.

We now postulate that the salient features of the
time-asymptotic wave-particle interaction will be demon-
strated in the peak resonant impulse delivered to the
particle during the strongest part of the resonant in-
teraction, i.e. the largest fluctuation depicted in Fig.
4(c). The most significant variations in the outcomes
of different resonant interactions should be determined
by the particle dynamics very near the turning point in

FIG. 6: Example interval of domain of validity D1 for Eq. 18,
corresponding to m=1 in Eq. 19

the quasi-potential during this peak fluctuation. On the
other hand, the remainder of the interaction far from the
turning point should not be strongly sensitive to the ex-
act energy of the particle. The corrections due to the
interactions far from resonance are comprised of fast os-
cillations that time-average to a quantity much less than
the peak resonant impulse, cf. Fig. 4. The peak resonant
impulse can be calculated with the following τ -integral:

τp = 2

⎡
⎣ ηt∫
ηmin

dη

η̇
− η̇ (ηmin)

ka

⎤
⎦ , (17)

where ηmin is the local minimum of f(η) nearest the
turning point, c.f. Fig. 6. Specifically, looking ahead
to Eq. 19, for interval of validity Dm, we have ηmin =
2πm−sin−1 ε−π. In order that a second order expansion
of the cosine term in f(η) will provide sufficient accuracy
over the whole integration range, we split up the integra-
tion into two separate parts:

τp = 2
[(∫ η∗

ηmin

+
∫ ηt

η∗

)
dη

η̇
− η̇(ηmin)

φ̃ε

]
,

where we note η∗ = (ηt + ηmin)/2, and ka = φ̃ε. We now
can expand the cosine term in f(η) to second order in
η about ηmin for the first integral and about ηt for the
second integral. We can define new integration variables
x ≡ ηt − η and y ≡ η − ηmin, at which point we find

τp ≈ 2

[∫ Θ(ηt)

0

dy

[2 (f(ηt) − f(ηmin)) − f ′′(ηmin)y2]1/2

+
∫ Θ(ηt)

0

dx

[2f ′(ηt)x− f ′′(ηt)x2]1/2
− η̇ (ηmin)

φ̃ε

]
,
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where Θ(ηt) ≡ (ηt − ηmin)/2, and we used E = f(ηt).
The equation for τp above is general for arbitrary quasi-
potential f(η) and possesses an exact analytical solution
that yields τp as a function of the classical turning point
ηt. An expression for τp in the case of the sinusoidal
accelerating potential in Eq. 14 is given by:

τp(ηt) ≈ 2
φ̃1/2

⎧⎨
⎩

ln
[
1 + ΘG+

(
Θ2G2 + 2ΘG

)1/2
]

(cos ηt)
1/2

+
1

γ1/2
tan−1

[
(γ/2)1/2 Θ

[M − γ/2]1/2

]
− (2M)1/2

ε

}
,

(18)

with

γ =
(
1 − ε2

)1/2
,

G(ηt) =
cos ηt

ε− sin ηt
,

M(ηt) = cos ηt + εηt + γ + ε
(
π + sin−1 ε

)
.

Thus we find that even an approximate representation
of τp is a complicated function of ηt, but its scaling be-
havior with varying ε will turn out to be exactly what we
expected as it transitions to the adiabatic regime. Using
Eq. 5, we can now determine the approximate behavior
of the peak resonant impulse delivered to the particle by
the wave as a function of the particle’s turning point in
the noninertial reference frame moving with the acceler-
ating wave.

The domain of validity D of this expression for τp is
composed of a countably infinite number of discontinu-
ous intervals in η, due to the fact that a particle must
energetically climb higher up a wave crest in the quasi-
potential than the local maximum of the adjacent, lower
wave crest in order for that point to represent a valid
turning point; otherwise, the particle would have turned
on the previous wave crest instead. Fig. 6 illustrates this
concept. An arbitrary interval of the domain of validity
is calculated to be approximately:

Dm =

(
2πm+

[
ε−

[
ε2 + 2

(
1 −

√
1 − ε2

+ ε
(
2π − arcsin ε

))]1/2
]
, arcsin ε+ 2πm

]
, (19)

with m any integer.
The expression in Eq. 18 demonstrates many char-

acteristics we would expect from the full expression for
τ∞. For instance, τp diverges at the points of unsta-
ble equilibrium of the quasi-potential, given by ηcrit =
arcsin ε ± 2πn, with n any integer; note that Eq. 18
was derived for the interval D0, so here ηcrit = arcsin ε.
These points correspond to the tips of the phase space
tendrils that are carried off with the wave separatrices af-
ter the wave passes through resonance with the distribu-
tion. Fig. 7 illustrates the behavior of ∆ẋp(ηt) = aτp(ηt)
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FIG. 7: Analytic approximation for ∆ẋ(η) = aτ1/4(η) (solid
line, cf. Eqs. 5 and 18) plotted against the quasi-potential
f(η) (dashed line, cf. Eq. 14) over the domain corresponding
to m = 0 in Eq. 19 for (a) ε = 10−1, (b) ε = 10−2, and (c)
ε = 10−3. Limits ηmin and ηmax are traced out by dotted
lines.
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over 3 orders of magnitude in ε. The right limit of the
domain marks the location of ηcrit, and note that while
the singularity in the impulse is pronounced for ε = 10−1,
its presence is limited to an almost trivial fraction of the
domain when ε = 10−3, so small that it would not plot
and had to be represented graphically using manual in-
put of a vertical line at ηcrit. The “bulk” behavior, on
the other hand, makes a smooth transition to a nearly
flat, adiabatic response as ε is decreased. It is almost re-
markable to observe in Fig. 7(c) that ∆ẋ is driven from
the finite, negative adiabatic response to a positive, infi-
nite response by a nearly imperceptible shift in the value
of f(η) at ηcrit. Thus our solution for τp, and hence
the peak resonant impulse, appears to illustrate exactly
what we had hoped to observe: a smooth transition from
the non-adiabatic regime to the adiabatic regime over a
few orders of magnitude of the parameter ε. Incidentally,
one can observe that the adiabatic peak resonant impulse
predicted by the solution in Fig. 7(c) closely matches the
peak fluctuation encountered in the numerical simulation
in Fig. 4, with a value ∆ẋp ≈ −4.

V. THE AC-DC CORRESPONDENCE

We now seek to confirm that the impulse delivered to
particles throughout phase space scales like the adiabatic
prediction in Eq. 11 as the acceleration approaches zero
despite the presence of the periodic infinite divergences
in ∆ẋ = aτ . Based on our results calculated above, we
will assume that our conclusions will be equally valid if
we work with the peak resonant impulse calculated in
Eq. 18 rather than the full form of aτ∞, since all of
the interesting wave-particle behavior near resonance is
captured in aτp.

First, we can use Eqs. 5, 13, and 18 to solve for ∆ẋp.
We have:

∆ẋp = aτp =
εφ̃

k
τp. (20)

We are interested in the limit where the wave acceleration
approaches zero, i.e. ε→ 0. Referring to Eq. 19, we can
show that in the regime ε� 1, the interval D0 goes like

D0 ≈
(
ε− (4πε)1/2

, ε
]
, (21)

which is the interval over which our approximation for τp
was calculated. Since Eq. 21 states that over the valid
domain for Eq. 20, the value of ηt � 1, we can expand
Eq. 18 for small ε and small ηt. Keeping corrections that
are only order one in the small parameters or greater, we
find

∆ẋp ≈ 2εφ̃1/2

k

[
ln

(
π

ε− ηt

)
+ tan−1 π

2
√

3
− 2
ε
− π

2

]
.

(22)

Taking the limit as ε → 0, we find that only one term
survives:

lim
ε→0

∆ẋp = −4φ̃1/2

k
= −4

(
Φ0

m

)1/2

, (23)

where we used Eq. 13 to get to the final representa-
tion. Now it is apparent why we observed ∆ẋp ≈ −4 for
both the numerical and analyical plots at the end of the
last section, since both examples used parameter choices
Φ0 = 1 = m.

More importantly, the scaling behavior derived in Eq.
23 is identical to the scaling behavior predicted by the
adiabatic invariant model in Eq. 11; namely, the impulse
goes like the square root of the potential strength divided
by the mass and is independent of the scale length k of
the drive wave. This correspondence between the time-
asymptotic, adiabatic prediction for the net impulse and
the exact peak resonant net impulse confirms our predic-
tion that the important dynamics take place very close
to resonance, and the rest of the time-asymptotic inter-
action is roughly the same for every particle regardless
of its specific initial conditions. In fact, comparing the
peak resonant impulse to the adiabatic impulse reveals
the scale of the fluctuations near resonance compared
to the net time-asymptotic impulse, which in the case
of a sinusoidal drive wave yields a fluctuation amplitude
(4/2)/(8/π) ≈ 0.79 of the amplitude of the net time-
asymptotic impulse.

Consider now the validity of the derivation of Eq. 23
for the case when ηt is very near ε; in fact, when ηt = ε the
impulse is infinite, which we determined was the result of
the particle coming to rest on the point of unstable equi-
librium in the quasi-potential. To see that the derivation
remains valid, consider the case ηt = ε − δ and δ = εα,
so that the following holds:

ε ln
(

1
ε− ηt

)
= ε ln

(
1
δ

)
= αε ln

(
1
ε

)
.

For any finite value of α the above expression goes to zero
as ε→ 0, which means no matter how close you come to
the singularity at ηt = ε, the impulse will always be the
adiabatic result shown in Eq. 23. This means that the
density, momentum, and energy content of the tendrils
of the distribution goes to zero as the wave acceleration
goes to zero, since a particle would have to have an exact
initial energy corresponding to ηt = 2πm+arcsin ε to get
caught in the tendril, and any infinitesimal fluctuation
away from that energy would immediately displace it to
the adiabatically-shifted portion of the distribution.

Thus we have shown that as a classical wave is adi-
abatically accelerated through resonance with a nonin-
teracting Hamiltonian distribution of particles at a rate
that becomes infinitely slow, its effect on the distribution
becomes indistinguishable from the effect of a uniform
DC field applied for a finite amount of time; namely, the
impulse delivered to each particle is independent of the
particle’s initial conditions in phase space.
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In addition, the τ -integral formalism developed to an-
alyze the specific scenario of an accelerating sinusoidal
potential can be used for a broader scope of problems,
providing a systematic, tractable way to characterize the
smooth transition toward the adiabatic limit of any accel-
erating potential waveform and the nonideal behavior as-
sociated with non-adiabatic wave-particle resonance. In
practice, the τ -integral can be numerically integrated or
approximated analytically, and an analytical expansion
method similar to what we did above can be used to deal
with the singularity near wave-particle resonance.

It is worth mentioning that simulations were carried
out investigating other periodic potential configurations,
such as an infinite train of widely-spaced Gaussian wave
packets, and the resulting behavior of the bulk distribu-
tion is unchanged qualitatively as long as the periodic
structure is accelerated adiabatically. Referring back to
the original concept of current drive in a plasma sug-
gested by Friedland et al [2], this general result suggests
that a viable current drive scheme does not necessarily
require an infinite sinusoidal beat wave or optical lattice;
rather, an identical effect could be achieved using a series
of pulsed, accelerating wave packets, each with some well-
localized ponderomotive interaction range much smaller
than the spacing between adjacent wave packet centroids.

VI. WAVE MEANS OF ACCELERATION

The concept of using waves to manipulate a particle
distribution in phase space, and in particular accelerat-
ing part or all of the distribution in velocity space, is
important to a number of applications. There are of
course many specific wave mechanisms that have been
advanced, such as recently: ponderomotive accelerations
where particles exit a ponderomotive potential in an ap-
propriate way [11–23]; ratchet effects using a cyclotron
resonance [24–26]; and wakefield acceleration effects [27]
including acceleration in plasma channels [28].

While there is some differentiation between the numer-
ous aforementioned acceleration mechanisms, one funda-
mental premise underlies all of them; namely, there is
some unavoidable sensitivity to a particle’s initial con-
ditions for the scheme to work properly, either because
the particle must be injected at the right time relative
to the wave in order for the interaction to be optimized,
or because the particle must be ejected from the wave at
a particular time in order to retain any net gain in en-
ergy. These acceleration scenarios are thus constrained in
terms of overall particle throughput by the limitations of
the injection and ejection methods operating in tandem
with the acceleration mechanism, likely only having an
optimized interaction with a small part of a broad par-
ticle phase space distribution. An acceleration scheme
that makes use of the adiabatically accelerated waveform
mechanism described in this paper would be largely in-
sensitive to each particle’s initial conditions and would
thus operate on a much broader portion of a particle

distribution with the potential of yielding much more in-
tense and sustained particle currents. Furthermore, a
distribution that is initially cold would remain at the
same temperature after acceleration, meaning that high-
quality monoenergetic beams could be produced without
heating the particles during acceleration.

The AC-DC effect could be applied to tenuous charged
particle populations immediately, where the self-fields
of the distribution are negligible compared to the driv-
ing fields. However, Friedland’s work with autoresonant
driven plasma configurations suggests that a similar ef-
fect could be produced in dense plasmas as well [1, 2],
since the plasma could be driven in such a way so that
the self-field response of the plasma is phase-locked with
the drive wave and preserves the coherent structure of
the adiabatically accelerated waveform.

Thus, the AC-DC effect could also be used to drive
electron currents in confined, quasineutral plasmas,
where the accelerating wave would not only give parti-
cles traveling in the desired direction a uniform kick in
velocity, but it would also take energy away from par-
ticles traveling in the other direction. As we explore in
the next section, this suggests that this process could be
highly efficient if the energy given back to the wave could
be recirculated effectively.

VII. DISCUSSION: DC AND AC FIELDS

What we demonstrated in this paper is the limit in
which wave fields could act like DC electric fields in accel-
erating a distribution of particles, presuming we coarse-
grain time so that one full cycle of the waveform acceler-
ation through resonance with the distribution represents
one “unit” of time. The key property of a DC electric
field is that the DC field accelerates all particles with
uniform force regardless of the particle velocity. Because
of this key property, the DC electric field can extract
energy from particles that it slows down. This makes
the DC field a very efficient generator of electric current;
although it takes field energy to accelerate electrons to
higher velocity, the energy flow is the opposite for elec-
trons that are decelerated. In contrast, in wave-based ac-
celeration schemes for producing current, which are based
on wave-particle diffusion, the efficiency of current drive
tends to be less to the extent that current is only pro-
duced as waves diffuse particles to higher energy [3]. If
waves can only diffuse particles to higher energy, the op-
portunity to drive current by losing energy to the fields is
absent, thereby diminishing the current drive efficiency.

There is an exception to this rule, but only a minor
one: waves can diffuse particles to lower energy, but only
when a population inversion exists along the diffusion
path, such as in the presence of a density gradient [29].
However, such a situation requires not only density gra-
dients, but also wave-particle diffusion paths that can
exploit that gradient. Therefore, in general, the current
drive efficiency by waves tends to be smaller than by a
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DC field.
However, in terms of efficiency, making up in part for

the inability of waves to produce current by extracting
energy from counter-current going electrons is the ability
of waves to target through wave-particle resonance condi-
tions specific populations of charged particles. For exam-
ple, the ability to target specific populations allows waves
to interact selectively with electrons or with one species of
ions of a specific energy. Thus, the lower-hybrid current
drive (LHCD) efficiencies [30] or the electron cyclotron
current drive (ECCD) efficiencies [31] can be quite high
by selective acceleration of low-collisionality electrons,
namely superthermal electrons. Nonetheless, while RF
current drive schemes can be optimized by means of res-
onance conditions to have high efficiency, they still pro-
duce efficiencies not quite as high, in general, as for the
Ohmic current drive obtained by a DC electric field.

It is worth mentioning that the indiscriminate nature
of the DC-like acceleration exhibited by the mechanism
described in this paper is not indiscriminate between dis-
tributions corresponding to different species. Referring
to Eq. 13, we note that ε ∼ m, and so while ε might
be very small for electrons, ions encountering the same
waveform might see a much larger ε. Though the analy-
sis above focused mainly on the case of small ε, we will
note that numerical simulations revealed that as ε be-
comes of order one, the time-asymptotic impulse becomes
highly sensitive to initial conditions, and of course as ε
gets very large, the impulse delivered to a particle be-
comes negligible. Thus, while the DC-like acceleration
mechanism might not be able to target specific popula-
tions of a single particle distribution, it is possible to
discriminate between distributions corresponding to dif-
ferent particle species, making it possible, for example,
to accelerate electrons efficiently while leaving the ion
populations roughly unchanged.

On the other hand, apart from efficiency, generating
current through RF fields has certain technological ad-
vanatages over generating current by DC electric fields.
Most importantly, a DC electric field driving a toroidal
current has a nonvanishing curl, so there is necessarily a
monotonically time-varying magnetic field, which means
that the current cannot be sustained in a purely steady
state. This restriction does not apply to RF waves, which
can generate purely steady state currents, thus enabling,
for example, purely steady state tokamak reactors pro-
ducing nuclear fusion. Waves can also be brought to
bear on a plasma through different technological means
than can DC fields, with a compact or remote apparatus,
which might also offer in some instances a technological
advantage.

Thus, the possibility of using waves, which are not re-
stricted to pulsed operation and which utilize different
power technology, to mimic the effects of DC fields could
be, in principle, of considerable practical interest. There
might be an opportunity to capitalize both on the high
efficiency of DC-driven currents and the advantages of
wave generation technology. Apart from the practical

implications, it is also of significant academic interest
whether waves can in fact mimic DC effects.

What we show here is that waves can in fact induce
populations of charged particles to behave like they do in
DC fields, but only in certain limiting cases of slowly ac-
celerating coherent wave structures. Moreover, the phase
space conservation is very different on a fine scale, and
only in an averaged sense do the two effects coincide. We
show that only in the limit of slowly accelerating waves
does the portion of phase space not obeying DC-like be-
havior becomes vanishingly small.

What we do not address in depth in this paper
is how these accelerating wave potentials are gener-
ated, although one possibility might be through counter-
propagating wave packets that nonlinearly produce the
potentials. We find it curious that an exchange of wave
packets mimics in this limit the effect of a DC field, but
whether there is a deeper meaning to this curiosity is left
to a future study.

VIII. CONCLUSIONS

We presented the adiabatic invariant model for an adi-
abatically accelerating sinusoidal potential acting on a
waterbag distribution, which predicts that the resonant
interaction with the distribution essentially displaces the
boundaries of a distribution an equal amount in velocity
space in order to accommodate the empty volume moved
through the distribution by the wave separatrices. Then
a more rigorous analysis of the resonant impulse deliv-
ered to particles throughout phase space was carried out
using the τ -integral formalism. This analysis revealed
that parts of the distribution are highly resonant with
the wave and deviate substantially from the prediction
established by the adiabatic jump condition. Finally, we
proved that if the wave phase velocity is accelerated in-
finitely slowly, the resonant effect of the wave on the
whole distribution agrees with the adiabatic prediction
and is, in fact, indistinguishable from the effect of a uni-
form DC field applied for a finite period of time despite
the diminishing but ineffaceable presence of the highly
resonant particles as the wave acceleration is decreased.

The utility of this method of particle acceleration
was discussed in the context of other wave-based meth-
ods for current drive and particle acceleration. The
adiabatically-accelerated wave method was noted to have
the potential to exhibit near DC-like efficiency, since the
wave both adds energy to particles going in the desired
direction and removes energy from particles traveling in
the other direction, exactly as a momentarily applied DC
field would do.
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