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Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks
Robert J. Goldston

Princeton Plasma Physics Laboratory, Princeton NJ 08543

Abstract
The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat 
flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account 
anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is 
applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is 
found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. 
Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the 
plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about 
one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature 
profile shape, is robustly described by the simplest two-point model. However the physical processes are 
not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to 
Tmp ||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a 
factor of two or more from the two-point model scaling which fits the remaining profile. For temperature 
profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor 
can be largely decoupled from the prediction of the two-point model. These results suggest caveats for 
data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Introduction

It is of great importance to predict the peak heat flux in ITER and in a future fusion power plant. 
Unfortunately even reliable empirical scaling results are not available1. A range of computational 
analyses are being applied to this problem, from two-dimensional fluid codes with fixed radial 
transport coefficients, to turbulence simulations of increasing complexity and fidelity. Here we 
address a simpler problem but one of importance in interpreting experimental results in this area: 
If we know the radial profile of the electron temperature in the outer midplane of a tokamak, and 
we know the divertor magnetic geometry, can we deduce the radial heat flux to its divertor plate, 
and in particular can we deduce the peak value of that heat flux? This problem is important 
because reliable measurements are more broadly available of Te(R) in the midplane scrape-off 
layer than of heat flux at the divertor surface, so there is a strong temptation to use these 
midplane measurements as a proxy for divertor heat flux. Furthermore tokamak designs may be 
evolving to configurations with relatively greater divertor field line length from the x-point to the 
divertor surface, and the potential effect of radial thermal diffusion on the peak heat flux in this 
situation should be understood. We used relatively simple tools in this study to gain physical 
insight into the relevant effects.

The simplest one dimensional two-point model2 assumes that each flux tube carries heat from the 
midplane to the divertor plate independently by Spitzer thermal diffusivity. This model predicts 
that q|| at the divertor, mapped to the midplane, should vary with R as 

     
q
div ∝Tmpχmp / L


∝Tmp

7/2 , 

ignoring cross-field thermal diffusion, variations in L|| with r, volumetric heat losses, ion thermal 
transport and parallel heat flux reductions due to sheath effects and/or low collisionality. Here we 
examine solely how cross-field thermal conductivity can make the simplest two-point model 
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inaccurate by terms of order unity, particularly in the region of peak heat flux. In a purely 
diffusive model it is the perpendicular thermal conductivity itself that causes the heat spreading 
that sets both the width of the temperature profile at the midplane and at the divertor. One cannot 
say a priori that these widths will be the same. In particular one expects radial diffusion to play a 
relatively large role on field lines near the narrow peak of the heat flux, causing a net radial loss 
of heat between the midplane and divertor.

Here we use a rectilinear-geometry, constant-density thermal diffusion model, ignoring variations 
in L||, volumetric heat loss, ion thermal transport, sheaths, and flux limiters. Nonetheless we find 
that in realistic cases, both in geometry and in thermal diffusivity scaling, the peak heat flux at 
the divertor plate is lower by a factor in the range of two than would be deduced from assuming 
heat flux ∝Tmp

7/2 . Interesting, we also find in the region away from the boundary with the plasma, 

down roughly a factor of two from the peak heat flux, robust solutions to both the anisotropic 
heat equation with temperature-independent coefficients and, separately, to the anisotropic heat 
equation with temperature-dependent coefficients. These solutions do display 

    
q

∝Tmpχmp , 

although with a proportionality dependent on the temperature scaling of the parallel and 
perpendicular diffusivity coefficients.

Eigenmode Solution

We start by considering a constant-coefficient thermal diffusion equation, with no sources or 
sinks within the region under consideration, in order to gain some initial insight. We assume no 
variation of density across the problem, and no variation in L||.

Consider then an equation of the form:

 
     

∂
∂r
χ⊥
∂
∂r

T +
∂
∂z
χ


∂
∂z

T = 0  (eq. 1)

where r represents the radial distance across the field and z represents the length along a field 
line. For now we will consider the thermal diffusivities 

  
χ

 and   χ⊥ both as constants, with 

   
χ

 χ⊥ . Let us consider the solution to be symmetric around z = 0 and to have value 0 at z = ± 

L||.  Allow the boundary conditions to be infinitely far away in ± r. By separation of variables, we 
find an eigenfunction solution3 of the form:

 

     
T = Tnexp −r / λn( )cos

n
∑ π 2n + 1( )z / 2L

( )⎡
⎣⎢

⎤
⎦⎥  

(eq. 2)

where the eigenvalue,   λn , is given by:
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−χ


π 2n + 1( )
2L


⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

+
χ⊥
λn

2
= 0;       λn = ±

χ⊥
χ


2L


π 2n + 1( )
 (eq. 3)

If we consider the region r > 0 and assume that T → 0 as r → ∞, we obtain exponential fall-off 
for all n by selecting the + sign in equation 3. For n  = 0, this solution is remarkably consistent 
with the two-point expectation, 

    
q

∝Tmpχmp since T(r, z=0) and 

 
q

= χ


dT dz

z=L
 vary together 

with the exponential scrape-off width 
     
λ0 = 2L


χ⊥ χ / π . However it is interesting to note how 

this is achieved. If we consider r = 0 to be the boundary between the plasma and scrape-off-layer 
(SOL), this solution corresponds to a heat flux crossing that boundary which varies as 

     
cos πz 2L

( )⎡
⎣⎢

⎤
⎦⎥ . In other words, the pure n = 0 solution is dependent on the specific cosine heat 

source profile. Indeed because of this heat flux, q||/T is π/2 greater than would be predicted by the 
simplest two-point model with all input heat flux at z = 0. Thus in the case that gives the two-
point scaling, individual flux tubes are, at order unity, not carrying heat from the midplane to the 
divertor independently as is the basis for the simplest two-point analysis.

To gain a sense of the importance of the z-profile of the cross-boundary heat flux at r = 0, we 
take advantage of our linear analysis to consider a range of heat flux profiles to the SOL from the 
main plasma. We consider the case where there is a constant heat flux, 

   
q⊥,0 , across r = 0 between 

z = – L||/τ  and L||/τ, and zero heat flux across r = 0 outside of this region of z. This gives us

 

     

q⊥ r = 0,z( ) = q⊥,0 H(L

/ τ − z)−H(−z − L


/ τ)⎡

⎣⎢
⎤
⎦⎥

=
π 2n + 1( ) χ⊥χ

2L
Tncos

n
∑ π 2n + 1( )z / 2L

( )⎡
⎣⎢

⎤
⎦⎥

 (eq. 4)

If we multiply both sides by 
     
cos π 2n + 1( )z / 2L

( )⎡
⎣⎢

⎤
⎦⎥ and integrate over z, we find

 
     

q⊥,0 cos π 2n + 1( )πz / 2L
( )⎡

⎣⎢
⎤
⎦⎥

−L

/τ

L

/τ

∫ dz =
π 2n + 1( )

2
χ⊥χTn  (eq. 5)

giving

 

     

Tn =
8L

q⊥,0

π2 2n + 1( )2 χ⊥χ

sin π 2n + 1( ) / 2τ( )⎡
⎣⎢

⎤
⎦⎥  (eq. 6)

Then we have
 

    
T z = 0,r( ) = Tn

n
∑ exp −r / λn( )  (eq. 7)
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and
 

     
q


z = L

,r( ) = χ


(−1)nTn

n
∑ π 2n + 1( ) / 2L

( )⎡
⎣⎢

⎤
⎦⎥exp −r / λn( )  (eq. 8)

where Tn is given by equation 6 and λn by equation 3. Note from equation 8 that while the heat 
flux at the divertor plate for the lowest eigenmode is π/2 greater at all radii than would be 
expected based on the two-point model, when summing over multiple eigenmodes the constancy 
of this proportionality over radius will not be preserved. 

Figure 1 shows    T(r,z = 0) and 
    
q


r,z = L
( ) for τ = 1.05, 1.2, 2, 5. The shapes have been 

normalized to their values at r = 0. Also shown is 
 
2q

(r, z = L


)L

/ πT (r, z = 0)χ

( ) , which 

approaches unity as the n = 0 eigenmode dominates. In these calculations 5000 eigenmodes have 
been included, and the parameters of the diffusion equation and its boundary conditions are: 

     
L


= 30m,  χ


= 107m2s−1,  χ⊥ = 1m2s−1 . 

Overall we find the expected result that comes from dimensional analysis: the scale length of the 
scrape-off width equals, within factors of order unity, 

     
L

χ⊥ / χ


= 9.4mm. Indeed the lowest 

eigenmode gives 6mm, close to both solutions for τ = 1.2. However the upstream and 
downstream widths also depend significantly on the dimensionless parameter, τ. For large values 
of τ (where the heat flux into the SOL is highly localized at the outer midplane) the midplane 
temperature profile is narrowest, growing for smaller values of τ. On the other hand, for large 
values of τ  the heat flux at the divertor plate is widest, and for smaller values it is narrowest.

It is clear from the eigenmode analysis that the n = 0 mode should dominate as r/λ0 grows. 
Indeed we observe in the numerical results that q|| closely approaches the n=0 eigenmode value 
of (π/2)T(z=0)χ||/L|| away from the effects of the boundary conditions, and so away from the point 
of peak heat flux. At the peak in the heat flux, we see a strong  deviation for the n =0 and two-
point result, upwards by a factor of 1.8 for  = 1.05 and downwards to 0.4 for  = 5. The 
strongest deviation from the n = 0 solution is the region within about a factor of two of the peak 
heat flux. Away from the region of peak heat flux the simplest 2-point analysis gives a 
remarkably robust scaling of q|| at the divertor plate with the midplane T, although not the correct 
constant of proportionality. 

Large values of τ might correspond to a physical picture where the heat flux from the core arises 
from turbulence strongly peaked near the midplane, and where the thermal diffusivity in the 
SOL is independent of thermal diffusivity in the core. Perhaps the range of the largest values of τ 
can also be considered representative of the Super-X divertor configuration recently proposed4. 
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We conclude from this analysis that in the model under consideration here the relationship 
between the midplane temperature profile and the heat flux at the divertor plate can agree to 
within factors of order unity with expectation based on the two-point model, and of the n = 0 
eigenmode of the heat equation, but that in the case of a plasma heat source close to the divertor 
plate (τ = 1.05), and also for cases where the field lines near the divertor are well out of contact 
with the plasma heat source (τ ≥ 2), the radial profile of heat delivered to the divertor plate can 
be in significant disagreement with such expectation in the important region of peak heat flux. 

The insulating boundary condition at r = 0 for |z| > L||/τ results in a flat region in q|| close to r = 
0, but, as will be shown below, this is not the cause of the change in shape from the midplane to 
the divertor surface. In the following analysis we will proceed to solve the thermal diffusion 
equation numerically, first generalizing the boundary conditions, and then including temperature 
dependence for both 

  
χ

and   χ⊥ , to determine what further insight can be derived from a more 

general diffusive model. The conclusions already reached are confirmed and extended.

Finite Difference Solution

Here we employ a time-forward solution to the thermal diffusivity equation, equation 1, using a 
simple explicit finite-difference scheme run to equilibrium. As a verification check, this solution 
was run for the same boundary conditions used in the eigenfunction solution at r = 0, z = 0 and z 
= L||, and for constant   d lnT dr at r = 0.04m. For the same diffusion coefficients, the finite-

difference approach with 100 zones in the z-direction, and 200 zones in the radial direction, gives 
agreement with the results shown in figure 1 typically to much better than 1%. The solutions 
reach their worst-case disagreement of ~1.5% in q||(r) / q||(r=0)  at z = L|| and r ~ 0, for the 
smaller values of , which place the sharp transition in radial heat flux, which is difficult to 
resolve with either approach, close to z = L||.

More Realistic Boundary Conditions

This numerical solution is now generalized to more realistic boundary conditions. For z > L||/τ, 
the boundary condition of zero heat flux at r = 0 is eliminated, and heat is allowed to flow in the 
negative radial direction across r = 0. To provide an approximation of the conditions of the 
private flux region at the region of the x-point, where the outer private flux region meets the 
inner private flux region, symmetry is assumed for r < 0 across the line z = L||/τ. These more 
general boundary conditions are shown in figure 2.

The results of this analysis, with the above boundary conditions, are shown in figure 3. The 
calculation reproduces the general behavior seen with the simpler boundary conditions of figure 
1, with very similar upstream temperature profiles, but somewhat widened downstream heat flux 
profiles. The heat flux well away from its peak agrees with the n = 0 eigenmode value of (π/
2)T(z=0)χ||/L|  typically to within 0.1%.
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In this case the closest agreement in FWHM between the upstream and downstream profile 
shapes must occur somewhere between τ = 1.05 and 1.2. Again the dominant effect, except for  
close to unity, is the reduction of the peak heat flux due to diffusive losses, and again the effects 
are concentrated in the region within about a factor of two of the peak heat flux. 

Losses into the private flux zone are well known5, but the sensitivity of the narrow peak heat flux 
to diffusive spreading may not receive sufficient emphasis in data analysis. It may be worth 
noting that the parallel heat flux in the private flux region (r < 0), and the reduction of the peak 
heat flux compared with (π/2)T(z=0)χ||/L||, can be viewed as a diagnostic of perpendicular 
diffusion in the divertor leg beyond the plasma, with large diffusion resulting in more nearly 
symmetric Gaussian-like heat flux patterns reaching into the private flux region, and small 
diffusion leading to more one-sided exponential shapes. The experimental observation6 that the 
peak to average heat flux at the divertor is about a factor of two less than would be deduced from 
an exponential fit to the heat flux profile is of the same order as this result. Note also that the 
peak of the heat flux to the divertor shifts significantly outwards from the field line that 
corresponds to the last closed flux surface, an effect that also should be taken into account in 
experimental data analysis when attempting to match divertor heat flux patterns with upstream 
temperature profiles.

Temperature-Dependent Thermal Diffusivities - Self-Similarity Solution

The strong temperature dependence of Spitzer electron thermal diffusivity (
     
χ

∝T 5/2 ) means that 

for an isolated flux tube the heat flux to the divertor plate is very strongly sensitive to the 
upstream temperature. This observation is sometimes used to argue that in the conduction-limited 
regime the parallel heat flux at the divertor plate should be proportional to T7/2 at the plasma 
midplane, with insensitivity to other effects such as cross-field diffusion7. We want to examine 
the validity of that argument in a two-dimensional situation. (The reverse argument, not under 
discussion here, that the upstream temperature should be proportional to q||2/7 is much stronger, 
because variation in q|| / [T(z=0)χ||(z=0)/L||] only comes in to the 2/7 power.) In this section we 
will develop a new solution to the nonlinear heat equation with temperature-dependent thermal 
diffusivities, based on separation-of-variables and similarity. The final result we find has striking 
parallels to the n  = 0 eigenmode of the linear heat equation.

The anisotropic nonlinear equation we need to solve is:

 
 

∂
∂r

χ⊥0T
α ∂
∂r
T + ∂

∂z
χ
0T

β ∂
∂z
T = 0  (eq. 9)
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where χ⊥0  and 
 
χ
0  are constants with appropriate dimensions. Interestingly, this nonlinear 

equation can be analyzed by the separation-of-variables technique, in analogy to the linear heat 
equation. If we start with the ansatz  T (r, z) = f (r)g(z) we can deduce equations for both f and g.

 χ⊥0

α +1
⎛
⎝⎜

⎞
⎠⎟
d 2

dr2
f α+1 = λ f β+1  (eq. 10)

and

 
 

χ
0

β +1
⎛
⎝⎜

⎞
⎠⎟
d 2

dz2
gβ+1 = −λgα+1  (eq. 11)

where  is a nonlinear eigenvalue, independent of r and z. Note that for the case of α = β we 

have a generalized version of the linear equation, now with the dependent variable simply T α+1 . 
Let us consider, however, the equation for g(z) in the more general case. The boundary 
conditions for g are dg/dz = 0 at z = 0, and g = 0 at z = L||. For a given value of  , g(0) will 
adjust to match the boundary condition at z = L||. The nonlinearity of the problem is reflected in 
the fact that g(0) scales as 1/(), across a self-similar set of solutions with varying g(0) and , 
all matching the required boundary conditions. Of course for a given solution to the full two-
dimensional equation,  will be constant over r and z, so g(0) will be fixed.

We can gain insight into the solution to equation 11 by numerically computing a single solution, 
h0(x), for given   and , to the closely related Emden-Fowler8 equation of the form

 d 2

dx2
h = −h α+1( ) β+1( )  (eq. 12)

with h0(0) = 1 and dh0/dx = 0 at x = 0. h0 is, evidently, a nonlinear generalization of the cosine 
function that describes the n = 0 eigenmode of the linear equation. The numerically computed 
solution to equation 12, shown in figure 5a, first crosses the x-axis at some distance from the 
origin, d0.  Then if we set

 
 

λ = λ0 =
χ
0

β +1( )
d0
L


⎛

⎝⎜
⎞

⎠⎟

2

   (eq. 13)

in equation 11 and substitute z = xL||/d0, we find that
 
g0 (z) = h0

1 (β+1) (zd0 L

)  is the solution to 

equation 11, with g(0) = 1. The more general solution, allowing non-unity g(0) is 

 
 
g(z) = g(0)h0

1 (β+1)(zd0 L

);     λ = λ0g

(β−α ) (0)   (eq. 14)
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Since 
 
T β+1(z)∝ gβ+1(z)∝ h0 (zd0 / L ) , the heat flux at the divertor plate, for all r, is given by

 
 

−χ
0T

β ∂T
∂z z=L

= −
χ
0

β +1
∂T β+1

∂z z=L

= −T β+1(z = 0)
χ
0

β +1( )L
d0
dh0
dx x=d0

 (eq. 15)

This equation indicates that in regions of the plasma where the separation-of-variables ansatz 
holds, the heat flux will scale radially as T(r, z=0)(+1), since all the other factors are independent 
of r. Remarkably, this result is equal to that of the simple two-point model (with all heat flux 
originating at z = 0), multiplied by the factor d0 (dh0/dx)|x=do. We can easily calculate d0 and d0 
(dh0/dx)|x=do numerically as a function of α +1( ) β +1( ) , as shown in figure 4. The result is in 

good agreement with analytic solutions for the cases of α +1( ) β +1( ) = 0, 1 and ∞ , giving for 

d0 (dh0/dx)|x=do = 2, π/2, and 1, respectively. The two extreme cases correspond to heat deposition 
independent of z, and heat deposition localized at z = 0, which have been analyzed previously9. 
The middle case corresponds to the n = 0 eigenmode of the linear problem discussed here. Some 
cases of interest are listed in Table 1.

(+1)/(+1) d0 (dh0/dx)|x=do Comment

0 2.0 Heat source independent of z.

2/7 1.821 Spitzer parallel, constant perpendicular.

4/7 1.698 Spitzer parallel, Bohm perpendicular.

1 1.571 = π/2 n = 0 eigenmode of linear problem, and  = .

1.5 1.472

2 1.402

∞ 1.0 Heat source at z = 0. Simple two-point model.

TABLE 1. Normalized heat flux vs. temperature dependence of thermal diffusivities, for self-similar 
nonlinear solution.

Equation 10, the radial equation, is also interesting. The equation we need to solve to provide a 
self-similar solution for f(r) is also an Emden-Fowler7 equation, of the form

 d 2

dx2
k = k β+1( ) α+1( )  (eq.  16)
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Let us define k0(x) as the solution to equation 16 for which k(0) = 1, and for which the limit of k 
as x goes to infinity is 0. This uniquely determines dk/dx at x = 0 and so k0 as a function of (
+1)/(+1). Solutions with k < 0  for any x > 0 are unphysical; solutions with dk/dx > 0 for any 
x > 0  correspond to a physical situation with a second heat source at finite r. k0 is, evidently, a 
nonlinear generalization of the exponential function that appears in the n  = 0 eigenmode of the 
linear equation. k0(x) for given (+1)/(+1) and relevant for our physical situation can be 
readily computed numerically using a shooting method, with results shown in figure 5b. 

We can easily see that

 f0 (r) = k0
1 (α+1) α +1

χ⊥0

λ
⎛
⎝⎜

⎞
⎠⎟

1/2

r
⎛

⎝
⎜

⎞

⎠
⎟  (eq. 17)

is a solution to equation 10 with f0(0) = 1. A more general solution, allowing non-unity f(0) is

 f (r) = f (0)k0
1 (α+1) α +1

χ⊥0

λ0g
(β−α ) (0) f (β−α ) (0)

⎛
⎝⎜

⎞
⎠⎟

1/2

r
⎛

⎝
⎜

⎞

⎠
⎟  (eq. 18)

where we have used equation 14 to substitute for  in terms of 0 and g(0). Let us assume that at 
some position r = 0 and z = 0, we know T = T0 = f(0)g(0). Then the final result is

 
 

T (r, z) = T0k0
1 (α +1) χ

0T0
β β +1( )

χ⊥0T0
α α +1( )

⎛

⎝⎜
⎞

⎠⎟

1/2
d0
L


r
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
h0
1/(β+1) d0

L


z
⎛

⎝⎜
⎞

⎠⎟
 (eq. 19)

This solution to the nonlinear anisotropic heat equation has a structure that is striking similar to 
that of the n = 0 eigenmode, equations 2 and 3, which is of course one solution of the linear heat 
equation. k0 generalizes the exponential, and h0 the cosine. The scaling of the ratio of the radial 
scale length  to the parallel scale length with the square root of the ratio of the perpendicular to 
parallel thermal diffusivity is preserved. For the case of  =  equation 19 reduces to the n = 0 
eigenmode of the linear equation for T(+1)  and for  =  = 0 to the n  = 0 eigenmode of the 
linear equation for T.

Returning to figure 5, we see k0 and h0 for a number of the cases listed in table 1. While h0 is 
relatively unremarkable, k0 has the physically intuitive feature that for  >  the radial gradient 
scale length becomes shorter with increasing r, and for  >  the gradient scale length increases. 
For example, for Spitzer thermal diffusivity, with relatively large  = 5/2, one expects that the 
parallel loss time will grow as T falls with r, giving relatively more time for radial diffusion (so 
long as  < ), and so greater radial scale length. 
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Just like the n = 0 eigenmode solution to the anisotropic linear equation, this is not the only 
solution to the anisotropic nonlinear equation, but it should dominate away from special 
boundary conditions. Thus we expect a numerical solution to converge to equation 19, 
appropriately translated in r and/or reflected to -r, away from the region of peak heat flux, where 
the effects of boundary conditions (including between +r and -r solutions) are strongest. 

Temperature-Dependent Thermal Diffusivities - Numerical Results

To include the effects of specific boundary conditions, the heat diffusion equation was solved in 
the general geometry of figure 2, taking a Spitzer-like

     
χ


= 107T 5/2  m2 / sec  and a Bohm-like 

    χ⊥ = T  m2 / sec . The input heat flux was adjusted to set the maximum of T to 1.0 for all cases. In 

dimensional units, for Spitzer thermal diffusivity T = 1 corresponds to Te = 50 eV, ne = 1019/m3 
and Zeff  = 2. For Bohm thermal diffusivity, T = 1 corresponds Te = 50 eV and B = 3T.

The numerical convergence of the thermal diffusion equation to equilibrium, with strongly 
temperature-dependent thermal diffusivities, is slower than for the constant-diffusivities 
equation, since the Courant condition on the time step in the hottest regions is unchanged, but the 
thermal diffusivity in the lower temperature regions is significantly reduced. To adjust for this, 
Jacobi iteration is employed in which the iteration “time” step is scaled locally by 1/T(r, z, t) 
relative to the simple diffusion equation. Iterations continue until convergence is established. 

The numerical results using temperature-dependent thermal diffusivity coefficients, and using the 
boundaries shown in figure 2, are shown in figure 6. Radially away from the plasma heat source 
that forces the solution away from a self-similar z dependence, and therefore away from the peak 
heat flux, about one-half way below the peak value, q|| approaches 1.698 (2/7)T(z=0)χ||(z=0)/L||  
= 0.485 T(z=0)χ||(z=0)/L||, as predicted in equation 15, based on the nonlinear similarity solution. 
Ultimately it matches this value to ~ 0.1% accuracy. Furthermore, as shown in figure 7, away 
from r = 0 T(r, z) is found to be in quite good agreement with the self-similarity solution with T0 
= 1 at r = z = 0. Close to r = 0, however, distortion away from self-similarity due to the 
boundary condition is clearly visible. 

Overall, the results shown in figure 6 are qualitatively similar to those with constant coefficients, 
but the degree of downstream radial spreading relative to the upstream temperature profile is 
increased, again largely because of reduction in the peak heat flux. The best fit between the 
upstream 

   
Tχ

 and q|| at the divertor plate is achieved in this case for the relatively extreme τ = 

1.05. This can be understood by noting that as the temperature decreases along the field lines 
towards the divertor plate, Spitzer parallel diffusivity is reduced more strongly than Bohm 
perpendicular diffusivity, giving the radial spreading a relatively larger role. 
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Figure 8 shows equivalent calculations for what might be considered the most conventional case 
of constant     χ⊥ = 1m2 / sec  and parallel thermal conductivity scaling as T5/2. (Here Jacobi iteration 

is not possible, so much longer runs are required to achieve convergence.) The divertor heat flux 
profile is wider yet, consistent with the hypothesis that decreased parallel diffusivity at low T 
allows a larger relative role for perpendicular diffusivity. Again, following the rule of thumb 
from earlier calculations, in the region where the heat flux drops below about one-half of its peak 
value, the scaling is dominated by the expected two-point scaling including the numerical 
constant defined by the nonlinear solution, in this case 0.520 = (2/7) 1.821.  = 1.2 and constant 
perpendicular diffusivity might be considered the most “realistic” case analyzed here. Note that 
for these conditions the q|| profile maps to about three times the FWHM of T7/2 at the midplane. 
The peak heat flux is reduced by a factor of more than two from the two-point model applied 
with the numerical coefficient from the nonlinear solution.

This analysis, by construction, does not include variation in the plasma density, and one can note 
that the effect seen here would be further enhanced if pressure balance were maintained along 
each flux tube. Under such circumstances the density increases as a field line approaches the 
divertor plate and the temperature falls. The parallel heat flux due to Spitzer conductivity is not 
affected by the change in density, only by the reduction in temperature. However in the general 
case for radial diffusion, and for Bohm diffusion in particular, one expects the radial heat flux to 
increase with density, therefore increasing the broadening of the heat flux distribution, 
particularly in the region close to the divertor surface, relative to the model examined here. 
Along with volumetric power losses, this may contribute to the reduction in peak heat flux 
observed as the density is increased in tokamaks. 

One might be inclined to reduce  by unity, to account for the effect of increasing density with 
decreasing temperature along a field line, but while the parallel density profile, for fixed 
pressure, would be handled appropriately, the resulting effective cross-field density profile would 
be inappropriate. Studies with varying density are left to investigations with larger codes.

Fixed Temperature Profile in Plasma-Attached SOL

The analyses to this point have assumed identical parallel and cross-field thermal transport 
coefficients in the region of the SOL in contact with the plasma as in the divertor leg away from 
the LCFS (in the more general geometry case). It is interesting to consider an alternate scenario, 
in which the SOL region in contact with the plasma has a profile set by a marginal stability 
condition. The heat flux from the plasma is assumed to adjust to sustain this particular profile. 
An analysis of experimental electron temperature measurements in the plasma edge and near-
SOL region10 suggests that this characteristic SOL width, in the outer midplane, scales with 
plasma major radius, and not with other parameters such as SOL power, magnetic field, or 
plasma current, in contrast with observations of heat flux at the divertor plate11,6,12,13,14. One can 
ask whether under these conditions the heat flux to the divertor plate is necessarily tied to the 
SOL temperature profile in contact with the plasma.
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To investigate this problem the model considered above, with Spitzer-like parallel thermal 
conduction and constant perpendicular thermal conduction is used, but now with the temperature 
profile in the whole region contiguous with the plasma (z < L||/τ) taken to be of the form: 

    T = 0.9e−r/λ + 0.10 , where the latter term represents, for example, a 5 eV far SOL region in the 
case of a 50 eV LCFS temperature. To consider a likely extreme case where this condition of 
marginal stability is strictly imposed along two-thirds of the field line length, we take τ = 1.5. In 
figure 8a we show T7/2 at the midplane and q|| at the divertor plate, for the same physical model 
as used in figure 8. Indeed figure 9a can be viewed as an additional member of the set of figures 
8a-d. In figures 9b-d T  is held constant for |z| < L||/τ, with λ = 1, 2 and 4cm. Comparison of q||/
(Tmp7/2||0/L||) with the self-similarity solution is not really appropriate, since the boundary 
condition for this case is set at z = 0, placing it squarely in the solution region of interest. In the 
plots, however, this comparison is made, taking L|| = 10m. In this case even away from the 
region of peak heat flux the simple two-point scaling does not pertain.

Eliminating diffusion along two-thirds of the SOL field line results in a somewhat reduced width 
at the divertor plate, but that width is only moderately sensitive to the width of the temperature 
profile in the vicinity of the plasma. A factor of four change in the profile width contiguous to the 
plasma results in a factor of 1.6 change in the heat flux FWHM at the divertor plate. Figure 10 
shows contours of T for the cases shown in figure 9. There is no diffusion of heat in the negative 
z direction that could interfere with the ability of the plasma to set a narrow width in the SOL 
near the plasma, except around 2cm and beyond in the lowest λ = 1cm case. Thus return heat 
flux would have little impact on the ability of the plasma to sustain itself near marginal stability 
over two e-folds. In sum, in this case the heat flux profile to the divertor and midplane electron 
temperature profile are largely decoupled, even in the region below half of the peak heat flux.

No Radial Diffusion in Divertor Leg

We also examined the reverse of the above model, meant to simulate a situation where the 
thermal diffusion in the SOL is driven exclusively by the turbulence at the edge of the bulk 
plasma, concentrated near the midplane, with no radial diffusion beyond the x-point. In this case 
we looked at  = 2, Spitzer parallel thermal diffusivity, constant 1 m2/sec perpendicular thermal 
diffusivity in the region |z| < L||/τ, and zero perpendicular diffusivity for |z| > L||/τ. This gave a 
drop in T, but very little change in the T(r) profile between z = 0 and |z|= L||/τ. The calculated 
heat flux to the divertor plate was equal to (2/7) ||0 T7/2(r, z = L||/τ)/(L||(1-1/)), providing another 
verification check on the solution to the equation with non-constant coefficients. This calculation 
shows that if the assumptions of the two-point model are enforced, the result is as expected. If 
there is little perpendicular diffusion away from the region close to the midplane, and the 
midplane is where most of the heat is deposited into the SOL, then one can indeed expect the 
heat flux to the divertor plate to vary as T7/2 at the midplane, even with the expected coefficient 
of proportionality.  On the other hand, parallel connection along field lines suggests that 
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turbulent ExB driven diffusion in the SOL would be distributed along its length. Indeed strong 
turbulence is observed in the SOL far from the midplane15, as well as on Langmuir probes in 
divertor plates16.

Conclusions

One conclusion from these studies is that one should not expect the parallel heat flux profile to 
the divertor plate to vary as Tmp7/2 in the region of peak heat flux, as might have been thought 
from a simple two-point model of conduction-limited thermal transport with Spitzer electron 
thermal conductivity. The level of radial diffusion that induces the mid-plane temperature profile 
width also broadens the heat flux along the field lines leading to the divertor plate, even without 
additional physical effects such as radiation or detachment, nor density increase near the divertor. 
The peak in the heat flux can be significantly reduced and can shift outwards from the separatrix 
field line. On the other hand, away from the peak in the heat flux for both the linear and 
nonlinear versions of the heat equation examined here, the result that 

     
q
div ∝Tmpχmp / L


, which 

varies as Tmp7/2 for Spitzer parallel thermal diffusivity, is remarkably robust although not driven 
by the physics of exclusively parallel heat flux. The constant of proportionality varies depending 
on the temperature scaling of the diffusivities. This proportionality does not hold, however, in the 
case where the midplane temperature profile is set, for example, by a marginal stability 
condition. In this case the midplane temperature profile and divertor heat flux profile are largely 
decoupled.

An encouraging conclusion from this analysis is that if there is radial thermal diffusion along the 
field lines distant from the midplane, concepts such as the X-divertor17, Snowflake divertor18 and 
particularly Super-X divertor4 may offer an enhanced opportunity for thermal diffusion to 
contribute to heat flux dispersion, as a complement to the magnetic flux expansion central to 
these designs.

It is important to note that we need to be cautious in applying a purely diffusive model such as 
this for thermal perpendicular transport in the SOL. The assumption of constant density is a 
significant limitation in this study. Also at high density volumetric power losses play an 
important role. Longer field lines just near the separatrix, not taken into account here, may 
reduce parallel losses. Flux limitations due to sheath effects and low collisionality may play an 
important role at low density. This class of study should be revisited using more complete codes 
to include such effects.

Since the measured transport coefficients are in the range of Bohm, and since one observes large-
scale convective density perturbations, so-called “blobs”, in the edge19, it could be that heat is 
significantly transferred to the SOL from the main plasma in large convective events, and 
drained out along (and across) field lines. This is consistent with the order unity fluctuations 
measured in SOL parameters20. This might also be consistent with the observation that the edge 
and SOL electron temperature gradient scale length in the outer midplane is observed to vary 
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with system size, suggesting a role for marginal stability in setting that scale length. The analysis 
here suggests that if the mid-plane scale length is set by a marginal stability criterion and sand-
pile-like intermittent response, the peak heat flux profile at the divertor plate should not be 

expected to vary as the midplane profile of 
  
Te

7/2 .
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Figure 1: T(r) at z = 0, q||(r) at z = L|| and 
 
2q

(r, z = L


)L

/ πT (r, z = 0)χ

( )  for various values of τ, based on 

eigenmode expansion for constant thermal diffusivities and simplest boundary conditions. 
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a) τ = 1. 05 b) τ = 1. 2

c) τ = 2 d) τ = 5
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Figure 2: More realistic boundary conditions used in subsequent analyses. At the “far away” boundaries   d lnT dr is 
set constant. Convergence studies are used to adjust the outer limit of the calculation.
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Figure 3. T(r) at z = 0, q||(r) at z = L|| and 
 
2q

(r, z = L


)L

/ πT (r, z = 0)χ

( ) , ratio of divertor heat flux to midplane 

T normalized to expectation based on n = 0 eigenmode, for various values of τ. Numerical solution with constant 
thermal diffusivities and boundary conditions of figure 2.
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a) b)

c) d)



      
Figure 4. Heat flux relative to the simple two-point model d0(dh0/dy) and dimensionless scale length d0 vs. 
temperature coefficients of thermal diffusivities.

Figure 5. Profiles of h0 and k0 for various values of (+1)/(+1). 
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Figure 6. T7/2(r) at z = 0, q||(r) at z = L|| and 
 
q

(r, z = L


)L

/ 0.485T 7/2 (r, z = 0)χ

0( ) , ratio of divertor heat flux to 

midplane T7/2 normalized to expectation based on self-similarity solution, for various values of τ. Numerical solution 
with Spitzer scaling of parallel thermal diffusivity, Bohm scaling of perpendicular, and boundary conditions of 
figure 2.
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a) b)

c) d)



   
Figure 7. a) Numerical solution and self-similarity solution for T(z) with r  =  0.01, 0.51, 1.21, 2.61, 6.31 cm. 
Corresponds to conditions of figure 6b, Spitzer-scaling for parallel thermal diffusivity, Bohm for pendicular.  = 1.2,  
L||/ = 25m. b) Numerical solution and self-similarity solutions for T(r) with z = 0.15, 21.75, 26.85, 28.65, 29.55m.
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Figure 8. T7/2(r) at z = 0, q||(r) at z = L|| and 
 
q

(r, z = L


)L

/ 0.520T 7/2 (r, z = 0)χ

0( ) , ratio of divertor heat flux to 

midplane T7/2 normalized to expectation based on self-similarity solution, for various values of τ. Numerical solution 
with Spitzer scaling of parallel thermal diffusivity, perpendicular thermal diffusivity given by     χ⊥ = 1m2 / sec   and 

boundary conditions of figure 2. 
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a) b)

c) d)



Figure 9. a) Same conditions as figure 7, for τ = 1.5. b) – d) Same conditions as a), but with T(r) fixed exponential 
shape for |z| < L||/τ. Note that L|| = 10m for the dashed line, taking into account the fixed T(r) for |z| < 20m.
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c) λ = 2 cm d) λ = 4 cm

a) τ = 1.5 b) λ = 1 cm



     

        
Figure 10. Contour plots of T for the cases shown in figure 8. Note that the geometry is flipped vertically compared 
with Figure 2.
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a) τ = 1.5 b) λ = 1 cm

c) λ = 2 cm d) λ = 4 cm
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