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Abstract

The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported.

Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal

are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied

field strength. The observed slow MC wave is marginally damped but will become destabilized by the

magnetorotational instability with a modest increase in rotation rate.
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Hydromagnetic waves are a ubiquitous feature of both geophysical and solar dynamo models

as well as models of astrophysical accretion disks. Such waves were first observed in experiments1

with liquid metals using a sufficiently strong magnetic field that the Lorentz force could act like

tension on a string and support Alfvén waves2. When the liquid is in rapid rotation, these waves are

modified by the Coriolis force. The resultant magnetocoriolis waves3 are a hybrid of Alfvén waves

and inertial waves4. Magnetocoriolis waves (MC waves) are used to explain the secular variation

of the Earth’s magnetic field over the course of hundreds of years5 and the redistribution of angular

momentum in the Sun6. They are a special case of the more general Magnetic Archimedes Coriolis

(MAC) waves from dynamo theory7.

Despite the importance of MC waves in rotating conducting fluids and plasmas there is scant ex-

perimental evidence of their existence and of their relationship to various important astrophysical

phenomena such as the dynamo or the Magnetorotational Instability (MRI)8. Recent experiments9

on the DTS liquid sodium spherical Couette device and simulations10 have found several different

types of hydromagnetic waves, but there is ambiguity about their identification as MC waves. A

similar experiment in Maryland found inertial waves11, but the applied fields were too weak to

observe Lorentz force effects.

In this Letter, we report the first clear identification of the combined fast and slow MC waves

in a laboratory experiment. Through measurements of the radial magnetic field in a liquid metal

Taylor-Couette flow, we observe two rotating modes that follow the rotation speeds expected for

the fast and slow MC-wave. We also demonstrate through a local stability analysis that with the

addition of sufficient flow shear, the slow MC-wave can be destabilized to produce the MRI. Using

the observed frequencies of the waves we infer from the local dispersion relation that the modes

are damped and obtain a method of determining the threshold for the MRI.

The Princeton MRI experiment is designed to study the stability of a rotating sheared flow

of liquid metal with an applied magnetic field coaxial with the rotation axis. The apparatus has

been described elsewhere12 and has already demonstrated the ability to generate high Reynolds

number shear flow in water with angular momentum flux comparable to viscous transport (a null

result in trying to demonstrate subcritical hydrodynamic instability13). The volume between the

concentric rotating cylinders is filled with GaInSn, a gallium eutectic alloy14. The dimensions of

the experiment and properties of the liquid metal are given in Tab. I.

The equations describing the evolution of a rotating shear flow with a background magnetic
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Experimental Parameters Symbol Units Value

Height h cm 27.9

Inner Cylinder radius r1 cm 7.06

Outer Cylinder radius r2 cm 20.30

Density ρ g/cm3 6.36

Kinematic viscosity ν cm2/s 2.98×10−3

Magnetic diffusivity η cm2/s 2.57×103

TABLE I: Physical parameters of the apparatus12 and liquid metal14.

field are given by the magnetohydrodynamic (MHD) equations in a rotating frame:

∂ v
∂ t

+(v ·∇∇∇)v+2ΩΩΩ×v = −∇∇∇P+
1

µoρ
(B ·∇)B+ν∇2v

∂ B
∂ t

= ∇∇∇× (v×B)+η∇2B

P =
p
ρ

+
1
2

B2

µ0ρ
− 1

2
|ΩΩΩ× r|2

where v and B are solenoidal fields representing the velocity and magnetic field, ΩΩΩ is the an-

gular velocity, and p is the pressure. The generalized pressure P incorporates the magnetic and

centrifugal pressure terms.

The background field and angular velocity are given by B0 = B0 ẑ and ΩΩΩ = Ω ẑ. If we assume

harmonic perturbations of the velocity and magnetic field and linearize the resulting equations, we

obtain the dispersion relation in cylindrical coordinates15:

(ω̄− iγη)2 [
(ω̄− iγν)(ω̄− iγη)+ω2

A
]2

+2ζ Ω2 (ω̄− iγη)4 (kz/k)2−2(2−ζ )Ω2ω2
A (ω̄− iγη)(kz/k)2

−ωR
[
(ω̄− iγν)(ω̄− iγη)+ω2

A
][

(ω̄− iγη)2 +ω2
A

]
= 0

(1)

where ω̄ = ω −mΩ is the Doppler-shifted complex frequency, γη = ηk2 and γν = νk2 are

the resistive and viscous damping rates, ωA = kzB0/
√µ0ρ is the Alfvén frequency, and ωR =

(ζ −2)Ωkrkθ/k2 is the Rossby wave frequency16. We have quantified the flow shear by introduc-

ing the vorticity parameter

ζ (r) = |∇∇∇× rΩ(r)φ̂φφ/Ω(r)|= (1/rΩ)∂ (r2Ω)/∂ r. (2)
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FIG. 1: The real part of the dispersion relation for (a) damped Alfvén waves as given in Eq. 3, (b) inertial

waves as given in Eq 4, and (c) the fast (dashed red line) and slow MC waves (solid blue line). (d) The

growth rate of the fast and slow MC waves. Due to resistive dissipation, the MC waves collapse to the

inertial wave dispersion at high k. When there is sufficient flow shear, the slow MC-wave becomes unstable

at low k. The parameters for the dispersion relation are B0 = 4 kG, Ω = 42 rad/s, and ζ = 0.25 and the fluid

properties are given in Tab. I.

Note that ζ is only constant if the rotation profile follows a power-law dependence Ω(r) ∝ rζ−2.

For uniform rotation with no shear ζ = 2. The Rayleigh criterion17, which governs hydrodynamic

centrifugal stability of rotating shear flow, is given by ζ ≥ 0 .

We can gain insight into the basic waves for this dispersion relation by examining limiting
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cases. In the absence of rotation, the dispersion relation reduces to

(ω− iγν)(ω− iγη)−ω2
A = 0 (3)

which describes the damped shear Alfvén wave. These waves have a transverse polarization due to

the incompressibility of the fluid (in a compressible fluid there is also a longitudinal magnetosonic

wave). The complex frequency is ω = i(γν + γη)/2±
√

ω2
A− (γν − γη)2 which shows that the

Alfvén wave is viscously and resistively damped and has a real frequency of ±ωA in the absence

of dissipation. Variations in the flow along the direction of the magnetic field tend to be eliminated

in a highly resistive fluid (such as a liquid metal) due to this damping.

Assuming rotation without shear and without an applied magnetic field, the dispersion relation

reduces to

(ω− iγν)2 +(2Ωkz/k)2 = 0 (4)

which describes inertial waves. Inertial waves also have a transverse polarization but are peculiar

in that the restoring force, provided by the Coriolis effect, acts orthogonally to the displacement.

The resulting motion of a displaced fluid element is circular precession. The complex frequency

is ω = iγν ±2Ωkz/k so the wave is viscously damped with a real frequency between ±2Ω. Note

that there is no dependence on the wavenumber. Akin to Alfvén waves, inertial waves homogenize

the flow along the axis of rotation due to viscous damping, consistent with the Taylor-Proudman

Theorem4.

Together these waves make up the hybrid magnetocoriolis wave3. Since there are two restoring

forces acting on displaced fluid elements, there are two possible situations. The Lorentz and

Coriolis forces may act together, stiffening the system and producing the higher frequency fast

wave, or the two forces may oppose one another to produce the lower frequency slow wave. The

requirement for observing strong rotational effects on the Alfvén wave is rΩ√µ0ρ/B0 ∼ 1. The

Alfvén frequency experiences a splitting due to the breaking of the degeneracy of the two roots by

the presence of rotation. When the flow has sufficient shear, the slow MC-wave becomes stationary

and unstable at low k as seen in Fig. 1. This instability is the MRI which in addition to causing

turbulent transport of angular momentum in accretion disks may also be related to geomagnetic

jerks18.

The results reported here were obtained when an axial magnetic field was applied to turbulent

rotating shear flow. The outer cylinder was kept stationary while the inner cylinder rotated. The

rings at the end caps were coupled to either cylinder in what is referred to as the “split” configu-
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FIG. 2: A contour plot of the radial magnetic field near the surface of the outer cylinder constructed from

an interpolation of data from the Mirnov coil array. The locations of the coils are depicted by dots and the

contour levels are given in Gauss. The applied field was 4.3 kG.

ration12. The flow was hydrodynamically unstable since ζ ≤ 0. The inner cylinder and inner ring

were set in rotation at 6.7 Hz and an axial magnetic field between 1.7 to 4.3 kG was applied to

the turbulent flow. The induced radial magnetic field fluctuations were measured by an array of

Mirnov coils positioned just outside the outer cylinder. A nonaxisymmetric mode was apparent

from the coil array as seen in the snapshot of the field shown in Fig. 2. The signals from the array

were then interpolated onto a regular grid and a 2D Fourier transform was applied to obtain the

amplitude and phase of the two dominant modes shown in Fig. 3. Similar results are obtained

when a more formal least-squares fitting technique is used26.

The mode rotation rates are measured by calculating the linear slope of the Fourier phase with

time for each field strength. The results are shown in Fig. 4. The modes clearly rotate at different

speeds and their rotation rates increase with magnetic field strength. By comparing the rotation

rates with those of higher azimuthal harmonics obtained from the high density mid-plane coil

array (seen as the series of dots at z = 0 in Fig. 2) we find that the harmonics are not phase locked.

Hence, the signal is not likely due to a passing vortex as was observed in Sisan et al.19.

A least squares fit of the observed mode rotation rates to the real frequencies of the fast and slow

MC waves gives an estimate of the local wave vector components and the fluid rotation rate for a

given shear. The vorticity parameter ζ has no effect on the fit over the range where there is data

and is assumed to be zero for marginal stability consistent with hydrodynamic observations20. The
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FIG. 3: (a) Magnetic field measured by a single Mirnov coil. (b) The time series of (0,1) and (1,1) mode

amplitudes from a 2D Fourier decomposition of the radial magnetic field where the notation (n,m) describes

the vertical mode number n and the azimuthal mode number m. (c) The time series of mode phases.

fit parameters result in a mode with kz = π/2h and kr = π/(r2− r1). The corresponding growth

rate of the mode as a function of the applied magnetic field is shown in Fig. 4b. Aside from an

expected Doppler shift for the nonaxisymmetric modes, the MC-wave model provides an excellent

fit to the observations. From the growth rate, we find that the slow wave is marginally stable for

1 kG but is otherwise damped. Note as well that the slow wave is damped wherever it has nonzero

frequency, a generic characteristic of the MRI. From these properties of the dispersion relation we

can predict the necessary rotation rate and magnetic field strength to observe the MRI based on

empirical observations of the damped waves.

Similar nonaxisymmetric waves have been observed in the PROMISE magnetized Taylor-

Couette experiment21 which may be related to our observed MC waves. Sisan et al.22 also ob-

served rotating nonaxisymmetric spherical harmonic patterns in a turbulent liquid sodium spheri-

cal Couette flow. Although they attribute their observation of rotating nonaxisymmetric modes to

a bulk flow instability, the possibility that their observations are of a driven, damped mode should

be examined.

Further work is required to identify the source of these damped waves. One conjecture is that

the turbulent flow provides perturbations of a broad range of wavelengths, but that the geometry
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FIG. 4: The real frequency (a) and growth rate (b) determined by fitting the phase speed of the two non-

axisymmetric modes observed for a range of applied magnetic field strengths to Eq. 1. Error bars reflect

the uncertainty in the linear fit to the phase as a function of time. The dashed red and solid blue lines

show the fit of the fast and slow MC waves from Eq. 1 with values of ζ = 0, k = 0.246± 0.001 cm−1,

θ = 1.336± 0.005 rad where kz = k cosθ , and Ω = 5.4± 0.7 rad/s. The shaded areas express the uncer-

tainty in the fit.

of the vessel dictates which modes are realized23. Such is observed when a precessing top cap is

used to drive inertial waves in a cylinder filled with water24. The observed waves in this case are

cavity resonances driven by unstable flow at the boundary discontinuities and not an instability

of the bulk flow. It is also possible that these damped waves are driven through nonlinear wave

coupling25. If such is the case, then these damped waves may be a saturation mechanism for the

MRI. It is due to the ambiguity of the source of these waves that we are continuing to pursue an

observation of magnetically induced instability in a hydrodynamically quiescent flow.

In summary, we have observed rotating modes in a turbulent Taylor-Couette flow of liquid

metal that we identify as the fast and slow MC-wave. We have elucidated the relationship between

the slow MC-wave and the MRI and have deduced a method of determining the threshold for

instability through observation of driven MC waves. MC waves will be important in identifying
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the MRI in further experiments and may also play a role in saturation of MHD turbulence in

rotating fluids.
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