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Modification of particle distributions by MHD instabilities 11

R. B. White!

IPlasma Physics Laboratory, Princeton University,
P.O.Box 451, Princeton, New Jersey 08543
(Dated: February 25, 2011)

Abstract

The modification of particle distributions by low amplitude magnetohydrodynamic modes is
an important topic for magnetically confined plasmas. Low amplitude modes are known to be
capable of producing significant modification of injected neutral beam profiles, and the same can
be expected in burning plasmas for the alpha particle distributions. Flattening of a distribution in
an island due to phase mixing and portions of phase space becoming stochastic lead to modification
of the particle distribution, a process extremely rapid in the time scale of an experiment but still
very long compared to the time scale of guiding center simulations. Large amplitude modes can
cause profile avalanche and particle loss. Thus it is very valuable to be able to predict the temporal
evolution of a particle distribution produced by a given spectrum of magnetohydrodynamic modes.
In this paper we further develop and investigate the use of a new method of determining domains
of phase space in which good KAM surfaces do not exist and use this method to examine a well

documented case of profile modification by instabilities.

PACS numbers: 52.25.Fi, 52.25.Gj



I. INTRODUCTION

The resonant interaction of magnetohydrodynamic (MHD) modes and particle distribu-
tions can produce significant modification of the distribution and even induce large scale
particle loss through profile avalanche, and is an important topic for magnetically confined
plasmas. Low amplitude modes are known to be capable of producing significant modi-
fication of injected neutral beam profiles [1-3], and the same can be expected in burning
plasmas for the alpha particle distributions. Since magnetic field ripple is a strong function
of position, increasing rapidly near the plasma edge, this can lead to an increase of estimates
for stochastic trapped particle ripple loss. Portions of phase space becoming stochastic lead
to modification of the particle distribution, a process extremely rapid on the time scale of
an experiment but still very long compared to the time scale of guiding center simulations,
typically hundreds of hours of computing time to find saturated profiles under the action
of a particular mode spectrum. Thus it is very valuable to be able to predict the evolution
of a particle distribution produced by a given spectrum of MHD modes, and to ascertain
which modes are relevant for profile modification. In a previous paper[4] we introduced a
method for determining the evolution of the particle distribution without carrying out a
full guiding center simulation, by introducing a new technique for exactly determining the
location of resonances and the widths of the islands produced. This paper consists of a study
of a particular well diagnosed discharge in DIII-D[2, 3]. In section II we review the method
of resonance determination. In section III we discuss the equilibrium, modes and particle
distribution in DIII-D shot 122117, and in section IV we show the resonances produced by
the observed mode spectrum. Section V concerns the time evolution of orbit pairs used to
find domains of non KAM surfaces, and in section VI we calculate the modified particle

distribution and losses caused by the modes. Section VII is the conclusion.

II. RESONANCE DETERMINATION

Using the guiding center drift approximation a particle orbit in an axisymmetric system
is completely described by the values of the toroidal canonical momentum P, the energy F
and the magnetic moment . Particle spatial coordinates are given by 1,0, ¢, respectively

the poloidal flux coordinate, and the poloidal and toroidal angles. The magnetic field is



given by
B = gV( +IVO + Vi, (1)

and in an axisymmetric equilibrium using straight field line Boozer coordinates g and I are
functions of 1, only. The trajectory of the particle motion in the poloidal plane and the
toroidal precession of the orbit are independent of the function 0.

The guiding center Hamiltonian is
H = piB*/2+ uB + @, (2)

where p| = v /B is the normalized parallel velocity, 4 is the magnetic moment, and ® the
electric potential. The field magnitude B and the potential may be functions of v, ¢ and

also ( if axisymmetry is broken. Canonical momenta are

where 1) is the toroidal flux, with di/di, = q(1,), the field line helicity.

The equations of motion in Hamiltonian form are

g 9H , __OH
~ 0P, o 00
. 9H . OH
C_G—PC <=0 (4)

Equations for advancing particle positions in time, also in the presence of flute-
like perturbations of the form 6B = V x aB with B the equilibrium field and a =
> mn Qmon(Wp)sin(ng —mb — wy,t) can easily be derived. In addition, for ideal MHD pertur-
bations the rapid mobility of the electrons makes the electric field experienced by the ions
parallel to the magnetic field equal to zero. For this representation of 5B it is necessary to

add an electric potential ® to cancel the parallel electric field induced by dB /dt, with

> wBay, ) — B VP /B =0, (5)

where we have neglected terms of order . In Boozer coordinates, used in our simulations,

taking ® =" ®,, eIt the solution is

(99 + Dwa,, = (ng — m) Dy, . (6)
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FIG. 1: Plane of P, E for a range of 20 to 60 keV with uBy = 20 keV, showing domains of
confined particles. Shown are co-passing (C-P), counter passing (CT-P), trapped (T) and trapped

loss (T-L) domains. The apexes of the parabolas are at £ = puBa. (a), E = uBy (b), E = uBmn
(c).

but in general coordinates where I = I(1, ) the solution is complicated by the coupling of
different poloidal harmonics. The guiding center equations including MHD perturbations
are realized using a fourth order Runge-Kutta method in the code ORBIT[5]. The units are
conveniently defined by the on-axis gyro frequency (time) and the major radius (distance).

The magnetic moment p is conserved by the interaction of a particle with a mode with
frequency much smaller than the cyclotron frequency, so only Pr and E are modified by
interaction with it. For a given equilibrium and a fixed value of y the domains of confined
particles in the P, I plane are given by parabolas defining orbits that make contact with
the magnetic axis, the low field side outer boundary, and the high field side outer boundary
and the trapped-passing boundary.

An example is shown in Fig. 1 for the DIII-D reversed shear equilibrium in shot 122117
during the period t = 340 — 370 msec with ¢ = 4.7 on axis and ¢ = 9 at the plasma
boundary. The plane of P, E is shown for uBy = 20keV, with B the field strength on
axis, and the particle distribution is limited to a maximum energy of 60 keV. The canonical

momentum is normalized to the value of flux at the last closed flux surface, 1,,. The apex of



the parabolas are at ' = 1By.. (label a) for the high field side (left edge, label L), E' = uBy
( label b) for the magnetic axis (label A), and E = uB,,;, (label ¢) for the low field side
(right edge, label R). The confined counter passing and co-passing orbits share a common
triangular region, in which they have the same values of P. and E but opposite signs of
pitch. The full distribution of confined orbits with uBy = 20keV is shown shaded in Fig. 1.
In our simulations we will be using particle distributions produced by NUBEAMI6] in the
code TRANSP[7], which calculates the high energy beam distribution produced by neutral
beam injection, but does not take account of the presence of MHD modes.

Individual modes produce islands in the phase space of the particle orbits, which through
phase mixing produce local flattening of the particle distribution. In addition, overlap of
these islands[8, 9] leads to stochastic transport of particles.

We are interested in the case of the interaction of particles of arbitrary pitch with modes
of nonzero frequency. It is fairly easy to assess the effect of a particular mode of toroidal
mode number n and frequency w, on a particle distribution by examining a Poincaré plot
for a particular choice of either co-moving or counter-moving particles, which we refer to as
a kinetic Poincaré plot to distinguish it from a plot of the magnetic field. Points are plotted
in the poloidal cross section whenever n¢ —w,t = 27k with £k integer, where ( is the toroidal
particle coordinate, and w,, is the mode frequency. Such a plot shows the canonical division
of orbits into those following good Kolmogorov Arnold Moser[10] (KAM) surfaces, isolated
islands bounded by separatrices, and stochastic domains.

In a previous paper[4] we introduced a general method for numerically determining the
existence of or the destruction of good KAM surfaces. Consider following two orbits located
very nearby one another in the P, 6 plane, and define the angle x to give the orientation
of the vector joining them in this plane. If good KAM surfaces exist x can change by at
most an angle of 7, due to their relative velocity in . However two orbits within an island
rotate around one another with y increasing with the rotation about the island O-point,
also refered to as the bounce frequency of a particle trapped in the wave, which increases
with the size of the island. This is illustrated in Fig. 2, showing vectors between nearby
points in the P, 6 plane on good KAM surfaces and in a resonance. The rate of change
of x is a function of distance from the island O-point, dropping to zero at the separatrix.
Also, as shown previously[4] x also rotates without bound in a stochastic domain. Thus

we determine the nonexistence of good KAM surfaces by examining nearby pairs of orbits,



FIG. 2: The P, 0 plane showing a single n = 1 resonance island, and vectors between nearby
points on good KAM surfaces and in the island. The phase vector between points on nearby KAM
surfaces can rotate by at most w, whereas a phase vector in an island rotates through 27 with a

period given by the trapping bounce time.

looking for phase vector rotation y exceeding 7. In the present work we take |x| > 4 to
indicate destroyed KAM surfaces. The method of launching closely spaced pairs of orbits
spanning the entire space of confined particles was discussed previously[4]. The sensitivity
and accuracy of this method for determining domains of non KAM surfaces in the P, E
plane can be ascertained by examining kinetic Poincaré plots in the P, 6 plane along lines
given by wP: —nk = c.

Of particular importance are cases with a large spectrum of very small amplitude modes,
as evidenced by experiments on DIII-D. As an example we choose a case previously discussed
in[2, 3], where many modes produced significant modification of the beam distribution. As
pointed out previously, this is a difficult trial case, because the mode spectrum is very near
stochastic threshold for particle transport, making the results sensitive to small modifica-

tions.

III. EQUILIBRIUM, MODES AND PARTICLE DISTRIBUTION

The low shear elliptically shaped equilibrium in DIII-D shot 122117 is shown in Fig. 3,

along with the g profile. A reversed shear equilibrium of this sort is particularly unstable
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FIG. 3: DIIID equilibrium and ¢ profile

to toroidal Alfvén eigenmodes[11] (TAE) and reversed shear Alfvén eigenmodes (RSAE).
The mode spectrum and radial eigenfunctions were obtained with the code NOVA[11], and
there has been detailed comparison of these mode structures with experiment using electron
cyclotron emission spectroscopy [12-14]. The mode spectrum consisted of eleven TAE and
RSAE modes with frequencies ranging from 50 to 100 kHz. Each mode has a fixed toroidal
mode number n and a frequency w, along with approximately 10 poloidal harmonics. An
example of the radial profiles of the poloidal harmonics is shown in Fig. 4. Note that this
mode is well localized near the plasma center, as were most of the modes in this discharge.
An exception was one TAE mode with n = 6, 26 < m < 39 at 89.4 kHz which was fairly
broad radially and was responsible for much of the induced loss.

The beam particle distribution at the time of the observation of the mode spectrum is
shown in Fig. 5, generated by TRANSP by the production of a list of 10° particles, and
using beam deposition physics which ignores the presence of the modes. It is seen that
the pitch distribution is strongly peaked, with uB, peaked around 20 keV. Maximum beam
energy was 80 keV. For the present analysis particle energies are considered only between

20 and 80 keV.
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FIG. 4: The poloidal harmonics of an 81 kHz TAE mode, (x10°)
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FIG. 5: DIIID beam distributions in B and F

RESONANCES

We first examine the resonances due to the mode spectrum using both the phase vector

rotation and kinetic Poincaré plots, to check the validity of the use of the rotation to de-

termine broken KAM surface domains. It is known that the resonance islands are mostly

very small, requiring a fairly long running time to observe phase vector rotation as well as

requiring closely alligned pairs of orbits. We divide the distribution in p into 12 domains,

each with a range of 4 keV for uBy. Since each mode must be examined alone, there are a



total of 132 cases in order to survey the whole distribution.

It is impossible to show the resonant domains of all 11 modes in all 12 domains of u. To
demonstrate the method we select a representative mode, an 81 kHz TAE mode with n =
3, 10 < m < 23, the poloidal harmonics of which are shown in Fig. 4, and show the effect of
this mode for three different values of . Some modes resonate with the distribution much
more than others, and also the values of I/, Pr and p at which resonances occur varies with
frequency, harmonic content, and radial mode structure. The determination of resonance
was made using 100 domains in energy and 100 domains in P and launching pairs of orbits
for all confined particles as described previously[4]. We used two orbit pairs for each domain,
with different values of (, to change the phase of the orbit with respect to the mode, and the
pair spacing was A, = 2 x 107%,, with v, the poloidal flux at the last closed flux surface.
These parameters as well as the length of time the particles are followed determine the
resolution of resonance determination. These plots were made using a time of 400 toroidal
transits.

Shown in Fig. 6 is the result of the phase vector rotation determination for a value of B,
of 2 keV, and three kinetic Poincaré plots showing the nature of the resonances with energies
at the left end of the Poincaré line of 60, 30 and 27 keV. Since we are only interested in
particles with energy above 20 KeV there is no trapped domain in this P, I/ plot. Although
there are many poloidal harmonics in the simulation, there is no observed stochastization
of orbits, simply the production of significant islands primarily deep in the plasma interior.
The first Poincaré figure, showing the plot for the line starting at 60 keV, shows 13 small
islands at P = -0.02, 12 at P, = 0.085, and 11 at 0.24, these resonances being also visible
in the P;, F plane. There are some breaks in the resonance lines in the P, I/ plane due
to insufficent resolution, which could be improved by a greater density of orbit pairs. The
second plot, for the Poincaré line starting at 30 keV, shows 12 small islands at P = -0.19,
11 at -.04, and two large 10 island structures at 0.28 and 0.4. The last plot, for the line
starting at 20 keV, shows 10 small islands at P; = 0.09, and 10 islands at P, = 0.4 . The
large resonance near the magnetic axis in the P, F plane is a 10 island structure for all
energies, but bifurcates at £ = 40keV into two distinct resonances for lower energy.

Shown in Fig. 7 is the result of the phase vector rotation determination for a distribution
with puBy of 22 keV, and three kinetic Poincaré plots showing the nature of the resonances

with energies at the left end of the line of 60, 30 and 23 keV. The first figure, showing the
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second plot, for the Poincaré line starting at 30 keV,
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islands at

island Fibonacci chain produced by these at P = 0.18. The last plot, for the line starting

at 23 keV

—0.48, and also many

4 islands at Py =

—0.57,

3 large islands at P

shows

’
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In Fig. 8 are results of KAM destruction and associated Poincaré plots for uB
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FIG. 7: Plane of P, E with uBy = 22KeV, for an 81 kHz TAE mode with n = 3, 10 < m < 23,
showing paths for kinetic Poincaré plots for three lines originating at the left end at 60, 30 and 23
keV

showing significant mode-particle interaction near the trapped-passing boundary, perhaps
because the large variation of the parallel velocity over the orbit allows the possibility of
resonance at some point. In the first Poincaré plot, starting at 59 keV, there is a large
9 island chain at Pr = 0.33, and a smaller 8 island chain at P, = —0.02. In the second
Poincaré plot, starting at 50 keV, there are trapped particle resonances at P; = —0.46 and
P; = —0.4, and many closely spaced resonances just above this. These smaller resonance
islands are not individually resolved in the P, E plane. In the third Poincaré plot, starting

at 43 keV, there is a trapped particle resonances at P = —0.2 and a fully stochastic domain

11
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FIG. 8: Plane of P, E for uBy = 46KeV, with an 81 kHz TAE mode with n = 3, 10 < m < 23,

showing paths for kinetic Poincaré plots for three lines, originating at the left end at 59, 50 and 43

keV, and the kinetic Poincaré plot for these lines

with some remnant island structures just inside the passing particle domain.

These kinetic Poincaré plots demonstrate that the phase vector rotation gives an accurate
determination of the location and size of islands and stochastic domains, limited only by
the resolution chosen for the evaluation. It is interesting that in this case the distribution
modification is achieved by these modes through a large density of non overlapping island
structures, without extensive stochastic regions produced by each mode alone. As shown
in[4], different modes which have island structures at the same values of P, E produce

stochastic transport agreeing with quasilinear estimates in the limited domain spanned by

12
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FIG. 9: An example of the full resonance domain of an 81 kHz TAE mode on the particle distribu-
tion. Space is left between the different values of u, to allow visualization. Actually the resonant

structures are fused in p to form connected localized blocks.

the island structures.

In Fig. 9 is a full 3D plot of this mode in the space of P, F, i1, showing the density of
resonances produced. Space has been left between the different values of pu, otherwise it
is very difficult to envision the space of resonances because it is so dense. The magnetic
moment 1By is plotted vertically, energy is increasing to the right, and canonical momentum
is increasing coming out of the page. The resonances are seen to comprise continuous volumes
in the space of P, F/, u. As i increases they move to larger energy, being associated with a

particular value of v.

V. TIME ANALYSIS FOR PHASE VECTOR ROTATION

The only computationally demanding part of the analysis in this work is the determination

of the domains of non KAM surfaces. Thus it is important to find the number of toroidal

13
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FIG. 10: Time history of x(t) for some orbit pairs, plotted versus toroidal transits, showing some
trajectories reaching |x| = 4, and the distribution of times for orbit pairs to reach |x| = 4, plotted

versus toroidal transits, particles taking approximately one microsecond per transit.

transits necessary to follow orbit pairs in order to discover all important resonances. In
Fig. 10 is an example of the time histories of x for five different orbit pairs, three of which
reach the critical limit of |x| = 4. Once a trajectory has become resonant y very rapidly
exceeds this value, as seen by the almost vertical behavior of the plots approaching the
limiting value. Also shown is the distribution of times for orbit pairs to reach |x| = 4,
plotted versus toroidal transits, particles taking approximately one microsecond per transit.
For the resolution used all domains of destroyed surfaces are found by 400 transits, or about
0.4 msec. It is misleading to think simply of a progression of orbit pairs as shown in Fig. 2,
because the two particles do not remain in phase in toroidal angle ¢, and thus do not appear
simultaneously in any given Poincaré section. Thus the angle x does not rotate uniformly
in time for an orbit pair in an island, the time history of the rotation is more complicated,
and in fact it is somewhat mysterious the accuracy with which the vector rotation indicates
the location of resonances.

An analysis of the time evolution of the orbit differentials AP:, A¢, A8, Ay, has been
started, to see whether any simplification or insight into the dynamics of the phase vector
rotation can be obtained. It has been verified that all these quantities remain small during

the whole orbit pair evolution, so that a differential analysis is appropriate.

14
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FIG. 11: Plane of P, E for uBy = 14keV at different times, showing the rapid filling in of the
large islands, followed later by the smaller ones. The mode is an 81 kHz TAE mode with n = 3

and 10 < m < 23. One transit equals approximately one microsecond.

In Fig. 11 are shown the points in the P, F plane at which orbit pairs have reached
|x| = 4 for different times. The centers of large islands, with the most rapid phase vector
rotation, are the first to appear. At later times the parts of large islands closer to the
separatrix appear, as well as smaller islands.

There is a limit on the time of search for phase vector rotation imposed by the resolution
of the grid used in the P, E' plane. In Fig. 12 is an island chain that is detected with phase
vector rotation only after 80 toroidal transits. It has a width of P, = .01%,,. When such an
island is detected it causes the whole domain in the P, I/ plane to be labelled stochastic.
Thus it should not be counted if the domain size in P is larger than .01, otherwise such
islands give an overestimation of the degree of stochastization caused by the modes. We
take the criterion that the islands detected must be more than half the size of the domain
in the P, E plane to cause that domain to be labelled stochastic. Also shown are two

examples of dense but nonoverlapping island chains, one in the passing domain and one in

15
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width of Pr = .01%,,, and examples of dense but nonoverlapping island chains, the first due to an

showing also the first order

< 27,

/

and 22 < m

)

89.4 kHz mode with n = 6 and 26 < m < 39

and m'/n = 47/12. The third example shows closely spaced

= 45/12

/ / n
resonances in the trapped particle domain, which would indicate a completely stochastic region if

Fibonacci chains of m

the domain spacing in AP, were greater than 0.01%,,.

the trapped domain. A resolution in the domains with AP, > .01, would indicate that the

whole domain was stochastic and produce an overestimation of the transport. A knowledge

of the details of the mode spectrum can save greatly on the computing time necessary to

find the ability of the modes to modify the particle distribution and is necessary in order

to avoid overestimation of transport. If the P, E' plane shows a domain to be completely

16



stochastic it must be investigated using a kinetic Poincaré plot to be certain that in fact the
island chains do overlap. Very small islands which do not overlap can be eliminated from
the annealing process by restricting the time allowed for |x| = 4 to be achieved, as shown
in Fig. 11. The data set listing the orbit pairs for which |y| > 4 contains the mode number,
the initial P, F/, i coordinates, and the time, so such a limitation can be imposed without

a repetition of the numerical simulation.

VI. ANNEALING AND LOSS

We wish to use the determination of domains in the P, E/ plane with destroyed KAM
surfaces to find the evolution in time of an initial distribution under the action of a given
mode spectrum as well as the distribution of lost particles if the resonances cause loss. We
are interested in collisionless effects, but we point out that pitch angle scattering, since it
conserves energy, results in simple diffusion in P, and p, and can be included. Similarly it is
simple to include the effect of energy loss through slowing down on electrons. A final state
exists only if the phase space does not allow continuous loss. Otherwise time must be taken
into account and relevant diffusion rates used to find the distribution at a given time.

Construct a numerical method of producing the evolution of an initial particle distribu-
tion under the action of a given spectrum of modes. The function of a particular mode with
frequency w and toroidal mode number n is to equilibrate particle density in all adjacent
island and stochastic domains along lines given by wP; — nE = constant, since this com-
bination is conserved and annealing can happen only along this line. However, as shown
in[4] repeated annealing for multiple modes, with different values of w/n, produces diffusive
motion in the combined non-KAM domains of the modes involved, at the level given by
a quasilinear approximation. Thus the necessary algorithm must be an iterative annealing
process, one mode at a time, but repeated so as to capture the diffusion produced by the
combination of modes present.

Examine a high energy particle distribution as predicted by a neutral beam deposition
calculation or an alpha particle birth profile calculation, and make a number of domains in
the magnetic moment p sufficient to give a good representation of the distribution. For each
i, divide the space of confined particles in the P, £/ plane into small domains, with size

determined by the desired resolution of small islands. Then find the domains of broken KAM

17



surfaces for that part of the plane which is occupied by the distribution by following pairs
of orbits and looking for phase vector rotation, noting whether each domain is stochastic
or consists of good KAM surfaces. This is the only computationally demanding part of the
calculation, depending on the desired resolution for island size. The island size resolution,
and thus the number of toroidal transits that the orbit pairs should be followed, is determined
by the size of the P, F domains. Islands much smaller than the domain size should not be
counted, as noted in the discussion concerning Fig. 12.

Reintroduce the original particle distribution and partition it into the u, P, F domains.
At this point, to improve accuracy of the annealing process the number of particles can be
multiplied by a factor sufficient to make the number of particles in each domain large. Then
carry out an equilibration of densities in stochastic domains which are in contact along lines
wP; —nE = c for each mode. Each iteration of this process corresponds to a diffusion step
of AP, the size of the domains in the P, E plane.

To carry out the equilibration, note that the differential volume is given by dV ~
J (1, 0)d0dip,, where in Boozer coordinates JB? = gq + I. Thus the domain at p, P,

E with range dFP; has volume
d
o, fa0(5) o0 g
AP ) g,

the integration being over the particle orbit. Using P = gp| — ¢, and E = pyB?/2 + uB

we find

(9q +1) 1
B* 1+ g(p{B + 1)y, B/pB* — g'p

dV = dP / df (8)

where the integral is taken over a constant u, P, E surface, ie along the particle orbit, and
g = 0y,9. Consider neighboring stochastic domains along the lines with wP; —nk = ¢
with initial particle numbers in the domains n, ny and n; + ny, = N. The new particle
numbers n}, nj by particle conservation satisfy n} + n, = N and setting densities equal

gives n /dV} = nl/dV; so the new particle numbers are

, Nav, , NdV,

T vt AV, "2 v+ v, (9)

In addition to replacing the particle numbers in adjacent stochastic domains with the
modified values for the two domains, stochastic domains in contact with the last closed flux

surface are emptied of particles, they being counted as lost. This process must be repeated
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FIG. 13: The locations of lost particles on the last flux surface, and the distribution of lost particles

with respect to major radius X, with dB/B equal to (a) 2 x 1074, (b) 3 x 1074, and (c) 4 x 10~%.

FIG. 14: The distributions of lost particles in pitch A and in energy F, with dB/B equal to (a)
2 x 1074, (b) 3 x 1074, and (c) 4 x 1074

many times using the stochastic domain template for each mode. Each step of the annealing
process corresponds to a diffusion step size of one domain AF;. The time corresponding to
diffusion through AP, is given by the quasilinear rate for the mode[4], also roughly of the
same order as the Landau relaxation time for phase mixing in an island.

After any number of annealing steps the remaining confined particle distribution can
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FIG. 15: The initial DIII-D particle distribution and final distributions after 600 annealing steps,
in this case corresponding to about 60 msec, with dB/B equal to (a) 2 x 1074, (b) 3 x 107%, and

(c) 4 x 107, Also shown, with rather large error bars, are the experimental values.

be reconstructed. Given p, P, E the orbit is completely determined, but not the particle
location on the orbit. Note that these values do not determine the radial profile. For example
all particles could be placed at § = 0, or at § = 7, resulting in very different radial profiles.
The distribution can be reconstructed using a uniform distribution in 6, giving a reasonable
radial profile. Since n}, nf from Eq. 9 are not integer, reconstructing the distribution
involves rounding to the nearest integer, hence the reason for making nq, ny large.

It is clearly possible to make the temporal evolution more exact, by using complete equi-
libration of neighboring stochastic domains only in domains where the quasilinear diffusion
is largest. These regions would set the time scale for a single annealing step. Other do-
mains, where the value of the quasilinear diffusion was lower, could be subjected to partial
annealing corresponding to the lower diffusion rate. In the present work we simply associate
a time scale of 0.1 msec, given by the quasilinear value for diffusion due to the modes for
each annealing step.

In a previous work we examined the modification of a particle distribution due to an
avalanche produced by a number of overlapping resonances. In this work we focus on the
DIII-D case discussed in[2, 3], which provides a difficult test for the method, since the

observed spectrum of modes is very near stochastic threshold for distribution modification.
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Co-moving passing particles lost at each step of the annealing process pass through the
left side of the boundary for confined particles with specific values of P, F, 1. Orbits at the
loss boundary impact the last closed flux surface at the outboard midplane. By assuming
particles to continue diffusion in P, after entering on a lost orbit, a distribution in pitch
values and impact points is obtained. The time to diffuse through one domain in P is
given by the quasilinear rate, and in this case is approximately one tenth of a millisecond.
Thus each iteration of the annealing processs corresponds to a diffusion time step of this
magnitude. The flight time once a particle is on a lost orbit is approximately a microsecond.
Thus by assigning a random further decrease in P, during the time on the lost orbit, using
the ratio of these times, distributions in the energy, pitch, and location are determined. The
distributions are shown in Figs. 13 and 14 for simulations of 600 annealing steps, in this case
corresponding to about 60 msec with perturbation amplitudes dB/B equal to (a) 2 x 1074
(b) 3x 1074, and (c) 4 x 10~*. Shown is the location of lost particles on the last flux surface,
the distribution in major radius, as well as pitch and energy distributions.

Note that if a representation of the magnetic field beyond the last closed flux surface is
available, the values of energy, pitch, and location can be used to continue these orbits into
the vacuum region to improve strike point information[15].

In Fig. 15 is shown the initial radial distribution and that after 600 annealing steps, in
this case corresponding to about 60 msec with perturbation amplitudes dB/B equal to (a)
2x 1074, (b) 3x 107%, and (c) 4 x 10~* obtained through the annealing process as well as the
experimental values. The variable V' is the normalized volume contained inside a given flux
surface, and is used to label the flux surfaces. The histograms of the particle distribution
are made using bins of equal size in V, and the result plotted vs vV, approximately equal
to the minor radius. It is clear from these figures that there is a stochastic threshold for
significant loss at about dB/B = 2 x 1074, with collisionless transport increasing rapidly
for TAE amplitudes above this. Note that this is a difficult test case because the modes are
very near stochastic threshold for particle transport, making the results sensitive to small
changes. The inclusion of pitch angle scattering, not present in these simulations, would

further smooth and lower the profiles.
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VII. CONCLUSION

In conclusion, we have extended the method for the determination of domains of broken
KAM surfaces in the space of P, I/, u describing confined particles in a toroidal confinement
device due to the presence of a spectrum of MHD modes given in [4]. We have described
the application of the method to a previously studied and well documented case of toroidal
Alfvén modes in the DIII-D tokamak[2, 3]. This method gives a clear detailed understanding
of the effect of each mode on the particle distribution, and shows which modes produce losses
as well as what part of the distribution is lost. It also reasonably reproduces the main results
of a full guiding center simulation, and gives the possibility of rapid evaluation of particle
loss. The main computing requirement is the following of the orbit pairs to produce the non-
KAM domains. For the annealing shown in Fig. 15 20,000 particle pairs were followed for
100 toroidal transits, or about 0.1 msec, and the computing requirements for the annealing
process itself were insignificant, taking only minutes of computing time. On the other hand,
the guiding center simulations reported previously[2, 3] followed 10,000 particles for 60 msec.
The present method requires orders of magnitude less computing than a full guiding center
simulation.

The present method must be understood to give the initial response of a distribution to a
spectrum of modes, not a long time simulation of the coupled system. It must be recognized
that after significant modification of the distribution the mode spectrum will change, so it
does not make sense to continue this process once the distribution is modified. However
it gives a means of quickly examining a given particle distribution and mode spectrum
to understand whether profile modification would occur. In addition, it is not difficult to
imagine for the future an iteration involving the calculation of instabilities produced by a
given equilibrium, the evolution of the distribution due to the modes using this method, and
a return to calculation of the modified instability spectrum.
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