
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL- 

Pamela Hampton
Text Box
PPPL-



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 

Trademark Disclaimer 

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  

 
 

PPPL Report Availability 
 

Princeton Plasma Physics Laboratory: 
 

 http://www.pppl.gov/techreports.cfm  
 
Office of Scientific and Technical Information (OSTI): 

http://www.osti.gov/bridge 

 

Related Links: 
 

U.S. Department of Energy 
 
Office of Scientific and Technical Information 
 
Fusion Links 



Self-Similar Nonlinear Dynamical Solutions for One-Component

Nonneutral Plasma in a Time-Dependent Linear Focusing Field

Hong Qin1, 2 and Ronald C. Davidson1

1Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543
2Department of Modern Physics, University of Science

and Technology of China, Hefei, Anhui 230026, China

Abstract
In a linear trap confining a one-component nonneutral plasma, the external focusing force is

a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps

include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-

radio-frequency traps and the Möbius accelerator. This paper describes a class of self-similar

nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with

self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions

as special cases.

PACS numbers: 52.27.Jt, 37.10.Ty
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Nonneutral plasmas are often confined in traps with external focusing fields, such as

the Paul trap [1, 2] and the Penning trap [3–8]. For most of the often-used traps, the

external focusing forces are linear functions of the configuration coordinates and/or the

velocity coordinates. For example, in a Paul trap the external focusing force in the transverse

direction is proportional to the transverse displacement from the trap axis, whereas in a

Penning trap the transverse focusing force is proportional to the transverse velocity. (Strictly

speaking, this linearity is valid near the axis for real devices.) We call these types of traps

linear traps. The strength of the external focusing field is generally allowed to vary with

time. In many cases, such as the Paul trap, it is necessary to have time-dependent focusing

fields to provide transverse confinement. Obviously, the quadrupole and solenoidal focusing

lattices in particle accelerators [9] are also linear focusing devices. Recently, new types of

traps, such as rotating-radio-frequency ion traps [10], and new types of focusing lattices,

such as the Möbius accelerator [11], have been proposed. The main feature of these new

devices is that the focusing force components in different directions are linearly coupled,

which offers advantages in terms of stability and focusing strength over standard traps and

focusing lattices. Yet, they all fit into the category of linear focusing devices. In this paper,

we describe a class of self-similar nonlinear dynamical solutions of nonneutral plasmas in

general linear focusing devices, with self-consistent electrostatic potential generated by the

oscillating one-component plasma. The starting point of the present study is the set of

macroscopic fluid equations with self-consistent electric field, which model the nonlinear

dynamics of nonneutral plasmas. The class of nonlinear dynamical solutions admitted by

the fluid equations includes many of the known modes in linear focusing systems as special

cases, such as the well-known transverse envelope oscillations of a charged particle bunch

in focusing lattices of accelerators and store rings, and the equilibrium solution of a cold

nonneutral plasma in a time-independent Penning trap. It also includes new collective

oscillation modes that haven’t been reported before. As an example, a nonlinear collective

oscillating mode in a time-dependent Penning trap is identified.

Collective dynamics of nonneutral plasmas are of considerable practical importance [2, 12–

20]. Previous approaches for investigating collective dynamics of a nonneutral plasma typ-

ically first find an equilibrium solution, then analyze the evolution of linear perturbations

relative to the equilibrium. An excellent example is the linear eigenmode analysis by Dubin

[13, 14, 16, 17] and Bollinger [2]. Dubin [14] also developed a class of self-similar solution for
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the penning trap [Detailed discussion is given after Eq. (11). Compared with the classical

studies, the analysis presented here examines a new class of nonlinear modes that are ap-

plicable to time-dependent linear focusing devices, including Paul traps, and Penning traps

with time-dependent confining magnetic field B0 (t) ez, where there exists no quasi-steady

equilibrium state (∂/∂t = 0) for the plasma. It also applies to the periodic focusing lattice

with quadrupole and solenoidal magnets in accelerators and storage rings. In this sense,

the results presented here are intended to extend our fundamental understanding of time-

dependent linear focusing devices by a considerable amount. It is a new result that many

of the fundamental modes in these important devices can be united through the theoretical

development reported here.

We model the dynamics of a one-component nonneutral plasma in an applied linear

focusing field including the effects of the self-generated electrostatic field, E = −∇ϕ, by the

following set of macroscopic fluid equations:

∂n

∂t
+∇ · (nv) = 0 , (1)

∂v

∂t
+ v · ∇v+

q

m
∇ϕ+

∇P
mn

+ κ1 (t) · x + κ2 (t) · v = 0 , (2)(
∂

∂t
+ v · ∇

)(
P

nγ

)
= 0 , (3)

∇2ϕ = −4πqn , (4)

where −κ1 (t) · x is the applied focusing force proportional to the displacement x, and

−κ2 (t) · v is the focusing force proportional to the average flow velocity v. Here, q and m

are the particle charge and mass, respectively, n (x, t) is the particle number density, v (x, t)

is the average flow velocity, and ϕ (x, t)is the space-charge potential generated by the charged

particles. The conducting boundaries are assumed to be far away, i.e., |xw| → ∞. The time-

dependent tensors κ1(t) and κ2(t) include all of the known linear focusing forces as special

cases. In a Paul trap, the focusing coefficients are

κ1 (t) = Diag[κxx (t) , κyy (t) , κzz (t)] , κ2 (t) = 0 , (5)

Here, Diag[a, b, c] denotes the 3×3 diagonal matrix with diagonal components a, b, and c. For

a standard Paul trap, the transverse field is a quadrupole potential, and κxx (t) = −κyy (t)

are the (oscillatory) transverse focusing coefficients, and the focusing coefficient κzz (t) > 0

provides longitudinal confinement of the particles in the z-direction. [In Eq. (5), we do not
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generally require that κxx (t) = −κyy (t) . The meaning of Paul trap here is a bit more general

than the standard convention.] In a Penning trap, transverse confinement is provided by a

uniform axial magnetic field B0 (t) ez, and κ1 (t) and κ2 (t) are given by

κ1 (t) =


−1

2
ω2
z (t) −Ω′ (t) 0

Ω′ (t) −1
2
ω2
z (t) 0

0 0 ω2
z (t)

 , κ2 (t) =


0 −2Ω (t) 0

2Ω (t) 0 0

0 0 0

 , (6)

where Ω (t) = qB0 (t) /2mc is the Larmor frequency, and ω2
z(t) > 0 is the focusing coefficient

in the longitudinal direction. The term Ω′(t) denotes the time derivative of Ω (t), representing

the force due to the inductive electric field when B0 (t) varies with time. As a simple model,

the pressure P (x, t) is taken to be a scalar, and the energy balance equation for the fluid

is assumed to have the polytropic form in Eq. (3), where γ is the polytropic index. We

emphasize that the energy equation adopted in the present analysis is a simple theoretical

model to allow analytical progress, as discussed in detail by Dubin [14] and Amiranashvili

and Stenflo [21]. The physics conclusions obtained in this paper are not sensitive to this

choice of model. To model the moment transport and heating due to viscous effects, we

can include a viscous force −µ
[
∇2v − 1

3
∇∇ · v

]
/mn on the left-hand side of Eq. (2), and

a viscous heating term 2(γ − 1)µ
[
eijeij − 1

3
(∇ · v)2

]
/ργ on the right-hand side of Eq. (3).

Here, µ is the viscosity coefficient and eij ≡ (∂vi/∂xj +∂vj/∂xi)/2. It can be shown that the

self-similar solution ansatz also applies to the system of equations with viscosity. However,

the dynamical equations for P (t) /nγ will be different from Eqs. (14) and (15) because of

viscous heating effects.

The class of nonlinear collective dynamical solutions of the one-component nonneutral

plasma are specified by the following solution structures admitted by the system of fluid-

Poisson equations (1)-(4). The density n (x, t) is taken to be uniform inside an ellipsoid

and zero outside. The shape and orientation of the ellipsoid depend on time t, and are

determined from (see Fig. 1)

S (x, t) = Dij (t)xixj < 1 . (7)

Inside the ellipsoid, the field quantities are assumed to be of the form

n(x, t) = n (t) , vi(x, t) = vij (t)xj , P (x, t) = p0 (t)− pij (t)xixj . (8)
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Figure 1: The density n (x, t) is uniform inside the ellipsoid and zero outside. The shape and

orientation of the ellipsoid depend on time, and are determined from S (x, t) = Dij (t)xixj < 1.

Here, xi (i = 1, 2, 3) denotes the three configuration coordinates of the displacement vector

x, and vi (i = 1, 2, 3) denotes the three components of the flow velocity vector v. There is

an implicit summation over the repeated indices in Eq. (8). Equations (7) and (8) specify a

particular space-time structure of the dynamical solutions. The velocity vector vi is a linear

function of the displacement vector xi, and the coefficient is a time-dependent tensor vij (t) .

The pressure P is given by a time-dependent function p0 (t) plus a quadratic function of the

displacement vector, specified by the symmetric tensor pij (t) . We note that the solution

requires the density to be constant inside the bunch, and the pressure falls off parabolically

towards the edge. As discussed by Dubin [14] and Amiranashvili and Stenflo [21], this is

only an approximate model. Dubin [14] chose a special parabolic shape for the pressure

such that its mean value corresponds to nT . Amiranashvili and Stenflo [21] chose a different

parabolic shape to obtain the best fit to the particle-in-cell simulation. They showed that a

parabolic pressure profile with constant density is a resonable model for small plasmas.

The ellipsoid S (x, t) = Dij (t)xixj < 1 is determined self-consistently by the velocity

field according to
dS

dt
=
∂S

∂t
+ v·∂S

∂x
= 0 . (9)
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In terms of the matrices v and D, Eq. (9) can be expressed as

D′ + vTD +Dv = 0, or D′ij + vliDlj +Dilvlj = 0 , (10)

where vT denotes the transpose of v. If Dij is initially symmetric and positive-definite,

then the solution for Dij (t) determined by Eq. (10) is symmetric and positive-definite at all

subsequent times. This is because vliDlj + Dilvlj is symmetric, and Dij cannot cross the

boundary |Dij| = 0, which corresponds to infinitely large density and pressure. In addition,

if the initial conditions are chosen such that the pressure P (x, t) vanishes at the boundary of

the ellipsoid S (x, t) = 1 at t = 0, then Eqs. (3) and (9) guarantee that the pressure vanishes

at the boundary at all time, i.e., P (x, t) |S(x,t)=1 = 0 for t ≥ 0.

For given Dij and total number of charged particles N, the solution to Poisson’s equation

(4) with boundary condition of ϕ (|x| → ∞) = 0 is given by [9]

ϕ = −3Nq

4

ˆ ∞
0

ds√
(λ21 + s) (λ22 + s) (λ23 + s)

(
1− X2

λ21 + s
− Y 2

λ22 + s
− Z2

λ23 + s

)
, (11)

Here λ−21 , λ−22 , λ−23 are the three eigenvalues of Dij, and (X, Y, Z)T = Q−1(x, y, z)T denotes

rotated coordinates. The orthogonal matrix Q is constructed from the three eigenvectors

α1, α2, α3 of Dij as Q = (α1, α2, α3) . Note that λi and Q are uniquely determined by the

matrix Dij.

The self-similar solution has the form of homogeneous deformations, and the solution

ansatz is similar to that constructed by Dubin [14] for a time-independent Penning trap.

The fact that homogeneous deformations of flows lead to exact solutions of hyrdodynamic

equation system is well-known. Such solutions can be traced back to the 18th century and

were first obtained for gravitating fluids by Chandrasekhar [22]. In plasma physics, the same

ansatz has been used in magnetohydrodynamics, starting from the early work of Kulikovsky

[23]. Similar solutions have been reported for plasma expansion using kinetic equations [24],

and an interpretation in terms of Lagrangian variables was given by Amiranashvili, Yu, and

Stenflo [25].

Assuming the solution ansatz in Eq. (8), we find that the spatial dependence in the fluid

equations (1)-(4) drops out, and the system reduce to a set of ordinary differential equations

(ODEs) for the density n (t), velocity matrix vij (t), pressure matrix pij (t) and p0 (t) given
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by

n′ (t) + nTr(v) = 0 , (12)

v′ + vv − q

m
QEQ−1 + κ1 + κ2v −

2p

mn
= 0 , (13)

p′ + vTp+ pv − γpn
′

n
= 0 , (14)( p0

nγ

)′
= 0 . (15)

Here, Tr(v) denotes the trace of v, and E is the matrix representation of the self-electric

field, which expresses the electric field in (X, Y, Z) coordinates as EijXj. From Eq. (11), we

obtain

Eij = Diag (E1, E2, E3) ,

E1 =
3Nq

2λ31
G

(
λ2
λ1
,
λ3
λ1

)
, E2 =

3Nq

2λ32
G

(
λ1
λ2
,
λ3
λ2

)
, E3 =

3Nq

2λ33
G

(
λ1
λ3
,
λ2
λ3

)
,

G (u, v) ≡
ˆ ∞
0

ds√
(1 + s) (u2 + s) (v2 + s)

. (16)

Note that the space-charge force qQEQ−1/m in Eq. (13) is uniquely determined by the

matrix Dij.

Equations (10), and (12)-(14) form a system of ODEs for Dij, n, vij, and pij, which deter-

mines a class of nonlinear dynamical solutions of the one-component plasma in the external

focusing field. We do not treat Eq. (15) as an independent dynamical equation, because

Eq. (15) can be integrated directly to give p0 (t) /nγ(t) = const. Eq. (15) determines how the

internal energy changes in response to density variations. In general, this class of solutions

has twenty-two time-dependent variables. If the pressure matrix pij and density n are solved

for in terms of v and D, and we do not count them as independent fields, then the system

has fifteen time-dependent variables.

For certain forms of applied focusing fields, Eqs. (10) and (12)-(14) admit solutions with

reduced dimensions. For example, in the time-dependent Paul trap described by Eq. (5), the

system obviously admits solutions with Q = I, where I is the identity matrix, and diagonal

solutions with vij, pij, and Dij,

vij = Diag[u1, u2, u3], pij = Diag[p1, p2, p3], Dij = Diag[D1, D2, D3]. (17)
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The ODE system for n, ui, pi and Di is then given by

n′ (t) + n

3∑
i=1

ui = 0 , (18)

u′i + u2i −
q

m
Ei + κii −

2pi
mn

= 0 , (19)

p′i + 2uipi − γpi
n′

n
= 0 , (20)

D′i + 2uiDi = 0 . (21)

In the above equations, there is no summation over a repeated index i.

The dynamics in three dimensions are coupled through the space-charge potential and

density. From Eq. (21), we obtain ui = λ′i/λi, where λi = 1/
√
Di. Then Eq. (19) reduces to

an equation for λi,

λ′′i + κiiλi −
q

m
Eiλi −

2piλi
mn

= 0 . (22)

Equation (22) has a similar form to the familiar envelope equation for charged particle

beams in a periodic focusing lattice. To see this, let’s consider the special case where γ = 2,

κxx = κyy = κr, and the beam cross-section is circular, i.e., λ1 = λ2 = rb. We further assume

that the ellipsoid is very long, i.e., λ1 = λ2 = rb � λ3, and the focusing in the z-direction

is sufficiently weak that the charge bunch is uniform in the z-direction over a scale-length

comparable to rb. Then E1 = E2 = 3Nq/(λ32r
2
b ) [9], where N = 4πnr2bλ3/3 = const. is the

total number of particles in the long charge bunch. From Eq. (18), we obtain n = Nl/πr
2
b ,

where Nl ≡ 3N/4λ3 represents the line density. Equation (20) can be integrated to give

piλ
2
in
−2 = const. Making use of Eq. (15), we obtain the pressure solution as

P = p0(t)

(
1− x2

λ21
− y2

λ22
− z2

λ23

)
, (23)

which vanishes on the plasma boundary. The equations for rb = λ1 = λ2 then becomes

r′′b + κrrb −
Kb

r2b
− ε2

r3b
= 0 . (24)

Here, Kb ≡ 2Nlq
2/m and ε2 ≡ 2prr

2
bn
−2Nl/m represent the self-field perveance and the

transverse emittance-squared. Note that the emittance is constructed from the constant of

the motion prr
2
bn
−2, and the line density Nl, which is approximately constant for a long

charge bunch. The envelope equation (24) is identical to Eq. (6.60) in Ref. [9].

Another interesting example is the time-dependent Penning trap given by Eq. (6). It is

a well-known fact that in a Penning trap, the single-particle transverse equations of motion
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transform to uncoupled linear oscillator equations in a frame rotating with the instantaneous

Larmor frequency Ω (t) [26]. The rotation matrix is given by

R (θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , θ = −
ˆ t

0

Ω (t) dt .

Here, we show that the macroscopic fluid dynamics also enjoys this desirable transformation

property. The density n, velocity matrix vij, pressure matrix pij, and shape matrix Dij in

the laboratory frame are transformed to their counterparts n̄, v̄ij, p̄ij, D̄ij in the rotating

frame as

n = n̄, D = D̄R (θ) , p = R (−θ) p̄R (θ) , (25)

v = R (−θ) v̄R (−θ) + Ω
dR (θ)

dθ
R (θ) , (26)

Substituting Eqs. (25) and (26) into Eqs. (1) and (4), we find that the n̄, v̄ij, p̄ij, and D̄ij

satisfy the following equations in the rotating frame

n̄′ (t) + n̄T r(v̄) = 0 , (27)

v̄′ + v̄v̄ − q

m
Q̄ĒQ̄−1 + κ̄1 −

2p̄

mn̄
= 0 , (28)

p̄′ + v̄T p̄+ p̄v̄ − γp̄n̄
′

n̄
= 0 , (29)

D̄′ + v̄T D̄ + D̄v̄ = 0 . (30)

Here, the transformed focusing matrix κ̄1 is diagonal,

κ̄1 = Diag[Ω2 (t)− 1

2
ω2
z (t) ,Ω2 (t)− 1

2
ω2
z (t) , ω2

z (t)] , (31)

and there is no κ̄2 term in the rotating frame. This is similar in form to the case of a Paul

trap in the laboratory frame. The difference is that the (1, 1) and the (2, 2) components of

κ̄1ij are the same, whereas in the case of a standard Paul trap, κxx = −κyy. Because of this,

Eqs. (27)-(30) admit diagonal solutions of the form in Eq. (17) with Q̄ = I, p̄1 = p̄2 = pr,

and D̄1 = D̄2 = 1/r2b . Equations (27) and (29) can be integrated to give prr2b/nγ = const.

and pzz2b/nγ = const., or equivalently, prr2+2γ
b zγb = const. and pzr2γb z

2+γ
b = const., where use

is made of nγr2γb z
γ
b = (3N/4π)γ = const.. The corresponding nonlinear envelope equations
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for rb and zb are given by

r′′b +

(
Ω2 − 1

2
ω2
z (t)

)
rb −

3Nq

2r2b
G

(
1,
zb
rb

)
−

ε2r,γ

r2γ−1b zγ−1b

= 0 , (32)

z′′b + ω2
zzb −

3Nq

2z2b
G

(
rb
zb
,
rb
zb

)
−

ε2z,γ

r2γ−2b zγb
= 0 , (33)

where ε2r,γ ≡ 8πprr
2γ+2
b zγb /3mN and ε2z,γ ≡ 8πpzr

2γ
b z

2+γ
b /3mN are two constants of the

motion. Here, pz = p̄3 and D̄3 = 1/z2b . For a time-dependent Penning trap, Ω and ωz are

time-dependent, and the nonlinear dynamical solutions are described by Eqs. (32) and (33).

It can be shown that Eq. (32) reduces exactly to Eq. (24) when γ = 2 and the transverse

focusing is weak and the plasma ellipsoid is long, i.e., zb � rb.

When Ω and ωz are time-independent, Eqs. (27)-(30) possess another class of stationary

(∂/∂t = 0) solutions with Q̄ = I, D̄ = Diag[1/r2b , 1/r
2
b , 1/z

2
b ] = const., p̄ = Diag[pr, pr, pz] =

const., and

v =


0 ωr 0

−ωr 0 0

0 0 0

 = const.. (34)

In this case, Eqs. (27)-(30) reduce to

ω2
r +

qEr
m
− Ω2 +

1

2
ω2
z (t) +

2pr
mn

= 0 , (35)

qEz
m
− ω2

z +
2pz
mn

= 0 . (36)

When the nonneutral plasma ellipsoid is long in the z-direction and the transverse pressure

pr is negligibly small, Eq. (35) recovers to the well-known equilibrium radial force-balance

equation for a cold nonneutral plasma column in a Penning trap (in the un-rotated labora-

tory frame) [26] as a special case with qEr/m = 3Nq2/2zbr
2
bm = ω2

p/2. For other types of

linear focusing devices, such as rotating-radio-frequency traps and the Möbius accelerator,

the nonlinear dynamical solutions described by Eqs. (8)-(14) can be calculated in a straight-

forward manner, using the particular κ1 and κ2 for each trap. Because of page limitations,

these applications will be presented in a future paper.

In conclusion, a class of nonlinear dynamical solutions of a one-component nonneutral

plasma admitted by the macroscopic warm-fluid equations with self-consistent electrostatic

potential has been identified. The space-time structure of the solutions has the self-similar

form specified in Eqs. (7) and (8). It includes many of the known modes in linear focusing
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systems as special cases, as well as new nonlinear collective oscillation modes which haven’t

been reported before.
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