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Current drive in recombining plasma

P. F. Schmit and N. J. Fisch
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

(Dated: Draft, August 4, 2011)

The Langevin equations describing the average collisional dynamics of suprathermal particles in
nonstationary plasma remarkably admit an exact analytical solution in the case of recombining
plasma. The current density produced by arbitrary particle fluxes is derived including the effect
of charge recombination. Since recombination has the effect of lowering the charge density of the
plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density
can be modified substantially compared to plasma with fixed charge density. The current drive
efficiency is derived and optimized for discrete and continuous pulses of current, leading to the
discovery of a nonzero “residual” current density that persists indefinitely under certain conditions,
a feature not present in stationary plasmas.

PACS numbers:

I. INTRODUCTION

The theory of wave-induced current drive in stationary
plasmas is well-developed [1]. Among the various meth-
ods considered in the literature, much attention has been
given to the creation of plasma current via resonant in-
teractions between waves and fast particles [2, 3]. Many
techniques have been pursued to describe the fundamen-
tal dynamics of suprathermal, current-carrying particles
in stationary plasma, including analytical treatments of
the Fokker-Planck equations in the high-velocity limit
[2–6] and numerical solutions of the Fokker-Planck equa-
tions [7–10]. Such work has almost always focused on
describing current drive performance in the steady state,
since the primary thrust of the research has been to sup-
port and expedite the development of a steady-state mag-
netic confinement fusion reactor.

Recently, however, a number of studies [11–15] of wave-
particle interactions in nonstationary plasmas has re-
vealed previously unexplored phenomenology and poten-
tially useful mechanisms. Such phenomena are intrinsi-
cally non-steady-state, and hence require a modification
of the methods typically used to analyze and describe
the physics in stationary systems. In particular, Refer-
ences [11–15] focus primarily on non-steady-state effects
associated with expanding or compressing plasma. When
a wave is embedded in such a nonstationary plasma and
is undamped initially, modification of the bulk plasma
parameters through the nonstationary processes changes
the wave dynamics and can lead to an induced wave-
particle resonance with the fast-particles on the tail of
the bulk plasma distribution [12]. If this interaction leads
to an anisotropic distortion of the electron distribution
function, an electric current can result, potentially pro-
ducing useful magnetic energy. However, the evolution of
this current through collisional relaxation also depends
on the time-varying plasma parameters, and a complete
analysis of the plasma current response requires an accu-
rate description of these collisional dynamics.

What sets apart the physics addressed in Refs. [11–
14] from the work done on current drive schemes in

other time-varying conditions, e.g., during plasma cur-
rent ramp-up in tokamaks, where the current and mag-
netic field are time-varying [16–21], is the direct influ-
ence of the time-variation on wave-particle processes in
the plasma. Time variation in neither the application
of rf power nor changes in the current or poloidal mag-
netic field alters the underlying wave dynamics or the
particle collisionality. In contrast, the cooling, heating,
and densification associated with, for example, expand-
ing, compressing, and recombining plasmas, can change
the wave amplitude due to plasmon conservation [11, 12]
or plasmon destruction [22], change the wave phase ve-
locity, and substantially alter the particle collisionality.

Thus, the objective here is to account for time-
dependence in the bulk plasma parameters that, in par-
ticular, complicate the description of the collisional relax-
ation of fast-particles. For simplicity, the case of plasma
undergoing charged-particle recombination is addressed,
which remarkably admits an exact analytical descrip-
tion of the fast-particle average dynamics. Optimiza-
tions to maximize current drive performance are sought
for both discrete impulses and continuous wave-particle
resonances. One particularly interesting result is that
certain regimes exist in which the plasma current satu-
rates at a nonzero value time-asymptotically, a feature
not present in stationary plasma.

Section II describes the physical picture and introduces
the Langevin equations describing fast-particle collisional
dynamics, modified for the case of a temporally evolving
bulk plasma. In Section III, a generalized fast-particle
current-drive equation is derived that accounts for any
number of time- and velocity-space-dependent particle
fluxes, and the self-consistent inductive response of the
plasma is considered. In Section IV, the plasma recom-
bination model is introduced and the plasma current re-
sponse is optimized for the case of discrete impulses, re-
sulting in the discovery of a residual, time-asymptotic
current density. Section V examines the realistic model of
an embedded Langmuir wave undergoing a time-varying
resonance in a recombining plasma. Section VI describes
some limitations of the model. Finally, Section VII sum-
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marizes the main results. Certain details of the calcula-
tions are relegated to the appendices.

II. FAST PARTICLE DYNAMICS IN

NONSTATIONARY PLASMA

Consider the case of wave-induced electrical currents in
the presence of plasma recombination, where the current-
carrying electrons are suprathermal. A conceptual pic-
ture explaining how these electrons can be produced is
provided in Fig. 1. Figure 1(a) shows a toroidal plasma
permeated by a traveling wave propagating toroidally
within the plasma. Initially, the wave phase velocity
vph = ω/k ≫ vT , where vT is the electron thermal ve-
locity, ω is the wave frequency, and k is the wavenum-
ber. Assume, for example, that the traveling wave is
a Langmuir wave, which implies ω ∼ n1/2, where n is
the electron number density. As the plasma undergoes
recombination, ω tends to decrease, while k stays the
same, causing vph to decrease accordingly [11]. However,
vT is not affected by the recombination, and thus after
some time vph becomes comparable to a few times vT

and collisionlessly damps on the resonant tail particles
(cf. Fig. 1(b)) [12]. An anisotropic fast particle distri-
bution is produced subsequently, which results in a net
electric current after some degree of collisional relaxation.

In a recombining plasma, not only does a Langmuir
wave change its phase velocity, but there is also plasmon
destruction, i.e., nonresonant collisionless damping of the
wave [22]. The plasmon destruction results in heating of
the bulk electron distribution. There may also be produc-
tion of electric current in the bulk plasma at the expense
of the wave amplitude, but that is likely to be damped
quickly compared to the current carried by suprathermal
electrons. Therefore, we shall consider only the resonant,
fast-particle contribution to the current. However, this
topic will be revisited in Sec. V, which addresses plasmon
destruction in the case of a continuously time-varying
wave-particle resonance.

Following [2], the dynamical effects of the Boltzmann
equation, written in the strict high-velocity limit (i.e.,
neglecting energy diffusion), and which describes the col-
lisional relaxation of suprathermal electrons in magne-
tized plasma, can be expressed equivalently in a set of
Langevin equations [23, 24]:

dv

dt
= −

(

Γ

v3

)

v, (1)

dµ

dt
= B(t), (2)

where v = |v|, µ = v‖/v, Γ = 4πne4 ln Λ/m2, n is
the charged particle number density, e is the elemen-
tary charge, ln Λ is the Coulomb logarithm, and B(t)
is a stochastic term responsible for pitch-angle scattering
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FIG. 1: Conceptual picture of current drive in recombining
plasma. (a) A toroidal plasma contains a fast traveling wave
encircling the plasma toroidally. (b) Plasma recombination
causes the wave phase velocity to slow down until it even-
tually intersects and resonates with the tail of the electron
distribution, producing an asymmetric tail distribution and a
corresponding electric current. The arrows indicate the tem-
poral evolution of the wave phase velocity (dotted lines) and
the electron distribution function (solid lines).

that is described statistically by the following properties:

〈B(t)〉 = −
(

Γ

v3

)

(1 + Z)µ, (3)

〈B(t)B(t′)〉 =

(

Γ

v3

)

(1 + Z)(1 − µ2)δ(t − t′), (4)

where Z is the charge state of the plasma ions, assuming
there is only one ion species present. The brackets 〈...〉
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represent a statistical ensemble average, or expectation
value, of the enclosed quantity. It is assumed that colli-
sions with neutral particles are negligible in the regimes
and time frames considered. (This would happen, for
example, if following recombination the resulting neu-
tral particles simply exit the device.) Note that for a
plasma with fixed charge carrier density, Γ is a constant;
however, in a recombining plasma, the dependence of Γ
on the number density means that it can become time-
dependent, i.e., Γ = Γ(t), where the time-dependence is
assumed to be prescribed. In any case, it can be seen
that Eq. (1) is nonstochastic, meaning v = 〈v〉, while the
ensemble average of Eq. (2) yields

d 〈µ〉
dt

= −
(

Γ

v3

)

(1 + Z) 〈µ〉 . (5)

At this point, the notation will be simplified by elimi-
nating the brackets around 〈µ〉 → µ in the analysis that
follows; the expectation values will be the implied dy-
namical quantities of interest. Combining Eqs. (1) and
(5) then gives the following exactly integrable equation
relating v and µ

d(ln µ)

dt
= (1 + Z)

d(ln v)

dt
, (6)

which then leads to the relation

µ

µi
=

(

v

vi

)1+Z

, (7)

where the subscript ‘i’ henceforth refers to an initial con-
dition. In time-explicit form, the solution to Eq. (1),
obtained by direct integration, is

v

vi
=

(

1 − 1

tst

∫ t

ti

Γ̃(t′) dt′
)1/3

Θ(td − t)

≡ ṽ(t, ti), (8)

where tst = v3
i /3Γi, Γ̃ = Γ/Γi, and

G(td) = G(ti) + tst, (9)

with G(t) the antiderivative of Γ̃(t) with respect to t.
Noting that td is the time at which ṽ → 0, the the Heav-
iside step function, Θ, in Eq. (8) states explicitly that
for t > td, the velocity ṽ = 0. Without this step func-
tion, the solution ṽ would become negative for t > td,
which is unphysical, since ṽ is defined as a magnitude.
By setting Γ̃ = 1, which represents the case of a station-
ary plasma, Eq. (9) yields td = ti + tst. In other words,
in the high velocity limit, tst is the time needed after the
initial impulse for a particle to thermalize, i.e., to pass
to the v → 0 limit.

Equation (7) then gives the results µ = µi ṽ1+Z , and
〈v‖〉 = µv = µivi ṽ2+Z . Similarly, the particle kinetic

energy E = mv2/2 = Ei ṽ2. The exact determination of
these ensemble-averaged quantities allows for the calcu-
lation of specific physical quantities of interest comprised
of various combinations of v and µ. Note that Eq. (7) is
exactly the same in steady-state plasmas [2], except that
µ and v have different time histories.

III. CURRENT-DRIVE IN NONSTATIONARY

PLASMA

The time-evolution of the expectation value of the cur-
rent carried by a single electron, 〈qv‖〉 = qµ(t)v(t), can
be calculated from the general solution of the Langevin
equations, Eq. (8) [1]. This result then can be used
to determine the total plasma current induced by wave-
particle interactions in a recombining plasma. Following
Ref. [1], the notation is adopted such that v‖ = v‖(t,v),
where v is the initial velocity of the electron at time t = 0.
Henceforth, µ and v will therefore refer to the initial
quantities µi and vi, whose evolution is then described
by applying the appropriate factor of ṽ (cf. Eq. (8) and
subsequent discussion).

Suppose the energy ∆E is expended to push an electron
from velocity v to v + ∆ through some particular wave-
particle resonance, with

∆E = m
(

v · ∆ + 1
2 |∆|2

)

. (10)

The ensemble-averaged electric current difference at time
t resulting from such a push at time t′ is given by

∆j(t, t′,v,∆) = q
〈

v‖(t, t
′,v + ∆) − v‖(t, t

′,v)
〉

, (11)

where it is assumed the electron began with an identically
counterpropagating, nonresonant “partner” electron that
does not receive the impulse. The rate of pushing a den-
sity of electrons in this way is given by P/∆E , where P is
the power density expended in the resonant interaction.
Thus, in a stationary plasma with a single stationary
wave resonance, the total current density is given by

J(t) =

∫ t

0

dt′
P (t′)

∆E ∆j(t, t′,v,∆). (12)

Extending Eq. (12) to allow for multiple discrete res-
onances, or even a continuum of resonances, becomes
important when considering nonstationary plasma, since
wave-particle resonance conditions can change dynami-
cally as the bulk plasma changes [12]. To capture this be-
havior, first define the quantity Π(t′,v), which has units
of power density per velocity volume and represents the
power density expended pushing particles in an infinites-
imal volume of velocity space neighboring v at time t′.
Then the generalization of Eq. (12) including any number
of resonances is

J(t) =

∫ t

0

dt′
∫

d3
v

Π(t′,v)

∆E(t′,v)
∆j(t, t′,v,∆(t′,v)). (13)

The quantity ∆(t′,v), and hence also ∆E(t′,v) through
Eq. (10), now exhibits both time- and velocity-space de-
pendence, allowing for the inclusion of non-steady-state
effects associated with embedded waves as suggested
above. In the limit of infinitesimal incremental velocity-
space displacements, i.e., ∆(t′,v) → 0, Eq. (13) can be
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rewritten

J(t) =

∫ t

0

dt′
∫

d3
vΠ(t′,v)

Sw(t′,v) · ∂
∂v

〈

qv‖(t, t
′,v)

〉

Sw(t′,v) · ∂
∂v

E(v)

≡
∫ t

0

dt′
∫

d3
vΠ(t′,v)K(t, t′,v). (14)

where the vector Sw, the wave-induced flux, is poten-
tially time- and velocity-space dependent and points in
the direction of velocity-space displacement of particles.
Equation (14) corresponds to Eq. (1) of reference [8].

For a pure parallel push, i.e., Sw ∼ î‖, the kernel K of
Eq. (14) can be calculated in a straightforward manner
and is given by (cf. Eqs. (7) and (8)):

K‖ =
q

m

ṽ2+Z + (2 + Z)µ2(1 − ṽ3)ṽ−1+Z

µv
. (15)

In full analogy with Eq. (5) of Ref. [2], the first term in
the numerator of the kernel is associated with the parallel
momentum transfer from the wave to the particles, while
the second term is associated with the energy transfer to
the particles. To see this, a similar expression for K can
be calculated for a pure perpendicular wave impulse, i.e.,
Sw ∼ î⊥:

K⊥ =
q

m

(2 + Z)µ2(1 − ṽ3)ṽ−1+Z

µv
, (16)

which is identical to Eq. (15) except for the absence of
the leading term in the numerator, since a perpendicular
impulse involves no direct input of parallel momentum.

This formalism was first employed to determine steady-
state current drive efficiencies in stationary plasmas [1].
In general, dynamic evolution of the plasma current
density, Jtot(t), in nonstationary systems results in an
inductively-driven electric field and an associated Ohmic
counter-current, JOhm, opposing the wave-driven cur-
rent. This paper shall focus primarily on the dynamics
of the wave-induced fast-particle current, Jrf ; for a dis-
cussion of the impact of the Ohmic counter-current, refer
to Appendix A.

IV. IMPULSE RESPONSE IN RECOMBINING

PLASMA

The formulation of the current drive problem above
allows for the unique behavior of a recombining plasma
(compared to a plasma with fixed n) to be character-
ized completely by ṽ(t, t′), which, according to Eq. (8),
is simply the time evolution of the magnitude of the fast-
electron velocity. Suppose the electron-ion recombination
rate, νR, depends on the number density of each charge-
carrier species, which in general leads to an exponential
recombination rate and a scaling of the collision param-
eter Γ(t) that goes like Γ(t) = Γie

−νRt, with νR > 0. For

this exponential recombination profile, Eq. (8) gives

ṽ(t, t′) =

[

1 +
1

νRtst

(

e−νRt − e−νRt′
)

]1/3

Θ(td − t).

(17)
Note that at t = t′, i.e., at the time of the initial im-
pulse, ṽ = 1. Then, according to Eqs. (14) and (15), a
δ-function parallel impulse, i.e., Π ∼ δ(t′ − ti)δ

3(v − vi)

and Sw ∼ î‖, results in an immediate finite current den-
sity at the time of the impulse, which is due to the sudden
increase of the parallel momentum of the resonant par-
ticles due to the wave. However, a similar kick in the
perpendicular direction results in no immediate current,
since K⊥ = 0 when ṽ = 1, cf. Eq. (16).

One of the most interesting features of the current in an
exponentially recombining plasma turns out to be that,
in some scenarios, there exists a “residual” current, i.e.,
one that persists as t → ∞. Following the initial im-
pulse, ṽ tends to decrease toward zero as the velocity of
the electron damps away. However, because the plasma
density is decreasing with time due to recombination,
the collision frequency decreases accordingly, and certain
conditions will lead to a nonzero time-asymptotic value
for ṽ, and hence, a time-asymptotic current (when no
other damping mechanisms, such as collisions with neu-
trals, are considered). Specifically, as t → ∞, a residual
current will persist under the condition

1 − 1

νRtst
e−νRt′ ≡ ṽ3

∞ > 0, (18)

where ṽ∞ is the saturated value of ṽ as t → ∞; otherwise,
the time required for a fast-particle to thermalize and for
the associated current to decay is given by

td = t′ − (1/νR) ln (1 − νRtste
νRt′), (19)

which correctly approaches td = t′ + tst in the limit as
νR → 0 (cf. Eq. (9)). The persistence of a nonzero elec-
tric current time-asymptotically is unique to the recom-
bining plasma, for a current will always decay to zero in a
stationary plasma of fixed density. (An analogous result
is anticipated for expanding magnetized plasma, where
the effective plasma density also decreases with time.)

With the electron average dynamics solved, it is math-
ematically straightforward to deal first with discrete im-
pulses, where Π =

∑

i wiδ(t
′ − ti)δ

3(v − vi), and the wi

are the energy densities deposited with each discrete im-
pulse. For example, it might be desirable to maximize
the time-averaged current density for a single impulse,

defined as 〈J〉T ≡ (1/T )
∫ T

0
J(t) dt. For a Z = 1 plasma,

the current density resulting from a single parallel im-
pulse, Π = w1δ(t

′− t1)δ
3(v−v1), made dimensionless by

the normalization J̃1 = (mv1/qw1)J1, is given by

J̃1 =

[

ṽ3 + 3µ2(1 − ṽ3)

µ

]

1

B(t1, td1). (20)

Since J̃ contains the quantity J/w, it can be seen as an
“efficiency” stating how effectively wave energy is con-
verted to current density.
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Setting T = td1, we find from Eq. (20):

〈J̃〉td
=

1

µ

[

3µ2 + (1 − 3µ2)

((

td − t1
td

)

ṽ3
∞ +

1

νRtd

)]

,

(21)
where the subscript ‘1’ has been dropped to save space.
When the condition in Eq. (18) is satisfied and the cur-
rent saturates time-asymptotically, i.e., td → ∞, Eq. (21)
simplifies to

〈J̃〉∞ =
1

µ

[

3µ2 + (1 − 3µ2)ṽ3
∞

]

. (22)

This expression diverges as µ → 0, indicating there is a
substantial benefit to pushing high-pitch-angle electrons
in the parallel direction, which is similar to the result in
the steady-state case [25]. However, there also exists a
minimum efficiency with respect to variation in µ, when
µ =

√

ṽ3
∞/3(1 − ṽ3

∞) ≡ µmin. If 0 < µmin < 1, the
impulse efficiency increases monotonically for values of
µ > µmin, maximizing locally at µ = 1. On the other
hand, if µmin > 1, or equivalently, if ṽ3

∞ > 3/4, then
the impulse efficiency decreases monotonically across the
domain µ : (0, 1], with an absolute minimum at µ = 1.
The same optimization analysis applies to the impulse
efficiency when the time-asymptotic current goes to zero;
comparing Eqs. (21) and (22), it is apparent that one
need only make the replacement

ṽ3
∞ →

((

td − t1
td

)

ṽ3
∞ +

1

νRtd

)

in the equality defining µmin.
A similar analysis for a pure perpendicular δ-function

impulse yields

〈J̃〉td
= 3µ

(

1 −
(

td − t1
td

)

ṽ3
∞ − 1

νRtd

)

, (23)

and

〈J̃〉∞ = 3µ
(

1 − ṽ3
∞

)

. (24)

Both Eqs. (23) and (24) are well-behaved at µ = 0, and
they are maximized at µ = 1 for fixed v. Thus, it holds
qualitatively that the highest impulse efficiencies for per-
pendicular pushing occur when µ ≈ 1, while the high-
est impulse efficiencies for parallel impulses occur when
µ ≈ 0. This is a reasonable result, considering that, in
both cases, v·∆ = 0 in Eq. (10), implying a minimization
of energy input per particle, while v can still be large,
meaning the particles being pushed can already have in-
trinsically lower collision rates than thermal particles.

V. DYNAMICS OF AN EMBEDDED

LANGMUIR WAVE

Consider now a power deposition profile that captures
the effect of a pure wave mode damping collisionlessly on
high-velocity particles:

Π(t′,v) = P (t′)δ3 (v − vr(t
′)) . (25)

The region of wave-particle resonance is highly localized
in velocity space at any given moment, a consequence of
the presumed narrow bandwidth of the interacting wave,
and it also shifts continuously with time as the plasma
density changes. At time t = t′ the wave deposits power
density P (t′) into the particles in the infinitesimal neigh-
borhood surrounding the resonant velocity vr(t

′) in ve-
locity space. For an embedded wave with finite initial
energy density,

∫∞

0
P (t′) dt′ must also be finite.

For example, consider the effect of an embedded Lang-
muir wave driving electrons in the parallel direction due
to Landau resonance [26], which can be described us-
ing the kernel K‖ (cf. Eq. (15)). To simplify the prob-
lem, take µ = 1, which is a reasonable approximation
when driving particles with high parallel velocities, and
it reduces the problem to one effective velocity-space di-
mension. Additionally, take Z = 1. The phase veloc-
ity of a Langmuir wave changes proportionally to the
square root of the plasma density, so the resonant veloc-
ity |vr| ≡ vr = v exp (−νR

2 t′), where v is the initial wave
phase velocity. Then, plugging Eq. (25) into Eq. (14),
and including a Heaviside step function Θ(td(t

′) − t) in
the kernel K (cf. Eq. (20) and subsequent discussion),
the result is:

J(t) =
q

m

∫ t

0

dt′P (t′)
3 − 2ṽ3(t, t′)

vr(t′)
Θ (td(t

′) − t)

=
q

m

1

v

∫ t

0

dt′P (t′)

[

e
νRt′

2 +
2

νRtst

(

eνRt′

−e−νRte2νRt′
)

]

Θ(td(t
′) − t) , (26)

where tst = v3/3Γi, as usual. It must be emphasized that
the purpose of the step function Θ is to exclude unphys-
ical contributions to the integral occurring where ṽ(t, t′)
takes on negative values in the kernel K, or equivalently,
where t exceeds the damping time for current driven at
time t′, given by td(t

′). The definition of td(t
′) is restated

as follows:

td(t
′) = − 1

νR
ln
[

e−νRt′ − νRTst (vr(t
′))
]

,

where now the function Tst is the analog of the station-
ary plasma thermalization time tst in the case where the
resonant velocity vr(t

′) is shifting with time, or for the
Langmuir waves considered in this example,

Tst =
v3

r(t′)

3Γi

= tste
−

3νRt′

2 . (27)

Then we have

td(t
′) = − 1

νR
ln

[

e−νRt′
(

1 − νRtste
−

νRt′

2

)]

= t′ − 1

νR
ln

(

1 − νRtste
−

νRt′

2

)

(28)
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Equation (28) illustrates the complexity involved in cor-
rectly assessing the long-time behavior of the current,
and three unique regimes exist in which the integral
in Eq. (26) must be calculated differently. The proper
method for handling the step function in calculating the
integral is addressed in Appendix B.

The most general solution of Eq. (26) would describe
the plasma response to an arbitrary complex Fourier
mode in the place of P (t′):

P (t′) = Pd ℜ
[

ei(ωt′+η)−γt′
]

= Pd e−γt′ cos (ωt′ + η) , (29)

with Pd, ω, η, and γ all real constants, and γ is pre-
sumed positive so that

∫∞

0
P (t′) dt′ remains finite. Then

the response to any smooth, continuous power deposition
profile could be calculated by integrating (or summing)
over the response functions corresponding to the appro-
priate Fourier modes comprising P (t′). However, due to
the complexity of the result and its limited usefulness in
the discussion that follows, the general solution can be
found in Appendix C.

A more illuminating example makes the following sim-
plification: take ω = 0 and η = 0 in Eq. (29). Then
the total wave energy density deposited into particles is
given by W =

∫∞

0
P (t′) dt′ = Pd/γ. This non-oscillating,

decaying exponential, P (t′) = Pde
−γt′ , approximates the

resonant linear wave evolution in a recombining plasma,
as will be explained below.

Suppose a linear wave resonant with the suprathermal
tail of a Maxwellian distribution undergoes exponential
collisionless damping at the effective rate γL [26]. Al-
though a time-varying resonance could result in a change
in γL as the wave samples different parts of the tail of the
distribution, it will be assumed here that Landau damp-
ing is characterized by an average, constant timescale.
Furthermore, the wave also undergoes collisional damp-
ing at some effective rate γc [27], which is also assumed to

be constant. Since the plasma is undergoing a reduction
in the characteristic collision rates due to recombination,
the assumption γc = const will result in an overestimate
of the amount of collisional wave damping that occurs
when the recombination rate is appreciable. Thus, the
calculation of the residual current that follows will rep-
resent a lower bound. Since the wave energy density Uw

is proportional to the square of the field amplitude [12],
we have δUw ∼ −2(γL + γc)Uwδt.

Additionally, from Ref. [22], recombination results
in the conservation of the invariant Uw/ω, so δUw ∼
Uw(δω/ω). Since ω ≈ ωp ∝ n1/2, one finds δUw ∼
−(νR/2)Uwδt. Combining the effects of Landau damp-
ing, collisional damping, and recombination leads to:

dUw

dt
= −

(

2(γL + γc) +
νR

2

)

Uw, (30)

which implies γ = 2(γL + γc) + νR/2. On the other
hand, only the wave energy lost to Landau damping
is deposited resonantly onto suprathermal particles, so
P (t′) = 2γLUw(t′) implies Pd = 2γLUw(0), and thus

W =
2γL

2(γL + γc) + νR/2
Uw(0)

=
1

1 + 1
4

2γc+νR

γL

Uw(0)

≡ εUw(0). (31)

Hence, ε represents the efficiency with which the wave
energy density is channeled resonantly into suprathermal
electrons compared to the energy lost to bulk electrons
through nonresonant processes.

With the assumption ω = 0 and η = 0 in Eq. (29), the

expression for the total dimensionless current density J̃ ,
which is normalized according to J̃ = (mv/qUw(0))J , is
found to be

J̃ = −h (t;−εγ) +
2ε

νRtst

[

1

1 − 2ε
h (t; γ (1 − 2ε)) − e−νRt

3 − 4ε
h (t; γ (3 − 4ε))

]

, (32)

where

h (t; Ω) = eΩt + eΩtl(t)Θ(t−td,min) − eΩtu(t)Θ(t−td,min) − 1.
(33)

The Heaviside step functions in the two middle terms in
Eq. (33) cause the terms to cancel when t < td,min, al-
lowing for a complete solution to be expressed in a single
expression for all t : [0,∞).

For comparison, a similar expression for the total di-
mensionless current density for a stationary plasma, J̃st,
subject to the same exponential power deposition pro-
file, P (t′) = Pde

−γt′ , can also be obtained from Eq. (26).
In this case, νR = 0, ε = 1, ṽ3(t, t′) = 1 − (t − t′)/tst
(cf. Eq. (8)), and the damping time td(t

′) = t′ + tst (cf.
Eq. (19)), leading to the solution
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J̃st =

{

(1 − e−γt) + 2
γtst

(e−γt + γt − 1) , t ≤ tst

e−γt (eγtst − 1) + 2
γtst

[

e−γt + (γtst − 1) e−γ(t−tst)
]

, t > tst
(34)

From Eq. (34), one observes that in the limit t → ∞,
the current density in a stationary plasma always decays
to zero in spite of the fact that ε = 1, which implies a
perfect conversion of wave energy into suprathermal tail
particle energy with no energy lost due to recombina-
tional plasmon destruction. However, in a recombining

plasma, there exists an interval of time, t : [0, t∞), when
the condition in Eq. (18) is satisfied, and any current
driven during this interval saturates at some finite value
(cf. Eq. (B-1) in Appendix B for the definition of t∞). In
fact, this residual current can be extracted from Eq. (32)
in the limit t → ∞:

lim
t→∞

J̃ = 1 − (νRtst)
ε

ε−1 +
1

νRtst

2ε

1 − 2ε

(

(νRtst)
1−2ε
1−ε − 1

)

≡ J̃∞, (35)

where the condition t∞ > 0 implies νRtst > 1 for this
solution to be valid, as outlined in Appendix B. To arrive
at this expression, note that as t → ∞, tl → t∞ and
tu → ∞ (cf. Fig. 3(a) in Appendix B).

Figure 2 shows J̃∞ plotted over the intervals ε : [0, 1]
and νRtst : [1, 10]. One observes the threshold of the

onset of nonzero J̃∞, when νRtst = 1. Additionally, as
ε → 0, signifying very fast recombination compared to
the collisionless damping rate (νR ≫ γL, cf. Eq. (31)),
enhanced plasmon destruction also eliminates the resid-
ual current. From Fig. 2, it is apparent that a regime
exists in which J̃∞ is maximized. This regime calls for
ε to be very close to its maximum value of 1, signifying
a relatively strong collisionless damping rate compared

ε

ν R
 t st
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FIG. 2: (color online) Plot of the time asymptotic normalized

current density, J̃∞ (cf. Eq. (35)), vs. ε and νRtst.

to the collsional and recombination rates. On the other
hand, values of νRtst close to its minimum value of 1 are
also ideal, implying that the recombination rate is com-
parable to the initial fast particle thermalization rate. In
other words, driving maximum residual current requires
γL ≫ γc ≫ νR ∼ (tst)

−1. This optimal regime is some-
what remarkable, considering the ideal value of νRtst is
very close to the region in which J̃∞ disappears alto-
gether; indeed, as ε, νRtst → 1, ∂J̃∞/∂(νRtst) becomes

infinitely steep. The maximum value of J̃∞ is found by
taking the limit as both parameters go to 1:

lim
ε,νRtst→1

J̃∞ = 3 (36)

Considering values of νRtst > 1, it is interesting to note
that the maximum residual current for a particular value
of νRtst is not produced simply by maximizing the reso-
nant power deposition efficiency ε; indeed, the maximum
residual current requires intermediate values of ε < 1. In
other words, it turns out to be better to sacrifice some
wave energy to plasmon destruction due to recombina-
tion such that the fast particles produced by the remain-
ing wave energy experience slower damping as the colli-
sion frequency is dynamically reduced. It is also worth
pointing out that the apparent singularity at ε = 1/2
in Eq. (35) is removable, as is evidenced by the smooth,

continuous behavior of J̃∞ across the line ε = 1/2 in
Fig. 2.

VI. DISCUSSION

The existence of a time-asymptotic current in Eq. (35)
deserves further inspection. After a lapse of time of
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approximately ν−1
R , the neutral particle density nn pro-

duced through recombination is expected to be compa-
rable to ne, and collisions between electrons and neu-
tral particles could become significant if neutrals are
permitted to remain within the system. The model as-
sumes that the collision frequency of electrons with other
charged particles, νe, is greater than the electron-neutral
collision frequency, νn. The ratio of these two quantities
can be expressed approximately as

νe

νn
≈ 8 × 102 ne

nn

lnΛ

T 2
e

, (37)

with Te the electron temperature (expressed in eV). Here
the electron-neutral collision frequency is estimated as
νn ∼ nn(πa2

0)vT , with vT the electron thermal velocity
and a0 the Bohr radius [28]. Since ln Λ ∼ O(10), it is
apparent that electron-neutral collisions in substantially
recombined plasma, i.e., ne ∼ nn, become important
for electron temperatures above approximately 100 eV
if all neutrals are retained within the system. Note that
there is some reduction in the scattering cross section of
electrons from neutrals at higher velocities, which will
attenuate electron-neutral collisions to some extent as
this approximate threshold is reached, since the current-
carrying electrons are suprathermal.

In the event that neutrals are lost from the system
quickly, as was originally presumed in Sec. II, then
Eq. (35) is in fact the correct time-asymptotic fast par-
ticle current. For finite τg = L/RSp, where L is the
torus inductance and RSp is the torus resistance, the to-
tal plasma current will approach this value within time τg

after Jrf has asymptotically approached its limiting value
(cf. Appendix A). In the high-L limit, with τg → ∞,
the time-asymptotic picture is more complicated. As the
electron density falls off, the remaining electrons will be
Ohmically accelerated to higher velocities to maintain
the perfectly cancelling counter-current. At sufficiently
low electron density, it would no longer be appropriate
to consider the plasma consisting of a thermal “bulk”
plasma and a small fast particle population, but rather
one consisting of two counterpropagating particle beams,
which would then result in instability.

Nevertheless, for large enough recombination rates,
i.e., νRtst > 1, charged-particle collisions are found to be
insufficient to cause Jrf to disappear time-asymptotically.
This analysis has critical implications for the alternate
scenario in which electric current is carried by plasma
undergoing expansion, which similarly results in a reduc-
tion of the plasma density with time without necessarily
increasing the neutral density commensurately. In this
case, there also exists the potential for a robust time-
asymptotic current density, which will be the subject of
a future publication; however, the model of a recombin-
ing plasma studied here offers great insight into the im-
pact of densification on the dynamics of charged particle
collisions and plasma current evolution.

VII. SUMMARY

In this paper, fast-particle collisional dynamics and
current drive in nonstationary plasma has been calcu-
lated using the Langevin formalism to model the Boltz-
mann equation in the strict high-velocity limit. The par-
ticular model of a recombining plasma was chosen as a
case of fundamental scientific interest and for its analyt-
ical tractability. Solutions were derived for the Langevin
equations containing time-dependent parameters associ-
ated with plasma densification. A general expression
for the current density produced by arbitrary time- and
velocity-space-dependent particle fluxes was also derived.

Since recombination has the effect of lowering the
charge density of the plasma, and, consequently, reduc-
ing the charged particle collision frequencies, the tempo-
ral evolution of the current density can be modified sub-
stantially compared to the case of a plasma with fixed
charge density. Conditions for maximizing current drive
efficiency for discrete and continuous wave-particle reso-
nances were found, leading to the discovery of a nonzero
time-asymptotic, “residual” current density in recombin-
ing plasma, corresponding to Eqs. (22) and (24) for dis-
crete impulses and Eq. (35) for an embedded Langmuir
wave. Maximizing this residual current turns out to re-
quire an optimal and unexpected compromise between
wave energy loss due to recombination-driven plasmon
destruction and more efficient current drive efficiency as
the collisionality of the plasma is dynamically reduced.
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APPENDIX A: INDUCTIVE EFFECTS

Following Section V(B) in Ref. [1], the total plasma
current density Jtot obeys the equation

dJtot

dt
= −Jtot − Jrf

τg
, (A-1)

where Jrf is the wave-driven fast particle current contri-
bution, and Jtot = Jrf + JOhm. Here, τg = L/RSp, where
L is the torus inductance and RSp is the torus resistance.
The resulting Ohmic electric field induced in the plasma
is given by

E = ηJOhm, (A-2)

where η ≈ mνei/nee
2 is the plasma resistivity, νei is the

electron-ion collision frequency, and ne is the electron
number density. Because L is determined by the geome-
try of the torus and the plasma resistivity is only weakly
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dependent on the charge-carrier density, it can be as-
sumed that τg does not change dramatically even after
a substantial percentage of charge-carriers have recom-
bined.

The impact of this dc electric field on the particle tra-
jectories in the Langevin equations is minimal, so Jrf

can be treated as a prescribed term in Eq. (A-1) once
the wave-driven current in the absence of any dc fields,
Eq. (14), is found. To see this, note that in the presence
of a dc electric field E, the system of Langevin equations,
Eqs. (1) and (5), is modified, becoming [1]:

dv

dt
= −

(

Γ

v3

)

v +

(

qE

m

)

µ, (A-3)

dµ

dt
= −

(

Γ

v3

)

(1 + Z)µ +
(qE/m)(1 − µ2)

v
. (A-4)

The collisional terms on the right-hand-side (RHS) of
Eqs. (A-3) and (A-4) are generally much larger than the
terms involving E. For example, noting that Γ ∝ νeiv

3
T ,

the ratio of the first and second terms on the RHS of
Eq. (A-3) goes like:

Γ/v2

eEµ/m
∼ νeiv

3
T m

eEv2µ

∼ ηenev
3
T

Ev2µ

=
1

µ

enevT

JOhm

v2
T

v2
≫ 1, (A-5)

where Eq. (A-2) was used along with the definition of the
plasma resistivity. The first term in the expression on the
last line of Eq. (A-5), 1/µ, is always greater than 1. Since
the current-carrying particles are suprathermal, the last
term is typically of the magnitude 1/a2, where a ∼ O(1).
However, the current density in the numerator of the
middle term is enormous compared to the Ohmic current
density, since JOhm cannot be larger than Jrf ∼ δnevT ,
with δn ≪ ne. Thus, the product of the terms is large,
and the term involving E in Eq. (A-3) is negligible. A
similar conclusion can be deduced for Eq. (A-4).

The general solution of Eq. (A-1) is given by

Jtot(t) = Jtot(0)e
− t

τg +
1

τg

∫ t

0

dt′e
− t−t′

τg Jrf(t
′). (A-6)

While a closed form solution of Eq. (A-6) is not easy to
obtain, there are limits where the result is simple. For
example, when τg → 0, the inductive response of the
plasma is weak. Then Eq. (A-1) states Jtot ≈ Jrf , and the
inductive counter-current disappears. Similarly, in the
opposite limit, τg → ∞, one has dJtot/dt ≈ 0. So for a
plasma starting with zero current, Jrf is exactly cancelled
by JOhm; however, according to Eq. (A-2), there still
exists a dc electric field, and thus, a loop voltage exists
around the plasma.
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FIG. 3: Plots of the damping time td(t′) (solid) and related
functions (dotted), normalized to tst, are plotted vs. t

′ for
three unique cases defined by different values of νRtst. Exam-
ple values t for the upper limit of the integrand in Eq. (26)
are shown (dashed-dotted) for several cases where part of the
domain of integration must be excluded to eliminate unphys-
ical contributions to the total current. The interval to be
excluded from the domain for each particular t is spanned by
the associated double arrow coinciding with the line td = t.
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APPENDIX B: THE STEP FUNCTION

Equation (28) illustrates the difficulty one encounters
in keeping track of the long-time behavior of the cur-
rent, and three unique regimes exist in which different
intervals of the domain of integration in Eq. (26) are ex-
cluded by the step function, as will be explained below.
The critical dimensionless parameter in this particular
problem is νRtst, which compares the initial stationary
thermalization time to the density e-folding time due to
recombination.

Case 1, νRtst > 1: The behavior of td(t
′) is uniquely

determined by the magnitude of νRtst. When νRtst > 1,
the condition in Eq. (18) is satisfied for all current driven
during the times t′ : [0, t∞), with t∞ given by

t∞ =
2

νR
ln (νRtst). (B-1)

This implies that td → ∞ and some time-asymptotic
current remains for any current driven during this time
period, as can be seen in Fig. 3(a), which depicts the
main features of td(t

′) in this regime.
Equally important, for t′ > t∞, td is initially decreas-

ing and possesses an absolute minimum, designated as
td,min, at t′ = tmin, with

tmin =
2

νR
ln

(

3

2
νRtst

)

, (B-2)

and

td,min =
2

νR
ln

(

3
√

3

2
νRtst

)

(B-3)

For all values of t′ > tmin, td is monotonically in-
creasing. When the upper limit t of the integrand in
Eq. (26) is such that t > td,min, there exists an interval
t′ : (tl, tu), marked by the double arrows in Fig. 3, for
which td(t

′) < t, and hence the current driven during
these times has damped away by time t. Within this in-
terval, the Heaviside step function Θ = 0, and thus, it is
this interval that is effectively removed from the domain
of integration, so we have

∫ t

0

dt′ →
(
∫ tl

0

dt′ +

∫ t

tu

dt′
)

.

One can find the limits tl,u by solving the equation t =
td(tl,u), which has two unique solutions for all t > td,min

when νRtst > 1. Unfortunately, from Eq. (28) we see
that this equation is transcendental, and thus, tl,u must
be found numerically.

In summary, this regime is characterized both by a
time-asymptotic current density resulting from current
driven during the times t′ : [0, t∞), and also by the ex-
clusion of the interval t′ : (tl, tu) from the domain of inte-
gration in Eq. (26) when t > td,min, corresponding to un-
physical contributions from the kernel K when t > td(t

′).
Case 2, 2/3 < νRtst < 1: In this regime, shown in

Fig. 3(b), t∞ < 0, meaning that the condition in Eq. (18)
is no longer satisfied for any value of t′ in the domain
of integration of the integral in Eq. (26), and thus, no
current persists time-asymptotically. On the other hand,
there is still an absolute minimum td,min when t′ = tmin,
cf. Eqs. (B-2) and (B-3). Note in Fig. 3(b) that within
the interval t : (td,min, td(0)) there still exists two unique
positive solutions to the equation t = td(tl,u), but for
t > td(0), one finds that the lower limit of the interval to
be excluded from the integral in Eq. (26) is simply tl = 0.
One still must solve for the upper limit tu(t) numerically,
since Eq. (28) is transcendental.

Case 3, νRtst < 2/3: In this regime, depicted in
Fig. 3(c), both t∞, tmin < 0 (cf. Eqs. (B-1) and (B-2)),
meaning that, like Case 2, this regime exhibits no time-
asymptotic current density, and additionally, the abso-
lute minimum of td(t

′) is simply td,min = td(0). Thus,
when t > td(0), the interval t′ : [0, tu) is excluded from
the domain of integration by the Heaviside step function
Θ(td(t

′) − t).

APPENDIX C: CURRENT PRODUCED BY

ARBITRARY COMPLEX FOURIER MODE

The solution to the arbitrary complex Fourier mode
power deposition profile, Eq. (29), is presented. Plugging
Eq. (29) into Eq. (26), the indefinite integral, which will
be called J (t′), is found to be

J (t′) =
q

m

Pd

v

[

g(t′; νR/2 − γ, ω, η) +
2

νRtst

(

g(t′; νR − γ, ω, η) − e−νRtg(t′; 2νR − γ, ω, η)
)

]

(C-1)

anywhere that Θ 6= 0, with
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g(t′; Ω, ω, η) =
eΩt′ [Ω cos (ωt′ + η) + ω sin (ωt′ + η)]

Ω2 + ω2
. (C-2)

The general solution can be stated as

J(t) =

{

J (t) − J (0) , t ≤ td,min

[J (t) − J (tu(t))] + [J (tl(t)) − J (0)] , t > td,min,
(C-3)

where tl(t) and tu(t) are the unique solutions to the equa-
tion td(tl,u) = t, with tu > tl (cf. Eq. (28) and Appendix
B). In general, these two quantities must be obtained nu-

merically. The parameter td,min is given in Eq. (B-3) in
Appendix B.
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