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We present an experimental and numerical study of hydrodynamic and magnetohy-

drodynamic free shear layers and their stability. We first examine the experimental

measurement of globally unstable hydrodynamic shear layers in the presence of ro-

tation, and their range of instability. These are compared to numerical simulations,

which are used to explain the modification of the shear layer and thus the critical

Rossby number for stability. Magnetic fields are then applied to these scenarios, and

globally unstable magnetohydrodynamic shear layers generated. These too are com-

pared to numerical simulations, showing behavior consistent with the hydrodynamic

case and previously reported measurements.

a)Electronic mail: ejspence@pppl.gov
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I. INTRODUCTION

A shear layer is a layer of flowing fluid which possesses a velocity field gradient in a

direction orthogonal to the flow. Such layers are common in fluid flow near boundaries,

where the fluid must typically reach zero velocity at the bounding wall. A shear layer is

called ’free’ when it exists in the absence of a boundary. Such layers generally exist when

discontinuities in the boundary conditions of a flow are subject to some manner of stabilizing

force, such as the Coriolis or Lorentz force. This stabilization allows the discontinuity to

penetrate into the bulk of the fluid as a shear layer. Such layers may exist naturally in

geophysical1,2 or stellar systems3,4.

Hydrodynamic free shear layers were first discussed theoretically by Proudman5 and

Stewartson6, who examined systems of fluid under rapid rotation subject to a boundary

discontinuity that was only slightly differentially rotating, allowing the discontinuity in the

flow to be treated linearly. The prediction of the thickness of such shear layers, which became

known as Stewartson layers, and their scaling with Ekman number, E = ν/(a2Ω2), where ν

is the fluid’s kinematic viscosity, a is a length scale and Ω2 is the global rotation rate, was

a triumph of the theoretical analysis of such flows. These predictions were later confirmed

both experimentally7,8 and numerically9,10.

Not surprisingly, if there is enough free energy in the shear layer the layer will become

unstable to a Kelvin-Helmholtz-type instability, sometimes called a barotropic instability.

This has been observed by a number of experimental groups in cylindrical hydrodynamic

studies7,11–14. The instability manifests itself as a set of two-dimensional eddies which roll

up in the r − θ plane, where we are using the standard cylindrical coordinates (r, θ, z). The

azimuthal mode number of the instability depends on a number of factors, especially the

differential speed across the boundary discontinuity which generates the shear layer and the

amount of global rotation. These are parameterized by the Rossby number, Ro = ∆Ω/Ω2,

where ∆Ω = Ω1 −Ω2 is the angular speed difference across the boundary discontinuity, and

the Ekman number E, defined above. When both Ro and E are small enough the shear layer

tends to be stable, but when the Rossby number gets too large the layer destabilizes, with

the scaling of the critical Rossby number depending upon the geometry of the system15, a

result also observed in numerical simulations of spherical Couette flow16–19.

In contrast to the much-larger corpus of work on hydrodynamic free shear layers, relatively
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little work has been done studying their magnetohydrodynamic (MHD) analogy: free shear

layers which are generated by the Lorentz force instead of the Coriolis force. Just as the

Coriolis force causes rotating flows to become independent of the ordinate along the axis of

rotation, so too can magnetic fields cause flows of electrically conducting fluid to become

independent of the ordinate parallel to the direction of the applied field. Such free shear

layers, now known as Shercliff layers19, have been studied both experimentally20–22, and

numerically19,23–25. Like their hydrodynamic cousins, these shear layers are unstable to a

Kelvin-Helmholtz-type instability when the amount of shear becomes large relative to the

restoring force.

Unlike the hydrodynamic case, where there have been theoretical analyses of small differ-

ential rotation of the boundary discontinuity6, there have been no analytical studies exam-

ining the role of magnetic field in shear-layer stabilization in the absence of global rotation.

This is due to the fact that without only a small amount of differential rotation the Navier-

Stokes equation remains strongly nonlinear despite the magnetic field, and thus analytically

intractable. We must, consequently, turn to numerical simulations to make progress on this

topic.

In this paper we extend a previous study of free MHD shear layers by Roach and collab-

orators22 to examine the effect of global rotation on the stability of such layers in the regime

of large Rossby number, Ro ∼ O(1). We also examine the suppression of these shear layers

by secondary circulation. Two tools are used in this study: the Princeton MRI experiment

and 2D numerical simulations; these are presented in Section II. In section III we show

how the large-Rossby number limit eventually results in the absence of a globally-unstable

hydrodynamic shear layer. Numerical simulations are used to elucidate these results. These

now-locally-unstable shear layers can be made globally unstable using a magnetic field; mea-

surements demonstrating this are presented in Section IV. We conclude with a discussion

of these results and avenues for further study.

II. TOOLS FOR STUDYING SHEAR LAYERS AND THEIR STABILITY

In this work we use two tools to examine the roles of global rotation and magnetic field

on the generation of free shear layers and their stability. These are the Princeton magne-

torotational instability (MRI) experiment, and 2D numerical simulations of the experiment
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TABLE I. Experimental parameters of the Princeton MRI experiment.

Height h 0.279 m

Inner-cylinder radius r1 0.071 m

Outer-cylinder radius r2 0.203 m

Ring-junction radius r0 0.137 m

Radial gap a 0.132 m

Density ρ 6360 kg/m3

Kinematic viscosity ν 3.0 × 10−7 m2/s

Magnetic diffusivity η 0.257 m2/s

Axial magnetic field B 0 - 0.45 T

performed using the ZEUS-MP code.

A. Princeton MRI experiment

The Princeton MRI experiment is a Taylor-Couette apparatus which uses the gallium

eutectic GaInSn as its working fluid26. A schematic of the experiment is presented in Fig-

ure 1. To suppress the secondary circulation which develops due to the Ekman layers at the

top and bottom of the experiment, the endcaps which vertically contain the fluid are split

into two independently rotating rings, giving the experiment four rotation rates: those of

the inner cylinder, inner ring, outer ring and outer cylinder. The differential rotation at the

inner ring-outer ring junction breaks up the secondary circulation, resulting in less-turbulent

flow. Axial magnetic fields are applied to the experiment by a set of six external magnetic

field coils, giving an applied field of up to 0.45 Tesla. Parameters for the experiment are

given in Table I.

The velocity field of the experiment is measured using an ultrasonic Doppler velocimetry

(UDV) system27. Ultrasonic transducers are mounted to the outer cylinder at the midplane

of the experiment and just above the lower endcap rings. The transducers are oriented

tangential to the inner cylinder, allowing the azimuthal velocity to be measured. Transducers

are placed at two azimuthal locations at the midplane, allowing information about the

azimuthal mode structure of the destabilized free shear layers to be gathered. Signals from
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FIG. 1. Schematic of the Princeton MRI experiment. Note the differentially rotatable top and

bottom endcap rings, which can generate a discontinuity in the azimuthal-flow boundary condition.
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the transducers are passed through a slip-ring to move the signal to the laboratory frame.

For the experiments used in this study, the inner-cylinder and inner-ring rotation rates

were identical, and the outer-ring and outer-cylinder rotation rates were also matched. This

resulted in only two rotation rates for these experiments, with the discontinuity in rotation

rate occurring at the inner ring-outer ring junction. This velocity field discontinuity gen-

erated the shear layers which are the subject of this study. These rotation rates are listed

with the notation (Ω1, Ω2) in this paper, corresponding to (inner speed, outer speed) in

revolutions per minute.

B. 2D simulations

Numerical simulations can be a useful tool for exploring experimentally inaccessible

regimes, as well as determining the dynamics of areas of the experiment which are diffi-

cult to diagnose. For this study we use the ZEUS-MP 2.0 code28, to which viscosity and

resistivity have been added29. The code solves the Navier-Stokes and magnetic induction

equations in multiple geometries, in this case cylindrical. The code is time-explicit, com-

pressible and three-dimensional, though axisymmetry is enforced for this study, and an in-

compressible limit is taken. The boundary conditions on the flow are no-slip on the various

rotating surfaces. The magnetic field at the boundaries is matched to the external vacuum

solution30. Applied magnetic fields are generated using external current distributions which

closely resemble those of the experiment. Further details of the implementation of the code

to simulate this experiment have been given previously31.

All simulations used in this study were performed with a resolution of 256 radial and

512 vertical points. A kinematic viscosity 300 times that of the experimental working fluid

was used, as well as an electrical conductivity 3 times too high, resulting in a magnetic

Prandtl number of Pm = ν/η = 10−3. The list of simulations used in this paper, with their

associated dimensionless parameters, is given in Table II.

III. SUPPRESSION OF THE HYDRODYNAMIC SHEAR LAYER

As discussed above, hydrodynamic free shear layers can form in rotating systems in

the presence of a discontinuity in the velocity field boundary condition. The Princeton MRI
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TABLE II. Parameters of the simulations used in this work.

Ω1 [rev/min] Ω2 [rev/min] B [G] E Ro Λ

350 100 0.0 5.6×10−4 2.5 0.0

400 100 0.0 5.6×10−4 3.0 0.0

400 100 800.0 5.6×10−4 3.0 0.25

400 100 1600.0 5.6×10−4 3.0 1.0

400 100 3580.0 5.6×10−4 3.0 5.0

400 100 5060.0 5.6×10−4 3.0 10.0

175 50 0.0 1.1×10−3 2.5 0.0

200 50 0.0 1.1×10−3 3.0 0.0

1750 500 0.0 1.1×10−4 2.5 0.0

2000 500 0.0 1.1×10−4 3.0 0.0

experiment, with its independently-rotating endcap rings, has such a boundary discontinuity,

and consequently we expect such shear layers to form. Since it has been demonstrated

experimentally7,11–14,32, numerically16–19,25, and analytically15,33 that such free shear layers

destabilize when the amount of shear becomes sufficient, we also expect the shear layers in the

experiment to be unstable. The transition of the hydrodynamic shear layer to instability has

been found15 to occur at a critical Rossby number of Rocrit ∼ E3/4 in a cylindrical geometry.

This relationship has been roughly confirmed by experiment7,14,32. For the Princeton MRI

experiment Rocrit ∼ 10−5; unfortunately such a small amount of differential rotation is

beyond the technical capabilities of this apparatus, and thus the stable regime, where Ro <

Rocrit, has never been observed.

Nonetheless, experimental evidence for a destabilized hydrodynamic shear layer in the

Princeton MRI experiment has been observed. This is presented in Figure 2, which shows

the azimuthal flow at a radial location as a function of time, for the speeds (270, 100). The

two timeseries are from two UDV transducers which are offset azimuthally by 90◦, indicating

that the instability likely has saturated as an m = 1 mode, where m is the azimuthal mode

number, since the two timeseries are 90◦ out of phase. This is consistent with previous

reports, which show that higher-Rossby number regimes, such as in this study, result in

lower azimuthal mode numbers in the instability’s saturated state7,14. The spatial structure
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FIG. 2. Azimuthal velocity at r = 18.2 cm versus time, measured at the midplane at θ = 0 (solid)

and at z = 3 cm at θ = π/4 (dotted), for (270, 100), no applied field.

of the mode, as swept out by a chord of UDV measurements over one oscillation period, is

presented in Figure 3. The spiral structure previously observed in this apparatus, due to a

magnetic field-induced free-shear-layer instability, is reproduced22, strongly suggesting that

this is the purely-hydrodynamic version of the free-shear-layer instability. Consistent with

other results22, the instability is observed to be global, filling the volume of the apparatus,

vertically independent (as far as can be measured), and rotates at a frequency of about

30% of the average of the rotation speeds, frot ∼ 0.3(∆Ω/2), in the rotating frame. The

destabilized mode is a robust feature of the experiment, consistently observed over a range

of Ekman numbers.

There is a limit to the range of Rossby numbers over which the hydrodynamic free-shear-

layer instability is observed. In Figure 4 we present an example of a measured azimuthal

velocity timeseries which is just above the critical Rossby number for stabilization of the

instability. As can be seen, the instability is driven during the spin-up phase of the experi-

ment, but as the mean flow becomes established the instability is eventually damped away.

The measured value of Ω1 which stabilizes the global shear-layer instability, for a given
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FIG. 3. Spatial structure of the measured azimuthal flow over one period of oscillation, at the

midplane, with the axisymmetric background removed, for (270, 100), no applied field.

value of Ω2, is presented in Figure 5. The curve corresponds to a value of Ro = 2.35, which

interestingly is a constant for the range of rotation rates examined, though admittedly this

corresponds to a small range of Ekman number, 3.7 × 10−6 ≤ E ≤ 6.1 × 10−7.

No theoretical or experimental discussion has been given to the topic of the suppression

of the hydrodynamic free-shear-layer instability by increasing Ro far above Rocrit ∼ E3/4.

This is not surprising, given that once Ro ∼ O(1) the assumption that the nonlinearities of

the system are unimportant is no longer valid, making analytic treatment of the problem

difficult. To address this issue we turn to numerical simulations, an example of which is

presented in Figure 6. This displays a snapshot of the contours of both the poloidal stream

function and the shear, which we define here as q = (r/Ω) ∂Ω/∂r, where Ω = vθ/r and vθ
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FIG. 4. Azimuthal velocity at r = 18.2 cm versus time, measured at the midplane, for (335, 100),

no applied field.

is the azimuthal flow, for the case of (350, 100) with no applied field, which corresponds to

Ro = 2.5. As can be seen, a clear hydrodynamic free shear layer is formed just outside the

inner ring-outer ring junction, and penetrates into the bulk of the fluid. Poloidal circulation

cells form on either side of the shear layer. As the Rossby number is increased the shear

layer no longer extends vertically into the center of the fluid, but rather is pushed outward

radially by the secondary circulation. This is shown in Figure 7, which presents the case of

(400, 100) with no applied field, Ro = 3.0.

As the shear layer in the simulations penetrates into the bulk of the fluid we would

expect that, if these were 3D simulations, the layer would become globally Kelvin-Helmholtz

unstable, generating the oscillating signals in the azimuthal flow which are measured in the

experiment. One can hypothesize that, as the Rossby number is increased and the shear

layer is pushed radially outward, the shear layer would not become globally unstable such

that the bulk of the fluid is also destabilized, but rather would be merely locally unstable,

generating turbulence near the endcaps. This explains the lack of large-scale oscillations in

the experiment for Ro ≥ 2.35, and as such the behavior of the shear layers in the simulations
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FIG. 5. Value of Ω1 which suppresses the global free-shear-layer instability versus Ω2. The linear

trend corresponds to Ro = 2.35.

as the Rossby number is increased is consistent with experimental measurements. The

question remains of how the shear layers which do not penetrate all the way to the midplane

of the experiment generate a vertically independent mode throughout the bulk of the fluid.

We will revisit this question in Section V.

IV. MAGNETIZED SHEAR LAYER DESTABILIZATION

If we now restrict our experimental studies to the regime where Ro = 2.35, thus ensuring

that the system has a hydrodynamic shear layer which is not globally unstable, we can

examine the role that an applied magnetic field plays in generating a magnetized free shear

layer. A representative timeseries of such a case is displayed in Figure 8, which presents the

azimuthal flow versus time for speeds of (670, 200) and an applied field of 3440 G. Initially,

before the field is applied, there is no evidence of shear layer instability. However, when the

field is applied the instability grows and saturates, much like the measurements reported by

Roach et al.22. When the field is removed the flow returns to its initial state.
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FIG. 6. Snapshot of a numerical simulation of the experiment, for (350, 100), no applied field.

Left: Shear, q = (r/Ω) ∂Ω/∂r, versus radius and height. Note the shear layer extending vertically

from the ring junction. Right: Contours of the poloidal stream function versus radius and height.

Contours range from -22 to 22 cm2/s, in steps of 2. The vertical lines in both figures indicate the

location of the inner ring-outer ring junction.

The cause of the emergence of the instability is likely the re-establishment of the globally-

unstable shear layer, and the cause of the re-establishment of the shear layer is the Lorentz

force due to the applied magnetic field. Again, we can turn to simulations to illustrate this

phenomenon. In Figure 9 is presented the same rotation rates as in Figure 7, (400, 100), but

now with an applied field of 800 G. This field strength is considered weak since the Elsasser

number, Λ = B2/(µ0ρη∆Ω), a measure of the ratio of the Lorentz and Coriolis forces, is

less than one. In this case the shear layer is only mildly affected by the Lorentz force, with

the shear layer still strongly pushed radially outward. We expect that this shear layer, like

its hydrodynamic cousin, is merely locally unstable. As the field strength is increased, as in

Figures 10-12, the secondary circulation is suppressed, allowing the shear layer to become

more and more parallel to the applied field. Again, we would expect that this layer would

become unstable to a global hydrodynamic Kelvin-Helmholtz instability, destabilizing the

12



8 10 12 14 16 18 20
radius [cm]

5

10

15

20

25

h
e
ig

h
t 

[c
m

]

8 10 12 14 16 18 20
radius [cm]

FIG. 7. Numerical simulation of (400, 100), no applied field. The plotting convention is the same

as in Figure 6.

bulk flow as observed in the experiment. In these cases the magnetic field plays the role

that the Coriolis force plays in the establishment of free shear layers in the hydrodynamic

case.

As implied by the simulation results, there is a minimum value of magnetic field required

for the shear layer to become globally unstable, roughly corresponding to the field needed

to suppress the secondary circulation enough to allow the shear layer to couple to the bulk

of the fluid. This transition has been mapped out experimentally, and its instability space

is presented in Figure 13, for runs with Ro = 2.35. The instability demonstrates the same

dependence on Elsasser number as reported previously22, namely Λ = 1, though in this

case it is the differential speed at the inner ring-outer ring junction which is used in the

denominator of the Elsasser number. It should be noted that in the report by Roach et

al. Ω2 = 0 for most of the study, and thus ∆Ω = Ω1 and the Elsasser number was defined

equivalently as here. Revisiting Figures 9 (Λ = 0.25) and 10 (Λ = 1.0) we can see the effect

of the magnetic field on the shear layer more directly, again noting that the shear layer

curves into the fluid volume when Λ = 1.
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FIG. 8. Azimuthal velocity at r = 18.2 cm versus time, measured at the midplane, for (670, 200),

3440 G. The magnetic field turns on at t = 10 s.

V. DISCUSSION AND CONCLUSION

A minimum critical Rossby number is required to suppress the global instability of the

hydrodynamic free shear layer. In Figure 5 experimental data is presented which suggests

that this Rossby number is a constant, Ro = 2.35, though admittedly over a range of

Ekman number of only one order of magnitude. However the simulations do not confirm

this behavior exactly: we hypothesize that the Ro = 2.5 case (Figure 6) is globally unstable,

due to its erect shear layer, while Ro = 3.0 (Figure 7) is only locally unstable, since the

shear layer is pushed radially outward. This Rossby number dependence on the orientation

of the shear layer has also been produced by simulations at other speeds, with Ω2 = 50

and Ω2 = 500. If these simulations are a faithful representation of the experiment then this

suggests that the critical Rossby number is not a constant with respect to Ekman number.

If this is the case, then the dependence on Ekman number must be extremely weak, with

Ro = 2.35 when E ∼ 10−6 in the experiment and 2.5 < Ro < 3.0 when E ∼ 10−4 as in the

simulations. This very slight change in critical Rossby number might be better explained
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FIG. 9. Numerical simulation of (400, 100), 800 G (Λ = 0.25). The plotting convention is the same

as in Figure 6.

either by imperfections in the simulation’s representation of the experiment, perhaps slight

differences in geometry, or perhaps is a result of three-dimensional effects which are not

captured by the simulation. Experimental and numerical studies of this topic are ongoing.

An outstanding question is that of the value of the critical Rossby number itself: why

Ro = 2.35? Clearly as the Rossby number is increased significantly above unity the inertial

forces due to the secondary circulation become at least as important as the forces due to

rotation. As well, the centrifugal force due to the faster rotation rate of the inner parts tends

to push the faster flow, and thus the shear layer, into the outer portion of the fluid domain.

Clearly these effects are dependent on the fluid being used, in particular the fluid’s density,

and the geometry of the system involved. This is consistent with a report by Rabaud and

Couder11, who indicate that their apparatus still displays global instability when Ro > 4.0

(see their Figure 5), while using a very different working fluid (air) and experimental aspect

ratio (h/r0 = 0.05 − 0.4). This is also consistent with results by Edlund, who reports

a critical Rossby number of Ro ∼ 2.0, for an experiment using water in an aspect ratio

similar to that of the Princeton MRI experiment. The Rossby number’s geometric and fluid

15



8 10 12 14 16 18 20
radius [cm]

5

10

15

20

25

h
e
ig

h
t 

[c
m

]

8 10 12 14 16 18 20
radius [cm]

FIG. 10. Numerical simulation of (400, 100), 1600 G (Λ = 1.0). The plotting convention is the

same as in Figure 6.

dependence will be a topic of future study.

One interesting result of this study is the persistent feature of the Λ = 1 stability criteria

for the MHD free-shear layer. One might have expected that the global rotation, which

brings with it the stabilizing effect of the Coriolis force, would have caused the stability line

to be modified, with less magnetic field needed to re-establish the shear layer, especially since

the data in Figure 13 are for the marginally-globally-stable case Ro = 2.35. Perhaps the lack

of change of criteria is not surprising when one considers the fact that the measurements

presented here are at a large Rossby number, in the regime where the secondary flow is

as important as rotation. In that case one might expect that the Lorentz force would be

more important than Coriolis in suppressing poloidal circulation, and the effects of global

rotation would be minimal, as observed. One might also wonder why the Elsasser number

is dependent on ∆Ω instead of the global rotation rate, Ω2. The simulations indicate that

the magnitude of the current induced in the area of the ring junction is proportional to the

shear in that region, and thus proportional to ∆Ω. Since it is the induced current interacting

with the background applied field that generates the Lorentz force, it follows that it is ∆Ω
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FIG. 11. Numerical simulation of (400, 100), 3580 G (Λ = 5.0). The plotting convention is the

same as in Figure 6.

that is the important speed to consider in the determination of the relative strength of the

applied field.

In the simulation results presented in Figure 6, the hydrodynamic shear layer penetrates

almost a quarter of the way into the bulk of the fluid. However there is an azimuthally

oriented UDV transducer placed 3 centimeters above the lower endcap rings in the experi-

ment, and no such shear layer is observed, though evidence of a hydrodynamic shear layer

has been observed when the transducer is tilted such that it can measure about 1 centimeter

above the endcap rings. Why are the shear layers in the simulations observed deep in the

fluid, while in the hydrodynamic experiments they are not? The most likely explanation

lies in the viscosity used in the simulations, which is 300 times larger than in the exper-

iment. Such a large viscosity acts as a stabilizing force on the shear layer, allowing it to

penetrate farther into the fluid. Nonetheless, despite its low viscosity, one would expect

that the shear layer would be stable farther into the fluid if the experiment could be run

at lower Ekman number, increasing the relative strength of the Coriolis force, and Rossby

numbers which are below the initial transition to global instability. This effect is observed
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FIG. 12. Numerical simulation of (400, 100), 11310 G (Λ = 50.0). The plotting convention is the

same as in Figure 6.

in the experiment when run with strong relative magnetic fields, meaning at large Elsasser

number. In these cases, and as observed in the simulation presented in Figure 12, the shear

layer is sufficiently stabilized by the Lorentz force that it can be directly measured at the

midplane of the experiment. This has not yet been observed in cases with global rotation,

as presented in this work, though it has been measured in cases where the outer ring and

outer cylinder are stationary22.

The 2D numerical simulations presented here indicate that if there is any discontinuity in

the velocity field boundary condition a shear layer forms no matter the value of the Rossby

or Elsasser numbers. The main question which has been the theme of this paper is: under

what conditions does this shear layer generate a globally unstable mode which results in the

observations made in the experiment, and under what conditions does it merely decompose

into local turbulence? In the case of hydrodynamic shear layers, it seems plausible that the

effect of increasing the Rossby number is to cause inertia to push the shear layer into the

wall, preventing the layer from, through the Coriolis force, causing the whole fluid volume

to become globally unstable. In the case of MHD shear layers, the effect of the applied
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FIG. 13. Experimental shear-layer global-instability space. Dots indicate instability, ’x’s indicate

stability. The area of the dots is proportional to the power in the oscillations, normalized by (∆Ω)2.

All runs were performed with Ro = 2.35. The instability space is separated by the Λ = 1 line,

where the Elsasser number is defined here as Λ = B2/(µ0ρη∆Ω).

magnetic field is to suppress the secondary circulation, allowing the globally-stable shear

layer to pull away from the wall and, through the Lorentz or Coriolis forces, or both, cause

a global instability to ensue. Unfortunately this remains merely a plausible hypothesis, as

this cannot be confirmed with the 2D simulations used here. A fully 3D simulation is needed

to resolve this issue and is currently being pursued.

In summary, we have presented a study of the role of global rotation on the formation and

stability of hydrodynamic and magnetohydrodynamic shear layers. We have demonstrated

that there is a critical Rossby number above which hydrodynamic free shear layers are

suppressed and cease to be globally unstable, a failure explained by simulations to be one of

the shear layer being pushed outward by secondary circulation. Experimental measurements

indicate that these suppressed shear layers can be re-established as globally unstable by an

applied field. Simulations have shown the cause of the re-establishment of the instability to

be the straightening of the shear layer due to the suppression of the poloidal circulation by
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the field.
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