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Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport in
tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called non-
ambipolar transport is highly complex, and eventually a numerical simulation is required to achieve
its precise description and understanding. A new δf particle code (POCA) has been developed
for this purpose using a modified pitch angle collision operator preserving momentum conservation.
POCA was successfully benchmarked for neoclassical transport and momentum conservation in
axisymmetric configuration. Non-ambipolar particle flux is calculated in the non-axisymmetric
case, and results show a clear resonant nature of non-ambipolar transport and magnetic braking.
Neoclassical toroidal viscosity (NTV) torque is calculated using anisotropic pressures and magnetic
field spectrum, and compared with the generalized NTV theory. Calculations indicate a clear δB2

dependence of NTV, and good agreements with theory on NTV torque profiles and amplitudes
depending on collisionality.

I. INTRODUCTION

Non-axisymmetric magnetic perturbations can fun-
damentally change the neoclassical transport in toka-
maks by distorting particle orbits on deformed or bro-
ken flux surfaces. Understanding transport under non-
axisymmetric magnetic perturbations is a critical is-
sue for ITER and future fusion devices where non-
axisymmetric perturbations are potentially important
control elements to actively stabilize locked modes, edge
localized modes, and resistive wall modes [1]. Neoclassi-
cal transport with non-axisymmetry, often called Neo-
classical Toroidal Viscosity (NTV) transport in toka-
maks, is intrinsically non-ambipolar [2], and highly com-
plex depending on parametric regimes. Progress has been
substantially made by various analytical attempts [3–5],
but the analytic studies were limited in narrow regimes
or strong approximations on particle orbits, geometries,
and collisions. Therefore a numerical approach with more
realistic physics models is eventually required to achieve
a precise and self-consistent description. This paper re-
ports the development of new δf particle code and suc-
cessful calculations of non-ambipolar transport and NTV
torque in perturbed tokamaks.

A new δf particle code, POCA (Particle Orbit Code
for Anisotropic pressures) has been developed for trans-
port study in perturbed tokamaks. POCA aims to cal-
culate fundamental properties of neoclassical transport
with non-axisymmetric magnetic perturbations and to ef-
ficiently provide viable information to a 3D equilibrium
solver. POCA follows guiding center orbit motions in
3D spatial and pitch angle spaces on the flux coordi-
nates and solves Fokker-Planck equation with δf Monte
Carlo method to obtain the perturbed distribution func-
tion δf . Collisions are calculated using a modified pitch
angle scattering collision operator, in which a momen-
tum restoring term is included in a simple manner to
conserve toroidal momentum. POCA follows a conven-
tional way in calculating the neoclassical transport prop-

erties but is developed to easily handle the information
of non-axisymmetric magnetic perturbations.

POCA is a local code which calculates the particle
transport at a single flux surface, so it is more efficient
than global code. In addition, δf Monte Carlo method
applied to POCA is much more efficient than standard
Monte Carlo method by a factor of 104, which means δf
code requires less particles by 10−4 than standard Monte
Carlo code to achieve the same accuracy. Such efficient
and convenient features of POCA enable a coupling with
3D perturbed equilibrium code [6], where an anisotropic
pressure tensor is required to compute non-ideal force
balance.

This paper describes a development of POCA and neo-
classical transport calculations with non-axisymmetric
magnetic perturbations. After successful benchmarking
in axisymmetry, POCA calculates non-ambipolar trans-
port and NTV torque in non-axisymmetry, which shows
a clear resonant nature of non-ambipolar transport and
magnetic braking. Calculations indicate a clear δB2 de-
pendence of NTV, and good agreements with theory on
NTV torque profiles and amplitudes depending on colli-
sionality.

This paper is organized as follows; In Sec. II, the-
oretical formulations and numerical implementation for
δf Monte Carlo method are introduced. Benchmarking
tests against neoclassical theory and simulations are de-
scribed in Sec. III. In Sec. IV, non-ambipolar transport
in the presence of non-axisymmetric magnetic perturba-
tions are calculated and analyzed applying an analytic
magnetic perturbation model. Sec. V describes NTV
torque calculation by POCA and comparison results with
NTV theory. Summary will be given in Sec. VI.
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II. δf MONTE CARLO METHOD FOR
NEOCLASSICAL TRANSPORT CALCULATION

This section introduces how δf Monte Carlo method is
used in POCA. Theoretical formulations of the Fokker-
Planck equation, collision operator, and Hamiltonian
equations of motion are described as well as practical
implementation. Note that δf Monte Carlo method em-
ployed in POCA is based on drift-kinetic equation, thus
gyrating particle orbit is a gyro-averaged guiding center
motion.

A. Fokker-Planck equation

We start from Fokker-Planck equation,

df

dt
=
∂f

∂t
+ ~v · ∂f

∂~x
+

~F

m
· ∂f
∂~v

= C(f). (1)

The distribution function f can be written as f =

fM exp(f̂) where f̂ is a deviation from local Maxwellian
fM . The distribution function can be further approxi-

mated to f ≈ fM (1 + f̂) since typically f̂ � 1 in fusion
plasmas. The Fokker-Planck equation is rewritten using
the approximation as

d ln fM
dt

+
df̂

dt
= Cm(f). (2)

where Cm(f) is a collision operator defined by Cm(f) =
C(f)/f .

The Fokker-Planck equation is more convenient to
solve with δf Monte Carlo method when it is expressed in

terms of f̂ rather than f . Neglecting external force term
~F in equation (1) and using the local Maxwellian, which
is a function of toroidal flux and energy, the Fokker-
Planck equation is reduced to

df̂

dt
= −~v · ~∇ψ∂ ln fM

∂ψ
+ Cm(f̂), (3)

where ψ is toroidal flux. It is indicated in equation (3)

that the deviation from Maxwellian, f̂ is proportional to
displacement of particles from home flux surface where

the test particles are generated. Therefore f̂ can be ob-
tained by tracking the guiding center motions of test par-

ticles with proper calculation of collision term Cm(f̂).

B. Collision operator

A modified pitch angle scattering collision operator,
which is composed of Lorentz collision operator and mo-
mentum restoring term, is used to calculate the collision
term in equation (3) preserving conservation of toroidal
momentum. Energy scattering is neglected for computa-
tional efficiency and simplicity.

The original Lorentz collision operator representing
pitch angle scattering has a following form,

C(f) =
ν

2

∂

∂λ

[(
1− λ2

) ∂f
∂λ

]
, (4)

where λ is particle pitch defined by λ = v‖/v with parallel
velocity along the magnetic field line v‖, and ν is collision
frequency. The Lorentz collision operator in equation (4)
conserves energy but does not conserve toroidal momen-
tum. An additional term is required to preserve con-
serving momentum, which restores the momentum lost
by collisions between test particles and background plas-
mas. One form of the momentum conserving pitch angle
collision operator is given by Rosenbluth [7] and Boozer
[8] as

Cm.c.(f) = ν
m

B
v‖

∂

∂µ

[
µ

(
v‖
∂f

∂µ
+
uB

T
f

)]
, (5)

where B is magnetic field, µ is magnetic moment and T
is temperature. The collision operator in equation (5)
can be written by using µ = mv2⊥/2B and T = 2/3E as

Cm.c.(f) =
ν

2

∂

∂λ

[(
1− λ2

)(∂f
∂λ
− 3

u

v
f

)]
, (6)

where u is mean flow velocity defined by

u =
1

2

∫
f̂v‖dλ. (7)

Practical form of momentum conserving collision opera-
tor Cm.c.(f) to apply for Monte Carlo method is obtained

as a function of f̂ by partial derivatives and ignoring sub-
dominant terms [9] as

Cm.c.(f̂) =
ν

2

∂

∂λ

[(
1− λ2

) ∂f̂
∂λ

]
+ 3ν

u

v
λ. (8)

Now the momentum conserving operator can be imple-
mented by following two steps. First, particle’s pitch λ
is updated using a Monte Carlo equivalent of the original
Lorentz collision operator of equation (4) as

λnew = λold(1− ντ)±
[(

1− λ2old
)
ντ
]1/2

, (9)

where τ is size of time step [10]. The symbol ± indi-
cates that plus or minus sign is statistically determined
by uniformly generated random number. The next step
is to bring the momentum restoring term 3ν (v/u)λ of
equation (6) into the right hand side of equation (3).

Then, f̂ is calculated by

∆f̂ = −∆ψ
∂ ln fm
∂ψ

+ 3ν
u

v
λτ, (10)

which conserves toroidal momentum. The time step τ
should be selected to ensure energy conservation during
each time step.
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C. Hamiltonian equations of motion

The guiding center motion of particles are tracked by
Hamiltonian equations of motion. In order to derive or-
bit equations in non-axisymmetry, it is convenient to use
three dimensional spatial coordinates on the flux coor-
dinates and particle pitch. We start from Boozer coor-
dinates [11] by which the magnetic field is expressed as
following form,

~B =
µ0

2π

[
G(ψ)~∇φ+ I(ψ)~∇θ + β∗(ψ, θ, φ)~∇ψ

]
, (11)

where µ0 is the permeability of free space, G(ψ) and I(ψ)
are poloidal and toroidal currents, respectively. The drift
Lagrangian is written as

L =
1

2
mv2‖ +

q

2π

(
ψθ̇ − χφ̇

)
− µB − qΦ, (12)

where q is the electric charge, and Φ is potential. The
canonical momenta are

pθ =
mv‖

2πB
µ0I +

qψ

2π
=

q

2π

(
µ0Iρ‖ + ψ

)
, (13)

pφ =
mv‖

2πB
µ0G−

qχ

2π
=

q

2π

(
µ0Gρ‖ − χ

)
, (14)

where ρ‖ is parallel gyroradius defined by ρ‖ = mv‖/qB.
Then, the drift Hamiltonian is written as

H =
1

2
mv2‖ + µB + qΦ =

q2B2

2m
+ µB + qΦ. (15)

The orbit equations of motion in terms of (θ, φ, pθ, pφ) are

obtained from θ̇ = ∂H
∂pθ

, φ̇ = ∂H
∂pφ

, ṗθ = ∂H
∂θ , and ṗφ = ∂H

∂φ

[9].
Hamiltonian equations of motion are more con-

venient to track the guiding center motions with
non-axisymmetry when they are derived in terms of
(ψ, θ, φ, ρ‖). A set of orbit equations as a function of
(ψ, θ, φ, ρ‖) are obtained throughout coordinate trans-
forms expressed as following partial derivatives,

θ̇ = − 1

J

[(
∂H

∂ρ‖

)
ψ

(
∂pφ
∂ψ

)
ρ‖

−
(
∂pφ
∂ρ‖

)
ψ

(
∂H

∂ψ

)
ρ‖

]
θ,φ

,

(16)

φ̇ = − 1

J

[(
∂H

∂ψ

)
ρ‖

(
∂pθ
∂ρ‖

)
ψ

−
(
∂pθ
∂ψ

)
ρ‖

(
∂H

∂ρ‖

)
ψ

]
θ,φ

,

(17)

ρ̇‖ =
1

J

(
∂pφ
∂ψ

)
ρ‖,θ,φ

(
∂H

∂θ

)
ρ‖,ψ,φ

− 1

J

(
∂pθ
∂ψ

)
ρ‖,θ,φ

(
∂H

∂φ

)
ρ‖,ψ,θ

,

(18)

2D

3D

FIG. 1. Trajectories of guiding center orbit of a single par-
ticle in axisymmetric and non-axisymmetric configurations.
Perfect banana orbit in axisymmetry is distorted by non-
axisymmetric perturbations, which cause a shift of banana
bounce point.

ψ̇ = − 1

J

(
∂pφ
∂ρ‖

)
ψ,θ,φ

(
∂H

∂θ

)
ρ‖,ψ,φ

+
1

J

(
∂pθ
∂ρ‖

)
ψ,θ,φ

(
∂H

∂φ

)
ρ‖,ψ,θ

,

(19)

where the Jacobian J is defined as J = (q/2π)2µ0(G+ιI)
with rotational transform ι. The final form of the Hamil-
tonian equations of motion are given in the reference [9].

D. Numerical implementation

In order to practically solve the Fokker-Planck equa-
tion with δf Monte Carlo method described in the pre-
vious section, POCA goes through two steps of orbit and
collision step. In the orbit step, a number of test particles
(> 104) are generated at home flux surface ψ0 where neo-
classical quantities are calculated. Poloidal and toroidal
positions are randomly determined by random number
generator in order to distribute the test particles uni-
formly in the poloidal and toroidal spaces. Initial pitches
are uniformly distributed in the range of −1 ≤ λ ≤ 1 and
given to each particle. Test particle’s energy distribution
is selected to be monoenergetic or Maxwellian. In this
study, monoenergetic distribution is used for computa-
tional efficiency and simplicity. After the initialization,
particles’ guiding center motions are solved by Hamil-
tonian equations of motion. Fourth order Runge-Kutta
scheme is applied for time integration of Hamiltonian
variables during the orbit step. Next, a collision step
followed by orbit step updates particle’s pitch and calcu-

late f̂ to conserve momentum by equation (10).
POCA is a local code, which means POCA calculates

the neoclassical properties locally at the home flux sur-
face. Thus it is required to define an annulus represent-
ing the home flux surface. The annulus should be narrow
but sufficiently wide to ensure that particles do not leave
the annulus in several collision times. Particles leaving
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N = 5000

N = 10000

N = 20000

N = 50000

FIG. 2. Time histories of toroidal mean velocity with various
number of test particles. The flow velocity reaches an asymp-
totic value in several collision times with better convergence
and less noise as test particle number increases.

the annulus are reinserted at the home flux surface with
re-generated random ψ, θ, φ, and λ to maintain the to-
tal particle number. After one cycle of orbit and col-

lision step, a new f̂ and resultantly δf is obtained by

δf = fM f̂ , which is used to calculate the actual neo-
classical transport properties. Even though δf code is
much faster than standard Monte Carlo code, the com-
putational cost is still expensive. POCA is parallelized
by using MPI packages so that the computation speed
is significantly enhanced, and this allows a larger num-
ber of test particles and/or simultaneous calculations at
multiple flux surfaces.

One of primary results of POCA is a single guiding
center orbit motion. POCA reproduces various guid-
ing center orbits such as passing, barely trapped, and
trapped particles depending on magnetic field, particle
energy and initial pitch. For instance, figure 1 presents
trajectories of guiding center orbit of a single particle
in axisymmetric and non-axisymmetric configurations.
Non-axisymmetric perturbation was applied by equation
(30) with ε = 0.05 in a typical NSTX plasma. Trapped
particle draws a perfect banana orbit in axisymmetry,
however a shift of banana bounce point are found in non-
axisymmetry as shown in figure 1.

III. BENCHMARKING

Various benchmarking tests for neoclassical transport
calculation are described in this section. Axisymmet-
ric configuration is used for comparison of POCA results
with neoclassical theory and simulation.

A. Convergence

Convergence of POCA is tested by varying test par-
ticle number. Total number of test particles is the only

ν = 2x104

ν = 105

ν = 5x103

ν = 103

POCA

ORBIT

FIG. 3. Time histories of particle displacement ∆ψ2
n from

POCA (solid) compared with ORBIT (dashed) in the different
collision frequencies.

variable while background plasma conditions and initial
energy of test particle are fixed in the axisymmetry. Fig-
ure 2 shows the time histories of toroidal flow velocity
which is an example of neoclassical transport property
calculated by POCA. It is clearly observed that the flow
velocity reaches an asymptotic value in several collision
times regardless of the number of test particles. How-
ever the noises significantly decrease as the number of
particles increases, which confirms a good convergence of
POCA when sufficient test particles are used.

B. Diffusion

Diffusion calculated by POCA is benchmarked with
ORBIT code [12], which is well known guiding center
code. Figure 3 shows time histories of ∆ψ2

n, which is a
square of displacement of normalized toroidal flux, in the
various collision frequencies. Number of the test parti-
cle in the range of 5000 6 N 6 20000 is used to ensure
that test particles are confined in the plasma region for
sufficient collision times. Therefore ∆ψ2

n in figure 3 is
an average over N particles. It is observed that parti-
cles fill a small area at first, which is approximately the
banana orbit width, then diffuse in the radial direction.
Good agreements of particles’ displacements are found
between POCA and ORBIT in the various collision fre-
quencies, which indicates POCA describes the guiding
center motion accurately.

For more quantitative comparison, diffusion coefficient
of guiding center is defined as

D =
d(∆ψ2

n)

dt
, (20)

The diffusion coefficient calculated from both POCA and
ORBIT is equivalent to the time derivative of square of
particles’ displacements, which is a slope of ∆ψ2

n after
filling the orbit width in figure 3. The calculated diffusion
coefficients by POCA also agree very well with ORBIT
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POCA

ORBIT

FIG. 4. Calculated diffusion coefficient from POCA (solid)
compared to ORBIT code (dashed) as a function of collision
frequency. Diffusion coefficients defined as the slope of ∆ψ2

n

show very good agreements with ORBIT in the wide range of
collision frequencies.

POCA

a = 0.54

a = 1.44

FIG. 5. Normalized bootstrap current scaling as a function
of collisionality. Bootstrap current is normalized to the boot-
strap current at low collisionality ∼ 10−3. POCA calculation
shows good agreements with theory prediction (dashed) and
a scaling from another δf code (dash-dot).

in the wide range of ion-ion collision frequencies as shown
in figure 4.

Theoretically predicted Pfirsch-Schlüter, plateau, and
banana regimes are observed in figure 4, however the
plateau regime is found to be weak compared to other
regimes unlike theoretical predictions. Theory predicts
the plateau regime exists at ε3/2 ≤ ν∗ ≤ 1. Since this
benchmarking case uses a high aspect ratio plasma with
ε ∼ 0.1 thus ε3/2 ∼ 0.03 so the plateau regime should be
strong. Calculation indicates that it might be difficult
to clearly identify the plateau regime by guiding center
orbit codes employing only ion-ion collisions.

Momentum conserving

Non-conserving 

FIG. 6. Time histories of radial particle flux with modified
momentum conserving collision operator (solid) and original
Lorentz operator (dashed). The particle flux vanishes with
momentum conserving collision operator as expected from
theory while a finite flux remains with non-conserving op-
erator even in axisymmetry.

C. Bootstrap current

Another benchmarking is performed for bootstrap cur-
rent. POCA calculates ion bootstrap current automati-
cally. Bootstrap current is defined by

jb =

〈
j‖

B

〉
B0 (21)

where j‖ = qu. The brackets 〈〉 denotes the flux sur-
face average. Figure 5 scales the bootstrap current by
POCA as a function of collisionality defined by ν∗ =
νqR0/ε

2/3vth where ε is inverse aspect ratio and vth is
thermal velocity.

Hinton and Rosenbluth [13] found the dependence of
bootstrap current on collisionality as

jb ∝
1

1 +
√
ν∗ + aν∗

, (22)

with a = 0.54. Results from another δf code [14] in-
dicates the similar dependence of bootstrap current on
collisionality except the coefficient a = 1.44. Scaled boot-
strap current agrees well with the predictions from theory
and modeling as shown in figure 5.

D. Momentum conservation

Conservation of toroidal momentum is critical to sep-
arate non-axisymmetric effect from axisymmetric one in
transport, since it suppresses particle transport by colli-
sions and drifts in axisymmetric configuration. Therefore
the non-ambipolar transport driven by non-axisymmetric
perturbations can be distinguished from the transport
driven in the axisymmetry by conserving the toroidal
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momentum. The easiest way to test whether momen-
tum is conserved by the collision operator is to check the
particle flux across the flux surface in the axisymmetry.

The radial particle flux Γ is calculated by

Γ =

〈∫
~vd · ~∇ψδfd3v

〉
, (23)

where vd is drift velocity. The radial particle flux should
vanish when it is driven only by like-particle collisions
with axisymmetry since an inward particle flux is gen-
erated to conserve momentum. Figure 6 shows time
histories of particle flux in the axisymmetric configura-
tion with modified momentum conserving operator and
non-conserving Lorentz operator. Particle flux with mo-
mentum conserving operator vanishes in several collision
times while a finite flux remains with non-conserving op-
erator even in the axisymmetry. It is confirmed that the
modified pitch angle scattering collision operator used in
POCA conserves the toroidal momentum as it should.

IV. NON-AMBIPOLAR TRANSPORT

Axisymmetric magnetic surfaces can be deformed by
non-axisymmetric magnetic perturbations. The non-
ambipolar transport driven by non-axisymmetric per-
turbations is important since very small perturbation
can change the conventional neoclassical transport sig-
nificantly. In this section, the non-ambipolar particle
transport is measured in the perturbed tokamak and the
effects of magnetic perturbations on transport are ana-
lyzed.

POCA is developed to easily handle the non-
axisymmetric magnetic field information. For instance,
POCA can read axisymmetric equilibrium from ESC
and EFIT, and non-axisymmetric perturbation informa-
tion from IPEC and analytic model. The axisymmetric
equilibrium field and non-axisymmetric perturbations are
combined to give total non-axisymmetric magnetic field
as

B (ψ, θ φ) = B2D (ψ, θ)

[
1 +

∑
mn

δmn cos (mθ − nφ)

]
,

(24)
where δmn is a strength of perturbation by each (m,n)
mode.

In order to separate resonant effect from non-resonant
one, an analytic non-axisymmetric perturbation model
applying a single resonant mode, expressed as

B (ψ, θ φ) = B2D (ψ, θ) [1 + δmn cos (mθ − nφ)] , (25)

was superimposed to axisymmetric equilibrium field pro-
vided by ESC where q0 = 1.05 and qa = 2.8. ESC equilib-
rium solver [15] is used to create the axisymmetric equi-
librium B2D(ψ, θ) using prescribed pressure and safety
factor profiles. Analytic non-axisymmetric perturbation

(a) δmn = 0.02 

(b) δmn = 0.05

ν* = 0.012

ν* = 0.12

ν* = 1.2

FIG. 7. Non-ambipolar particle flux by (−6 ≤ m ≤ 10, n = 1)
perturbations around q = 2 flux surface for (a) δmn = 0.02
and (b) δmn = 0.05. The peak particle flux by (m = 2)
resonant perturbation clearly indicates the resonant nature
of magnetic braking, which is typically considered as non-
resonant.

model applies a single mode resonating at q = m/n ratio-
nal surface, thus m/n = 2/1 mode resonates at q = 2 flux
surface. Non-ambipolar particle flux around q = 2 flux
surface on the model perturbation was calculated with
scanning the poloidal mode number from −6 to 10 and
fixing toroidal mode number n = 1. Various collision
frequencies are selected from 20 to 2000, and collision-
ality is resultantly in the range of 0.012 ≤ ν∗ ≤ 1.2.
The non-axisymmetric magnetic perturbation strength
δmn is selected as 0.02 and 0.05, which are stronger than
conventional experiments but more useful to show clear
non-axisymmetric effect on transport.

Calculation results indicate that the resonant pertur-
bation significantly enhances the non-ambipolar particle
flux as shown in figure 7. The non-resonant perturba-
tions also enhance the particle flux however their effects
are generally weaker than the resonant one. It is also
clear from figure 7 that stronger perturbation leads to
stronger non-ambiploar transport for both resonant and
non-resonant modes. The enhanced non-ambipolar par-
ticle flux is directly correlated to the magnetic braking
driven by NTV since the non-ambipolar flux is propor-
tional to the NTV torque [16]. The non-ambipolar trans-
port, thus NTV transport by non-axisymmetric pertur-
bations provides an additional channel for toroidal mo-
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δmn = 0.05

δmn = 0.02

FIG. 8. Peak non-ambipolar particle flux by m/n = 2/1
resonant perturbation as a function of collsionality. Peaks
are found around νast ∼ 0.1 similarly with theory.

mentum transport in tokamaks, and the magnetic brak-
ing is caused by a modification of toroidal rotation by
magnetic perturbations. Therefore the observed signifi-
cant enhancement of non-ambipolar particle flux by reso-
nant perturbation clearly indicates a strong resonant na-
ture of magnetic breaking, which is typically considered
as non-resonant. This trend can be stronger by plasma
response to magnetic perturbations, which mostly ampli-
fies resonant modes.

Figure 8 shows dependence of the peak particle flux
driven by m/n = 2/1 resonant perturbation on collision-
ality. It is observed that the particle flux increase as
collisionality increases, reaches maximum around ν∗ =
0.1, and then slowly decreases. Such a trend is con-
sistent with non-ambipolar transport theory and mod-
eling, which might be associated with a bifurcation of
the superbanana-plateau and 1/ν regimes.

V. NEOCLASSICAL TOROIDAL VISCOSITY

POCA can directly calculate NTV torque, which is
beneficial to clarify the resonant nature of magnetic
braking. In general, the NTV torque is expressed by
anisotropic pressure tensor as〈

φ̂ · ∇ ·P
↔〉

=

〈
1

2

∂δP

∂φ

〉〈
δP

B

∂B

∂φ

〉
, (26)

where the anisotropic pressure δP is defined by

δP =

∫
d3v

(
1

2
mv2⊥ +mv2‖

)
δf. (27)

The NTV torque can be calculated with δf Monte Carlo
method throughout calculating the anisotropic pressures
and utilizing the spectrum of magnetic perturbations [17,
18]. When expressing the non-axisymmetric magnetic
perturbations with Fourier series as

δB

B0
=
∑
mn

δmn (ψ) cos (mθ − nφ) , (28)

q

T

n
Resonance

FIG. 9. Kinetic profiles of temperature, density, and safety
factor used for benchmarking of NTV torque. Density profile
with n0 = 1.0× 1019 is drawn in the figure. n0 is changed for
collisionality scan but the profile shape is the same for every
collisionality. Vertical line indicates a resonant flux surface at
q = 7/3.

the NTV torque is calculated by following equation [17–
19]〈

φ̂ · ∇ ·P
↔〉

= B0

∑
mn

nδmn

〈
δP

B
sin (mθ − nφ)

〉
. (29)

Thus the NTV torque in POCA is a sum of toroidal
torques driven by each (m,n) Fourier component of mag-
netic perturbations.

The NTV torque calculation with POCA is compared
with a generalized NTV theory derived from a bounce-
averaged drift-kinetic equation [5]. Circular plasmas of
large aspect ratio is assumed, and R = 10m, a = 2.5m,
and B0 = 10T are chosen for comparison. A single mode
magnetic perturbation expressed by

δB

B0
= εψ2

n cos (7θ − 3φ) (30)

where ψn is normalized poloidal flux and ε is fixed as
0.02. The perturbation strength δB/B0 is a function of
radial coordinates so δB/B0 is order of 104 at core and
102 at edge to be consistent with experiments.

Kinetic profiles of temperature, density, and safety fac-
tor used to construct an axisymmetric equilibrium with
ESC are drawn in figure 9. Safety factor profile is mod-
eled by q(ρ) = 1.2 + 9.8ρ2 where ρ =

√
ψn, therefore

m/n = 7/3 mode resonates at q = 7/3 surface around
ψn ∼ 0.5 as indicated by vertical line in figure 9. This
benchmarking case is identical to that of FORTEC-3D
with the same theory [20] except that deuterium species
is considered in this calculation. Density profile is pre-
scribed as n(ρ) = n0(n1+n2 exp(−n3ρn4)) with n1 = 0.1,
n2 = 0.9, n3 = 5.0, and n4 = 4.0. The density at mag-
netic axis n0 is varied from 2.5× 1017 to 2.5× 1019 with
fixed temperature profile and T0 = 0.5keV , thus collision-
ality varies in the range of 10−2 < ν∗ < 101 depending
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ψn = 0.35

ψn = 0.5

ψn = 0.65

δB2

FIG. 10. Dependence of NTV torque on magnetic perturba-
tion strength. The same δB2 dependence predicted by theory
is found by POCA at the resonant and non-resonant flux sur-
faces.

ν* ~ 0.05

v* ~ 0.5

v* ~ 1.0

v* ~ 2.0

v* ~ 5.0 

Symbol: POCA, Solid: Theory

FIG. 11. Benchmark of NTV torque from POCA (symbol)
with a theory (solid line). Peak NTV torques are clearly
observed around resonant surface at ψp = 0.5 regardless of
collisionality, and they are reduced dramatically at the non-
resonant surfaces. The calculated profile shape shows good
agreements with theory, but discrepancies exist depending on
collisionality, in particular, in the low collisionality regime.

on radial position for each n0. Note n0 is changed for col-
lisionality scan but the density profile shape is the same
for every collisionality. Electric potential is currently ne-
glected, thus E×B rotation is assumed to be zero in this
study.

One of essential features of NTV transport is found
from a scaling of NTV torque against magnetic pertur-
bation strength. The calculated NTV torque is scaled
with the perturbation strength ε using n0 = 1.0 × 1019.
Figure 10 shows NTV dependence at ψp = 0.5 where
nearby resonant surface and at ψp = 0.35, 0.65 where
non-resonant. The scaling clearly indicates that NTV
follows a δB2 dependence at both resonant and non-
resonant flux surfaces, which is consistent with the theory
prediction [5, 21].

Comparison results of NTV torque profiles between
POCA and the generalized theory show good agreements

within an order of magnitude depending on collisionality.
NTV torque profiles calculated by POCA with varied n0
are drawn together with theory prediction in figure 11.
Overall trend of NTV profiles at the resonant and non-
resonant surfaces are very similar between POCA and
theory. Peak NTV torque reasonably agrees with each
other in the wide range of collisionality. Biggest dis-
crepancy exists in the low collisionality regimes, however
NTV torques around resonant surfaces still show reason-
able agreements. Peak NTV torques nearby resonant flux
surface indicate the clear resonant nature of the magnetic
braking driven by NTV transport.

It should be noted that the magnetic perturbations in
theory are applied on Hamada coordinates while the per-
turbations are on Boozer coordinates in POCA. There-
fore the perturbation spectra are slightly different be-
tween POCA and theory. The difference in coordinates
can be negligible in the core region but it could be larger
in the edge region. It is also notable that theory uses
Krook collision operator which is largely simplified. Dif-
ference in coordinate system of perturbation spectra and
collision operator may cause the discrepancies between
POCA and theory as similarly as FORTEC-3D differs
from theory in reference [20]. In spite of the discrep-
ancy, POCA reflects an essential physics of NTV trans-
port such as δB2 dependence and the resonant peak con-
sistently with theory, and more realistic physics models
embedded in POCA is beneficial for NTV analysis.

VI. SUMMARY

A new δf particle orbit code POCA has been devel-
oped to calculate neoclassical transport in the perturbed
tokamaks. POCA employes a δf Monte Carlo method
with the modified Lorentz collision operator conserv-
ing toroidal momentum. Neoclassical transport proper-
ties such as diffusion and bootstrap current were suc-
cessfully benchmarked in the axisymmetric configura-
tion. Non-axisymmetric neoclassical transports such as
non-ambipolar particle flux and NTV torque were calcu-
lated and compared with theory using an analytic non-
axisymmetric perturbation model. POCA reveals clear
resonant nature of non-ambipolar transport, NTV, thus
magnetic braking. The successful benchmarking results
support that POCA can be applicable with its compu-
tational benefit for transport analysis in experiment as
well as theory study in the presence of non-axisymmetric
magnetic perturbations.

ACKNOWLEDGMENTS

The author K. Kim would like to thank Roscoe White
for benchmarking with ORBIT code and Stephane Ethier
for parallelization of POCA. The private communication
with Seung-Hoe Ku was a great help. This work was
supported by DOE Contract DE-AC02-09CH11466.



9

[1] K. Ikeda, Nucl. Fusion 47, S1 (2007).
[2] A. H. Boozer, Phys. Fluids 23, 2283 (1980).
[3] K. C. Shaing, Phys. Plasmas 10, 1443 (2003).
[4] K. C. Shaing, P. Cahyna, M. Becoulet, J.-K. Park, S. A.

Sabbagh, and M. S. Chu, Phys. Plasmas 15, 082506
(2008).

[5] J.-K. Park, A. H. Boozer, and J. E. Menard, Phys. Rev.
Lett. 102, 065002 (2009).

[6] J.-K. Park, A. H. Boozer, and A. H. Glasser, Phys. Plas-
mas 14, 052110 (2007).

[7] M. N. Rosenbluth, R. D. Hazeltine, and F. L. Hinton,
Phys. Fluids 15, 116 (1972).

[8] A. H. Boozer and H. J. Gardner, Phys. Fluids B 2, 2408
(1990).

[9] M. Sasinowski and A. H. Boozer, Phys. Plasmas 4, 3509
(1997).

[10] A. H. Boozer and G. Kuo-Petravic, Phys. Fluids 24, 851
(1981).

[11] A. H. Boozer, Phys. Fluids 24, 1999 (1981).
[12] R. B. White and M. S. Chance, Phys. Fluids 27, 2455

(1984).
[13] F. L. Hinton and M. N. Rosenbluth, Phys. Fluids 14, 836

(1973).
[14] M. Sasinowski and A. H. Boozer, Phys. Plasmas 2, 610

(1995).
[15] L. E. Zakharov and A. Pletzer, Phys. Plasmas 6, 4693

(1999).
[16] K. C. Shaing, Phys. Fluids 26, 3315 (1983).
[17] J. L. V. Lewandowski, J. Williams, A. H. Boozer, and

Z. Lin, Phys. Plasmas 8, 2849 (2001).
[18] J. D. Williams and A. H. Boozer, Phys. Plasmas 10, 103

(2003).
[19] S. Satake, H. Sugama, R. Kanno, and J.-K. Park, Plasma

Phys. Control. Fusion 53, 054018 (2011).
[20] S. Satake, J.-K. Park, H. Sugama, and R. Kanno, Phys.

Rev. Lett. 107, 055001 (2011).
[21] J.-K. Park, Phys. Plasmas 18, 110702 (2011).



The Princeton Plasma Physics Laboratory is operated 
by Princeton University under contract 
with the U.S. Department of Energy. 

 
Information Services  

Princeton Plasma Physics Laboratory 
P.O. Box 451 

Princeton, NJ 08543 
 
 
 
 

Phone: 609-243-2245 
Fax: 609-243-2751 

e-mail: pppl_info@pppl.gov 
Internet Address: http://www.pppl.gov 


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4752
	Title: Delta f Monte Carlo Calculation Of Neoclassical Transport 
In Perturbed Tokamaks
	Date: April, 2012
	authors: Kimin Kim, Jong-Kyu Park, Gerrit Kramer and Allen H. Boozer


