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Axiomatic geometrical optics, Abraham-Minkowski controversy,
and photon properties derived classically

I. Y. Dodin and N. J. Fisch
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

(Dated: May 22, 2012)

By restating geometrical optics within the field-theoretical approach, the classical concept of a
photon in arbitrary dispersive medium is introduced, and photon properties are calculated unam-
biguously. In particular, the canonical and kinetic momenta carried by a photon, as well as the
two corresponding energy-momentum tensors of a wave, are derived straightforwardly from first
principles of Lagrangian mechanics. The Abraham-Minkowski controversy pertaining to the defini-
tions of these quantities is thereby resolved for linear waves of arbitrary nature, and corrections to
the traditional formulas for the photon kinetic quantities are found. An application of axiomatic
geometrical optics to electromagnetic waves is also presented as an example.

PACS numbers: 03.50.De, 42.50.Wk, 42.15.-i, 03.50.-z

I. INTRODUCTION

A. Motivation

The discussion about how to define the momentum and
the angular momentum of a photon in dispersive medium
(PDM), and even simply of a classical wave, has been re-
vived in literature periodically during the last hundred
years. The recent burst of theoretical [1–52] and experi-
mental [53–55] publications indicates a lingering interest
in the problem and, apparently, a lack of consensus or
certainty about what the correct answer is. The tradi-
tional arguments can be found in reviews like Refs. [56–
62] and references therein, too numerous to be listed in
this paper. Let us mention only briefly that two alter-
native forms of the PDM momentum are adopted most
commonly,

pM = ~ωnp/c, pA = ~ω/(ngc), (1)

known, respectively, as the Minkowski interpretation and
the Abraham interpretation. (Here ω is the frequency, c
is the speed of light, and np = c/vp and ng = c/vg are the
refraction indexes associated with, correspondingly, the
phase velocity vp and the group velocity vg; for the two
associated angular momenta see Ref. [45].) Since both
have supporting theoretical and experimental evidence
[1], the question about which of the two interpretations
is “more correct” has been controversial.

A resolution to this Abraham-Minkowski controversy
(AMC) was proposed recently in Ref. [1]. It was argued
there that both interpretations are correct; namely, pM

can be attributed as the canonical momentum, and pA

can be attributed as the kinetic momentum of a pho-
ton. Yet, strictly speaking, the argument of Ref. [1] ap-
plies only to the case of a nonrelativistic solid dielec-
tric. The subsequent generalization in Ref. [5] is not
quite complete either; for example, the latter neglects
electrostriction and magnetostriction, kinetic effects, and
spatial dispersion, and also attributes vg entirely to the
Poynting flux, in disagreement with a textbook theorem

[Eq. (136)]. Thus, a quantitative relativistic theory is
still lacking that would correct the existing understand-
ing of PDM, and Eqs. (1) in particular, plus extend it
to waves of nonelectromagnetic nature. To offer such a
theory is the purpose of this paper.

B. Field-theoretical approach

First of all let us stress that photon properties can-
not be calculated until PDM itself is defined unambigu-
ously. (In particular this means that, contrary to the
common presumption, the PDM properties cannot be in-
ferred from experiment until a comprehensive theory is
developed, essentially rendering experiments redundant
in this matter.) Second of all, the definition should not
be expected to originate from electromagnetism, because
the concept of a photon, and even of vp and vg that enter
Eqs. (1), is not embedded in Maxwell’s equations per se.
On the other hand, the photon concept is neither en-
tirely of quantum nature [63], and mechanical properties
of quantum radiation (dipole force, radiation pressure,
cooling effects on atoms, etc) are consistently shown to
have direct classical analogs [64–68]. It then stands to
reason that an abstract classical calculation could resolve
the AMC, generalizing Eqs. (1), without assuming a spe-
cific underlying physical system whatsoever.

To understand what the right framework is for such
a calculation, notice that introducing a photon implies
that the frequency ω and the wave vector k are well de-
fined. These are exactly the validity conditions of what is
commonly known as geometrical optics (GO). (The term
“optics” here means only that the theory deals with suffi-
ciently large ω and k; i.e., waves need not be electromag-
netic.) Although usually defined through rays and wave
equations [69–77], the most fundamental, axiomatic GO
is an abstract field theory that applies to any field having
a Lagrangian density of a specific form [Eq. (11); dissi-
pative effects can also be added, Sec. IV D]. Just like
Newton’s laws of particle motion hold, with obvious ex-
ceptions, independently of specific forces acting on par-
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ticles, the basic GO equations are then invariant to the
wave nature [78], and the wave properties can be derived
in general. Hence, axiomatic GO should resolve the AMC
automatically and thus will be sufficient for our purposes.

C. Outline

Here we aim to apply the GO formalism toward de-
riving PDM general properties deductively using noth-
ing more that first principles of classical mechanics. In
doing so, we draw on the Lagrangian field theory as elab-
orated in plasma physics and hydrodynamics during the
last fifty years [79–107]. Since this literature, sadly, re-
mains unknown within the mainstream approach to the
AMC (with few exceptions), the general formalism of ax-
iomatic GO will also be restated.

Specifically, below we do the following:

(a) formulate a comprehensive theory and present a tu-
torial on axiomatic GO, by extending and expand-
ing on existing results;

(b) explain how the wave canonical energy-momentum
tensor (EMT) is related to the photon properties
in the Minkowski interpretation;

(c) introduce the wave angular momentum and spin
within axiomatic GO and calculate it explicitly for
cylindrical beams;

(d) derive the effect of local linear dissipation on waves
and photons;

(e) unambiguously define the wave kinetic EMT and
calculate it explicitly for isotropic relativistic fluids
(with striction effects included);

(f) calculate the associated energy, momentum, and
angular momentum per photon; show that the tra-
ditional, Abraham formulas are reproduced as a
limiting case;

(g) illustrate how the properties of electromagnetic
waves can be inferred deductively within axiomatic
GO without appealing to Maxwell’s equations for
the envelope evolution.

Note that, in parts (a) and (b), which correspond to
Secs. III-IV B, we mostly repeat known arguments, pub-
lished previously, e.g., in Refs. [82–86]. Also keep in mind
that, in application to specific media, the problem of find-
ing both canonical and kinetic EMT of a classical electro-
magnetic wave was solved comprehensively in Ref. [86],
which, while known within the plasma physics commu-
nity, seems to remain unknown to the general readership.
The difference between Ref. [86] and our paper is that we
use a different machinery and arrive at results that are, in
a number of aspects, more general and, as a consequence,
more concise and transparent. In particular, we refrain

from specifying the wave nature, derive photon proper-
ties, and allow for dissipation, complementing Ref. [86]
on these issues.

The paper is organized as follows. In Sec. II we intro-
duce the notation used throughout the text. In Sec. III
we describe general GO waves, including nonlinear waves,
in arbitrarily curved spacetime and also in the Minkowski
spacetime as a particular case. In Sec. IV we reduce
the theory further to describing linear waves and explain
how the Minkowski representation is recovered; in par-
ticular, the wave angular momentum and dissipative ef-
fects are discussed. In Sec. V we introduce the wave
kinetic EMT and reproduce the traditional formulas for
the corresponding photon quantities as a limiting case. In
Sec. VI we explain how the specific properties of electro-
magnetic waves flow deductively from the general the-
ory. In Sec. VII we summarize our results. Auxiliary
calculations are presented in Appendix, and a number of
comments are also given in endnotes.

II. NOTATION

The following notation will be assumed below. We
use the symbol

.
= for definitions. Greek indexes span

from 0 to 3 and refer to coordinates in spacetime, xα. In
particular, for the Minkowski spacetime we adopt x0 .

=
ct, where c is the speed of light, and t is time. Hence
the Lorentz transformation matrix, Λαβ

.
= ∂xα/∂x′β , is

given by

Λ0
0 = γ, Λ0

i = γvi/c, Λi0 = γvi/c,

Λij = δij + (γ − 1)vivj/v
2, (2)

where vi is the velocity of the “primed” reference frame
with respect to the laboratory frame, and γ

.
= (1 −

v2/c2)−1/2. Latin indexes i, j, and l span from 1 to 3
and refer to spatial coordinates, xi. Spatial vectors are
denoted with bold, X; spatial tensors are also marked
with hat, T̂; symbols like XY

.
= Ẑ stand for spatial

dyadics, Zij = XiY j ; the symbol 1̂ denotes the unit spa-
tial tensor; besides, the three-tensor

Λ̂
.
= 1̂ +

γ − 1

v2
vv (3)

is the spatial part of Λαβ . Summation over repeating

indexes will also be implied; e.g., XiYi ≡
∑3
i=1X

iYi.
Latin indexes other than i, j, and l denote partial

derivatives with respect to the corresponding variables
(except in vp, vg, np, and ng); e.g., for f

.
= f(a, ω,k; t,x),

the symbol fx denotes the derivative (gradient) with re-
spect to the last argument, x. In addition to those,
“full” temporal and spatial derivatives are introduced,
∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi, which treat all arguments of
the function that is being differentiated as functions of t
and xi, correspondingly; e.g.,

∂tf
.
= fa ∂ta+ fω ∂tω + fki∂tki + ft, (4)

∂if
.
= fa ∂ia+ fω ∂iω + fkj∂ikj + fxi . (5)
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The symbol ∇ denotes the associated full covariant
derivative; e.g., ∇if = ∂if is the full gradient of the
scalar f , and ∇ ·F is the full divergence of the vector F,

∇ · F =
1
√
η

∂

∂xi
(√
η F i

)
, (6)

where η
.
= det ηij , and ηij = ηji is the spatial metric. [In

Cartesian coordinates, Euclidean space has ηij = ηij =
diag (1, 1, 1), so η = 1.] The symbol ,α denotes the analo-
gous (to ∂i) full derivative with respect to xα, and ;α de-
notes the analogous full covariant derivative. For exam-
ple, the four-divergence is

Fα;α =
1
√
g

∂

∂xα
(√
g Fα

)
, (7)

where g
.
= −det gµν , and gµν = gνµ is the spacetime

metric. For introduction to the tensor notation and index
manipulation rules in particular, see Refs. [69, 108, 109].

Some specific symbols are also summarized in Table I,
and the abbreviations used in the text are as follows:

ACT – action conservation theorem,
AMC – Abraham-Minkowski controversy,
EMT – energy-momentum tensor,

GO – geometrical optics,
PDM – photon in dispersive medium,
SAM – spin angular momentum,
WMS – “wave + medium” system.

III. GENERAL WAVES

A. Covariant formulation

First, let us consider a general nondissipative wave de-
scribed by some action integral S =

∫
L
√
g d4x, where

√
g d4x ≡ √g dx1dx2dx3dx4 (8)

is an invariant volume element in spacetime, and the four-
scalar L is the Lagrangian density. Since the action of
the underlying medium is not included here, no invari-
ance requirements on L are imposed. Instead, we assume
that the wave structure remains fixed (albeit not neces-
sarily sinusoidal), so the wave is fully described by some
canonical phase θ, which will be understood as a scalar
field θ(xν), and a = a(xν), which is an arbitrary measure
of the wave amplitude [110]. We also assume that the
envelope evolves on spacetime scales large compared to
those of local oscillations. On such time scales, it is only
the average Lagrangian density that contributes to S, so
one can adopt that L does not depend on θ explicitly.
Instead, L must depend on the phase four-gradient,

kµ
.
= θ,µ, (9)

which is the generalized “wave vector” (actually, a four-
covector here), obviously having zero four-curl,

kµ;ν − kν;µ = kµ,ν − kν,µ = θ,µν − θ,νµ = 0. (10)

[Equation (10) is known as the consistency relation.] Be-
sides that, L must depend on a; yet the dependence on
the amplitude gradients a,ν is negligible in the GO limit.
Thus, allowing also for slow parametric dependence on
the spacetime coordinates xν , we postulate

L = L(a, kµ;xν), (11)

which as well can be considered as the definition of the
GO approximation. Hence wave equations are inferred
using the least action principle, namely, as follows.

First, let us consider variation of S with respect to the
wave amplitude a. Since δaS =

∫
La δa

√
g d4x for any

δa, the requirement δaS = 0 leads to

La = 0. (12)

Equation (12) can be understood as the wave dispersion
relation, and it is generally nonlinear, i.e., may retain
essential dependence on a (see, e.g., Refs. [104, 106]).

Second, let us consider variation of S with respect to
the wave phase θ [111]. Due to Eq. (9) and the fact that
L does not depend on θ explicitly, for any δθ one has

δθS =
∫
Lkµ δθ,µ

√
g d4x

=
∫ [

(
√
g Lkµ δθ),µ − (

√
g Lkµ),µ δθ

]
d4x

= −
∫

(Lkµ);µ δθ
√
g d4x,

where we used the fact that the wave field vanishes at
infinity, so

∫
(. . .),µ d

4x = 0. Thus, the requirement
δθS = 0 yields that the four-divergence of the action
flux density J µ .

= −Lkµ is zero [112],

J µ;µ = 0, (13)

which is called the action conservation theorem (ACT).
Since the ACT has the form of a continuity equation, one
can treat Gµ .

= J µ/~ as the flux density of some fictitious
quasiparticles, or “photons”. (In application to specific
waves, one can as well think of plasmons, polaritons, or
any other elementary excitations instead.) However, re-
member that, within our classical description, it is only
the product ~Gµ that has an explicit physical meaning, so
the actual value of ~ will be irrelevant for our purposes.

Finally, let us also introduce the wave EMT as follows.
Consider the (generally asymmetric) tensor

Tαβ
.
= kαJ β + δβαL. (14)

The divergence of Tαβ equals

Tαβ ;β = kα;βJ β + kαJ β ;β + δβα(La a;β + Lkλkλ;β + Lxβ )

= kα;βJ β + δβα(Lkλkλ;β + Lxβ )

= kα;βJ β − kλ;αJ λ + Lxα

= kα;βJ β − kα;λJ λ + Lxα

= Lxα , (15)
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TABLE I: Summarized here is some notation adopted for wave variables (“ponder.” stands for ponderomotive; the integral
quantities are obtained by integrating the corresponding densities over the spatial volume dV ≡ √η d3x). The rest of the
notation is explained in Sec. II and throughout the text.

per unit spatial volume integral per photon

canonical kinetic ponder. - canonical kinetic

number of photons N - - N 1 -

action I - - I ~ -

energy E ε ∆ε - H h

momentum P ρ ∆ρ - P p

angular momentum M µ ∆µ - M m

photon flux G - - - - -

action flux J - - - - -

energy flux Q ϑ - - - -

momentum flux Π̂ π̂ - - - -

energy-momentum tensor T τ ∆τ - T -

wave Lagrangian L - - L - -

where we used Eqs. (11)-(13). This tensor is then as-

sociated with the conservation law, Tαβ ;β = 0, yielded
when the system is translationally invariant in spacetime
(i.e., when the four-force is zero, Lxα = 0). Hence, Tαβ
is a true canonical EMT [113], as one could also infer
from the standard definition that is based on Noether’s
theorem [114]. However, notice that, in contrast with
the fundamental theorem of the vacuum field theory [69,
Sec. 32], T αβ does not permit the usual [86, 99, 115–118]
symmetrization, since L is not restricted by any invari-
ance requirements [79]. In particular the very fact that a
scalar field such as θ(xν) yields an asymmetric EMT al-
ready proves the lack of Lorentz invariance [119, Sec. 5.6].

B. Application to the Minkowski spacetime

From now on, we will assume the Minkowski spacetime
with metric signature (−,+,+,+); hence,

g00 = g00 = −1, ηij
.
= gij , η = g. (16)

(Although the space is Euclidean, we will allow for curvi-
linear coordinates; thus, albeit flat, the spatial metric ηij
can otherwise be arbitrary.) In this case, kα = (−ω/c,k),
and kα = (ω/c,k), where

ω
.
= −∂tθ, k

.
= ∇θ. (17)

Then Eq. (10) turns into the following set of equations:

∂tk +∇ω = 0, ∇× k = 0. (18)

One may notice also that the latter equation here can
be considered as the initial condition for the former one,
taking curl of which readily yields ∂t(∇× k) = 0.

Accordingly, Eq. (11) becomes

L = L(a, ω,k; t,x). (19)

The dispersion relation hence holds in the form (12). The
ACT can be rederived from Eq. (19) or it can be deduced
from Eq. (13) by substituting J α = (cI,J ); either way,
one gets (cf. Refs. [83, 84])

∂tI +∇ ·J = 0, (20)

where I is the action density, and J is the action spatial
flux density, introduced as follows:

I .
= Lω, J .

= −Lk. (21)

In particular, integration of Eq. (20) over the volume
dV ≡ √η d3x yields conservation of the integral action,

I
.
=

∫
I dV = const. (22)

Introducing the photon density N .
= I/~ and the photon

spatial flux density G .
= J /~, one can further rewrite

Eq. (20) as ∂tN + ∇ · G = 0, and Eq. (22) will yield
the photon conservation, N

.
=
∫
N dV = const. Also

notice that both I and N are Lorentz invariants, as well-
known to flow from the general (unlike, e.g., in Ref. [120])
properties of the continuity equation [109, Sec. 2.6].

The elements of the (contravariant) EMT are now

T 00 = ωI − L, T 0i = ωJ i/c,
T i0 = ckiI, T ij = kiJ j + ηij L. (23)

In particular, Eq. (15) yields

∂T 00

∂t
+

1
√
η

∂

∂xi
(cT 0i√η) = w, (24)
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which is a continuity equation for T 00 with the right-
hand side being w

.
= g00cLx0 = −Lt. Since the latter has

the meaning of the canonical power source, E .
= T 00 must

be the wave canonical energy density, and Qi .
= cT 0i

must be the canonical energy flux density. Similarly,

1

c

∂T i0

∂t
+

1
√
η

∂

∂xj
(T ij√η) = f i, (25)

which is a continuity equation for the three-vector T i0/c
with the right-hand side being f

.
= Lx. Since the lat-

ter has the meaning of the canonical momentum source,
Pi .= T i0/c must be the wave canonical momentum den-
sity, and the (generally asymmetric) three-tensor Πij .

=
T ij must be the canonical momentum flux density [121].

In summary, one then has

T αβ =

(
E Q/c
cP Π̂

)
, (26)

where the individual blocks are given by

E = ωI − L, Q = ωJ ,

P = kI, Π̂ = kJ + L 1̂, (27)

and Eqs. (24) and (25) can be written as follows:

∂tE +∇ ·Q = w, ∂tP +∇ · Π̂ = f . (28)

It is hence seen that the wave energy propagates at veloc-
ity Q/E that is generally different from the action flow
velocity J /I [cf. Eq. (20)], and similarly for the mo-
mentum flow velocity. Moreover, those three turn out
to be different from the velocities of information, or the
nonlinear group velocities, of which there can also be
more than one. For an expanded discussion on this see
Refs. [84, 107] and references therein.

IV. LINEAR WAVES: MINKOWSKI
REPRESENTATION

A. Basic equations

Now let us consider a linear wave, i.e., such that has
ω(k; t,x) independent of a. In this case, from Eq. (12)
it is seen that La must be separable as La = D(ω,k)Aa,
where A(a, ω,k) is some function such that Aa is nonzero.
[Parametric dependence of functions like L, D, and A on
(t,x) is also implied but will be omitted for the sake of
brevity.] Then,

L = D(ω,k)A. (29)

It will hence be convenient to think of a as of a linear
measure of the oscillating field amplitude. Then, most
commonly, one will have A ∝ a2; yet for our purposes
the actual dependence need not be specified.

Equation (12) now yields

D(ω,k) = 0. (30)

Thus Eqs. (21) become

I = DωA, J = −DkA, (31)

and Eqs. (27) take the form

E = ωI, Q = ωJ , P = kI, Π̂ = kJ . (32)

Hence the photon canonical energy, H
.
= E/N , and the

photon canonical momentum, P
.
= P/N , equal [82]

H = ~ω, P = ~k, (33)

matching the Minkowski interpretation exactly and inde-
pendently of the wave nature. [In fact, P = ~k holds
even for nonlinear waves; cf. Eqs. (27).] In particular,
Pα

.
= (H/c,P) = ~kα happens to be a true four-vector,

by definition of kα, so PαPα is a Lorentz invariant. The
latter can also be understood as a measure of the photon
canonical mass M, defined via

M2 .
= −PαPα/c2 (34)

(cf., e.g., Refs. [101, 122, 123]).
Further, differentiating Eq. (30) with respect to k [with

ω = ω(k; t,x)] also gives Dωvg + Dk = 0, where we in-
troduced the linear group velocity vg

.
= ωk; therefore,

vg = −Dk/Dω = J /I. (35)

Hence, Eq. (26) yields T αβ = NTαβ , where

Tαβ =

(
~ω ~ωvg/c

c~k ~kvg

)
(36)

is the canonical EMT per photon. Alternatively, one can
also exclude N and rewrite Eqs. (32) as

P = kE/ω, Q = Evg, Π̂ = Pvg. (37)

It is seen, from here and Eqs. (28), that the canonical
action, energy, and momentum are all transported at the
same velocity, vg. However, keep in mind that the full,
or “kinetic” energy and momentum densities carried by
the wave (Sec. V) generally do not have this property.

Finally, let us introduce photon trajectories, dtx = vg,
also known as GO rays. Along those trajectories,

dt = ∂t + vg · ∇. (38)

Then Eqs. (18) yield

dtx = vg, dtk = −ωx, dtω = ωt. (39)

[Remember that the derivatives ωx and ωt of ω(k; t,x)
are taken at fixed k.] In particular, the ACT can hence
be written as

dt ln I = −∇ · vg. (40)
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Also notice that Eqs. (39) can be understood as canonical
equations for the photon motion governed by the Hamil-
tonian H(x,P; t). In this form, i.e.,

dtx = HP, dtP = −Hx, dtH = Ht, (41)

they are identical to the motion of a true classical particle
such as an electron, which supports the well-known anal-
ogy between GO and classical mechanics [124, Sec. 9.8].
Reverting to Eqs. (11) and (19), it is seen then that not
just waves, but classical particles too can be described in
terms of phases and amplitudes [125].

B. Noether’s integrals

Various transport equations can now be derived from

∂t(XI) +∇ · (XJ ) =

= (∂tX)I + X(∂tI) + (∇X)J + X(∇ ·J )

= (∂tX)I + (∇X)J
= I (∂tX + vg · ∇X)

= I dtX, (42)

which holds for arbitrary X. Some of those are as follows.
Action. — Taking X equal to a constant, one recov-

ers Eq. (20), or the ACT. [Of course, this is not an in-
dependent derivation of the ACT, since the latter itself
was used in deriving Eq. (42).] As already emphasized,
Eq. (20) is due to the fact that L does not depend on θ ex-
plicitly. Since it also implies conservation of the integral
action I, the latter can be understood as the correspond-
ing Noether’s integral.

Energy. — Taking X = ω, one obtains

∂tE +∇ · (Evg) = I dtω. (43)

As seen from Eq. (39), in stationary medium dtω = 0, so
one recovers the result obtained in Sec. III, namely, that
the wave integral energy,

∫
E dV , is the Noether’s inte-

gral that is conserved when the system is translationally
invariant in time. Another corollary, which is obtained
by comparing Eq. (43) with Eq. (24), is that

−Lt = w = I dtω = I ωt, (44)

where we also used Eq. (39). Alternatively, one can
rewrite this as w = N dtH, where dtH is the work on
an individual photon per unit time.

Momentum. — Taking X = k, one obtains

∂tP +∇ · (Pvg) = I dtk. (45)

As seen from Eq. (39), in homogeneous medium dtk = 0,
so one recovers the result obtained in Sec. III, namely,
that the wave integral momentum,

∫
P dV , is the

Noether’s integral that is conserved when the system
is translationally invariant in space. Another corollary,

which is obtained by comparing Eq. (45) with Eq. (25),
is that

Lx = f = I dtk = −I ωx, (46)

where we also used Eq. (39). Alternatively, one can
rewrite this as f = N dtP, where dtP is the force on
an individual photon.

Angular momentum. — Taking X = x×k, one obtains
from Eq. (42) that

∂tM +∇ · (Mvg) = I dt(x× k), (47)

where we formally introduced M .
= (x× k)I, or

M = x×P . (48)

Based on Eq. (48), one could anticipate that M is the
wave angular momentum density, and indeed Eq. (47)
yields that this is the case, as we will now prove.

C. Angular momentum

Conservation theorem. — Consider system rotation by
an arbitrary infinitesimal angle δϕ. Associated with this
rotation will be a variation of the Lagrangian density

δL = Lk · δk + Lx · δx, (49)

where we substituted Eq. (11) for La; also,

δk = δϕ× k, δx = δϕ× x, (50)

Lk = −J = −vgI, and Lx = I dtk, where the latter is
taken from Eq. (46). Hence,

I−1δL = −vg · (δϕ× k) + dtk · (δϕ× x)

= δϕ · (vg × k) + δϕ · (x× dtk)

= δϕ · dt(x× k). (51)

Having δL = 0 yields that dt(x×k) = 0. From Eq. (47),
one then obtains that

∂tM +∇ · (Mvg) = 0, (52)

which means, in particular, that
∫
M dV is conserved.

Since this is the invariant associated with the medium
isotropy, it by definition [126, Sec. 9] represents the wave
angular momentum. Correspondingly, M is the wave
angular momentum density [127]. Also, M

.
= M/N , or

M = x×P, (53)

is the angular momentum of a photon, ~ dt(x× k) ≡ dtM
is the torque on a photon (cf. Ref. [94]), and the corre-
sponding dynamic equation is spelled out as

dtM = vg ×P− x×Hx. (54)
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Spin angular momentum (SAM). — Consider a sta-
tionary wave beam symmetric with respect to z axis; i.e.,
in cylindrical coordinates (r, φ, z), the amplitude a and
the wave vector components kr, kφ, kz are independent
of φ. The consistency relation (18) requires then that
∂r(rkφ) = 0, so kφ = m/r, where m is a constant. This
gives Mz = rkφI = mI, or that the carried angular
momentum per photon is Mz = m~. To find m, notice
that, due to kφ = r−1∂φθ, the wave canonical phase has
the form θ = mφ − ωt + Ξ(r, z), where Ξ is some func-
tion of r and z only. Thus, after any time δt, the wave
must repeat itself, at the same r and z, in the coordinate
frame rotated by δφ = (ω/m) δt. Satisfying this condi-
tion are, in fact, only circularly polarized waves (at least,
in free space), corresponding to m = ±1. Other types
of wave beams therefore cannot be considered symmet-
ric within GO and thus can be assigned only average m.
Specifically, decomposing a wave with a given elliptic po-
larization into the two independent circularly-polarized
components with corresponding weights C+ and C−, one
gets 〈m〉 = C+ − C−. In particular, linear polarization
corresponds to C+ = C−, in which case 〈m〉 = 0.

These results match the known quantum theorem,
which says that states with circular polarization are
the only polarization states of a free photon that are
eigenstates of the corresponding SAM projection, Mz =
±~ [128, Sec. 8]. Thus, for an axially symmetric beam,
Mz that originates entirely from the beam polarization
can be called the SAM density. Interestingly, it can also
be interpreted as follows. For those (circularly polarized)
waves that do allow precise definition of the SAM, the
latter appears due to the singularity of kφ at r = 0, i.e.,
due to θ(r = 0) being undefined [129]. In this sense, the
canonical phase increment ∆θ = 2πm along a closed con-
tour encircling the symmetry axis is the corresponding
Berry phase [130, 131], so the photon SAM (in units ~)
is nothing but the Berry index of the classical phase field.

Finally, note that a wave beam that is not axially
symmetric will also carry additional, “orbital” momen-
tum [132, 133]. The latter is included in Eq. (48), and
separating it from the SAM unambiguously may not
be possible except in special cases, as usual; see, e.g.,
Ref. [132–134] or Ref. [128, Sec. 6].

D. Dissipation

Suppose now that a linear wave experiences weak dis-
sipation. Then, comprising the wave locally are Fourier
harmonics with complex frequencies and wave vectors,

Ω = Ω′ + iΩ′′, K = K′ + iK′′. (55)

Assuming the local dispersion relation in the form

D(Ω,K) = 0, (56)

let us keep only the terms of the zeroth and first order in
Ω′′ and K′′. Then one gets

D + iDΩΩ′′ + iDK ·K′′ = 0, (57)

where D and its derivatives are henceforth evaluated at
(Ω′,K′). Now suppose D = D′ + iD′′, where D′′

.
= ImD

is much smaller than D′
.
= ReD. One hereby obtains

D′ + iD′′ + iD′ΩΩ′′ + iD′K ·K
′′ = 0 (58)

(where higher-order terms were neglected), the real part
and the imaginary part of which are, correspondingly,

D′ = 0, (59)

D′′ + D′ΩΩ′′ + D′K ·K
′′ = 0. (60)

From here, the envelope dynamics is inferred as follows.
At any given time, the field distribution of the real

system can be mapped into the auxiliary nondissipative
system, where the wave phase θ is well defined, and

L
.
= D′(ω,k)A. (61)

This defines the instantaneous a and also the instanta-
neous real canonical frequency and wave vector, (ω,k);
hence all other local quantities can be introduced through
L(a, ω,k) too. However, the dynamics in the auxiliary
system and in the real system are different; thus, for the
latter, an extra term Γ must be added in Eq. (40),

dt ln I = −∇ · vg − Γ. (62)

Assume that dissipation is determined by the local
(a, ω,k) and by the local parameters of the medium,
rather than their gradients. Then one can find Γ by
calculating it for homogeneous stationary medium and
a wave whose field is locally “monochromatic”, i.e., can
be assigned particular complex (Ω,K) [which map to the
given canonical (ω,k)]. Then,

Γ = −dt ln I = −κ(Ω′′ − vg ·K′′), (63)

where κ .
= d lnA/d ln a (which commonly equals 2; see

Sec. IV A), and the left-hand side is evaluated at (Ω′,K′).
On the other hand, Eq. (60) yields

Ω′′ − vg ·K′′ = −D′′/D′Ω. (64)

Hence Γ is connected with the dispersion function as

Γ(ω,k) = κD′′(ω,k)/D′ω(ω,k), (65)

where we used that, to the leading order, it is sufficient
to take (Ω′,K′) ≈ (ω,k) on the right-hand side.

Now let us present the corresponding transport equa-
tions. Similarly to Eq. (42), one has, for any X, that

∂t(XI) +∇ · (XJ ) = I dtX− ΓXI. (66)

Since X is arbitrary, the number of equations that can
be produced from here is infinite, like in Sec. IV B. In
particular, those for the action, the energy, the momen-
tum, and the angular momentum are obtained by taking
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X = 1, X = ω, X = k, and X = x × k, correspondingly,
and are as follows:

∂tI +∇ · (Ivg) = −ΓI, (67)

∂tE +∇ · (Evg) = I dtω − ΓE , (68)

∂tP +∇ · (Pvg) = I dtk− ΓP , (69)

∂tM +∇ · (Mvg) = I dt(x× k)− ΓM. (70)

The physical statement contained in these is twofold.
First of all, one can see that the decay rate is the same
in all the equations, regardless of the specific X. [This, of
course, is seen already from Eq. (66).] Second of all, this
rate is actually known from Eq. (65), which connects Γ
with the dispersion function D. In particular, the action
loss per unit volume per unit time can be written as

ıloss
.
= ΓI = κD′′a2, (71)

and the corresponding losses of the wave energy, momen-
tum, and angular momentum are given by

wloss = ωıloss, f loss = kıloss, κloss = (x× k)ıloss.

Also notice that dtω and dtk entering Eqs. (67)-(70) can
be taken from the GO ray equations. Since based en-
tirely on Eqs. (17) and (18) (Sec. IV A), those happen to
be unaffected by dissipation; i.e., they are still given by
Eqs. (39). Hence, the above results can be interpreted as
follows: local dissipation does not affect individual pho-
tons but rather changes the photon density.

For an explanation of how the results reported here
apply to electromagnetic waves, see Sec. VI. The same
results are also applicable to dissipation-driven instabil-
ities (Γ < 0). Nondissipative instabilities can be accom-
modated within GO too, namely, by allowing for complex
rays; for details see Ref. [135] and references therein.

V. LINEAR WAVES: ABRAHAM
REPRESENTATION

A. Basic definitions

In addition to the wave canonical, or Minkowski EMT
that we discussed so far, one can also introduce the cor-
responding so-called kinetic, or Abraham EMT,

ταβ =

(
ε ϑ/c

cρ π̂

)
. (72)

It is defined such that, being a part of the complete EMT
that describes the “wave + medium” system (WMS), ταβ

comprises all the wave-related (i.e., a-dependent) dynam-
ics of the medium and fields. We hence express it as
ταβ = T αβ + ∆ταβ , where ∆ταβ is the “ponderomotive”
part that is stored in the medium, and, similarly,

ε = E + ∆ε, ρ = P + ∆ρ, µ = M + ∆µ. (73)

In particular, notice the following. Since the WMS is
closed and thus Lorentz-invariant, its complete EMT is
symmetrizable [86, 115, 116]. Yet its unperturbed part
is symmetrizable by itself (because it describes a closed
system too, namely, the medium absent a wave), so ταβ is
also symmetrizable separately. On the other hand, since
ταβ is proportional to the wave intensity, it is defined
uniquely and, therefore, must be symmetric. This yields
ρ = ϑ/c2, and

µ = x× ρ (74)

holds automatically [69, Sec. 32]. Also, since the integral
energy-momentum of the whole WMS is defined uniquely
[69, Sec. 32], and its a-dependent part is defined uniquely
too, one can find (ε/c,ρ) as the a-dependent part of the
WMS canonical energy-momentum density. Given the
WMS Lagrangian density, the latter can, in principle,
be found straightforwardly in any specific problem [114].
However, the general answer is not informative (mean-
ing that ταβ is by itself a somewhat artificial construct).
Thus, below, we consider only the particular model of an
isotropic medium, most popular in the AMC context, yet
still refrain from specifying the wave nature.

B. Wave energy-momentum in isotropic medium

General case. — Consider an isotropic medium (such
as gas, fluid, or plasma) comprised of elementary [136]
particles or fluid elements whose dynamics absent a wave
is described by some aggregate Lagrangian L. In the
presence of a wave, the WMS Lagrangian is hence L+L,
where L =

∫
L dV is the wave Lagrangian. Assuming

that particles contribute to L additively, the latter can be
written as L = L(0) −

∑
` Φ(`), where L(0) is independent

of all particle velocities u(`), and each of the so-called
ponderomotive potentials Φ(`) [104, 105], or dipole po-
tentials [65, 66], depends on the specific u(`) but not on
other velocities. Omitting the index `, we can write the
canonical momentum of each particle as the sum of the
mechanical part ∂uL and the ponderomotive part −∂uΦ,
also yielding the ponderomotive contribution to the par-
ticle canonical energy, −u ·∂uΦ. (This energy should not
be confused with the ponderomotive potential Φ itself,
which a part of the wave canonical energy [137].) Thus,
the densities of the ponderomotive momentum and en-
ergy stored in particles can be written as follows:

∆ρ = −
∑
s

n(s)〈∂uΦ〉(s), (75)

∆ε = −
∑
s

n(s)〈u · ∂uΦ〉(s), (76)

where the summation is taken over different species, n(s)

are the (locally averaged) densities of those species, and
angular brackets denote averaging over velocities within
the corresponding ensembles.
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Single-fluid model. — If a medium can be modeled as a
single fluid (in particular meaning that kinetic effects are
inessential, unlike, e.g., in hot plasma), one can simplify
Eqs. (76) and (75) further, namely, as follows. First of
all, notice that the velocities u of fluid elements are all
equal to a single velocity v, so Eqs. (75) and (76) become

∆ρ = −n∂vΦ, ∆ε = v ·∆ρ. (77)

It is hence convenient to rewrite Eqs. (77) in terms of
Lorentz-invariant proper parameters of the medium [138].
Since Φ that enters here depends on the wave intensity,
it must be gauge-invariant; thus, being (minus) the in-
teraction Lagrangian of a single element, it transforms as
Φ = Φ′/γ [139], with primes in this section (Sec. V) de-
noting the medium rest frame, and γ = (1− v2/c2)−1/2.
Also, n = γn′, where n′ is the proper density, correspond-
ingly. Since the latter does not depend on v, we then get
∆ρ = −∂v(n′Φ′) + γ2vn′Φ′/c2. Further, let us denote

n′Φ′ = L′ − L′(0) .
= U ′, (78)

where L′(0) is L′(0) per unit volume, and introduce

R
.
=
γ2v

c2
U ′, (79)

understood as the striction contribution (Sec. VI E).
Since L′(0) is also independent of v, one then can write

∆ρ = ∂vL
′ + R. (80)

Due to the fact that a Lagrangian density is a four-
scalar, L′ that enters Eq. (80) can also be replaced with
L. However, using L′(a′, k′µ) is preferable, because it can-
not depend on v explicitly, but rather depends on it solely
through a′ and k′µ. [Remember that the velocity deriva-
tive in Eq. (80) must be taken at fixed wave variables a
and kµ.] Due L′a′ = 0 [cf. Eq. (30)], we then get

∂vL
′ = −(∂vΛνµ) kνJ ′µ, (81)

where we substituted the (covector) Lorentz transfor-
mation (2), i.e., k′µ = Λνµkν . On the other hand,

kν = (Λ−1)λνk
′
λ, so Eq. (81) can also be written as

∂vL
′ = −γGλ

µT ′λ
µ
/c, (82)

where we introduced a dimensionless matrix function

Gλ
µ(v)

.
= (c/γ)(Λ−1)λν (∂vΛνµ). (83)

As shown in Appendix, Eq. (82) is also equivalent to

∂vL
′ = γTr(GT ′)/c = P + B, (84)

where the terms on the right-hand side are defined as

P = γΛ̂ ·
(E ′v′g

c2
−P ′

)
, (85)

B =
γ2

γ + 1

[
v

c
×
(

v′g
c
×P ′

)]
. (86)

Yet, v′g is parallel to k′ in isotropic medium, so B van-
ishes, and we finally get

∆ρ = P + R, ∆ε = v · (P + R). (87)

C. Wave EMT in the single-fluid model

Within the single-fluid model, one can hence explicitly
construct the complete kinetic EMT of a wave,

ταβ = ΛαµΛβντ
′µν , (88)

which is done as follows.
Energy and momentum. — First of all, let us combine

Eqs. (73) and (87) with Eq. (85) for P, Eq. (79) for R,
and E = ωI and P = kI, as well as with

I = γI ′(1 + v · v′g/c2), (89)

where we employed the four-vector transformation prop-
erties of J α. This yields

ε = γ2E ′ + γE ′v
c2
·
(
Λ̂ · v′g +

ω

ω′
v′g

)
+
γ2v2

c2
U ′, (90)

ρ =
γE ′

c2

[
Λ̂ · v′g + γv +

k

ω′
(v · v′g)

]
+
γ2v

c2
U ′. (91)

[Entering the numerator in Eq. (91) is actually k, not k′.]
By taking v = 0 here, we then get, in particular,

ε′ = E ′, cρ′ = ϑ′/c = E ′v′g/c, (92)

also using that ταβ is symmetric in all reference frames.
Momentum flux density. — Since k′ is the only desig-

nated direction in the medium rest frame, the (symmet-
ric) momentum flux density π̂′ must be a linear superpo-

sition of k′k′ and 1̂
′
, or, equivalently, π̂′ = ψ k′v′g + ζ 1̂

′
,

where ψ and ζ are some coefficients. Combining this
with Eqs. (88) and (92) and plus with, e.g., Eq. (90) for
ε ≡ τ00, one readily obtains ψ = I ′ and ζ = U ′; i.e.,

π̂′ = E ′ k′v′g/ω′ + U ′ 1̂
′
. (93)

(In particular, if v′g = 0, the term U ′ acts as the pondero-
motive pressure; cf. Ref. [140].) Equation (91) then flows
from Eq. (88) automatically; yet, Eq. (88) also gives

π̂ =
ω′(k′ · v′gE ′)
c2|k′|2

(
c2kk

ω′2
− γ2vv

c2

)
+
γvv

c2
E ′ +

(
1̂ +

γ2vv

c2

)
U ′. (94)

EMT and ponderomotive forces. — The wave kinetic
EMT in isotropic fluid is hereby summarized as

τ ′αβ =

(
E Evg/c

Evg/c E kvg/ω + U 1̂

)′
(95)

in the medium rest frame and is transformed to other
frames via Eq. (88), as also spelled out in Eqs. (90), (91),
and (94). In particular, if the flow velocity is negligible
in a given frame, one can take Λαβ ≈ δαβ , so

ε ≈ E , ρ ≈ Evg/c2, µ ≈ (x× vg)E/c2. (96)
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Finally, the ponderomotive four-force density f̄α that a
wave imparts to a medium also can be calculated [113],

f̄α = −ταβ ;β , (97)

whence, substituting f̄α = (w̄/c, f̄), one obtains

w̄ = −∂tε− c2∇ · ρ, f̄ = −∂tρ−∇ · π̂. (98)

Here w̄ has the meaning of the power density input into
the medium, and f̄ is the usual three-force density.

These results, which rely essentially only on Eq. (11)
and the single-isotropic-fluid approximation (without any
reference to electromagnetism), represent a more concise
and transparent version of those reported in Ref. [86]
and generalize the latter to the case of waves of arbitrary
nature; see also Sec. VI E.

D. Photon kinetic properties

The following energy, momentum, and angular mo-
mentum can now be assigned to a single photon:

h
.
= ε/N , p

.
= ρ/N , m

.
= µ/N . (99)

Keep in mind, however, that these are merely quanti-
ties per photon rather than the momenta of a photon,
in contrast with (H,P,M) that actually enter the pho-
ton motion equations [Eqs. (41) and (54)]. As a result,
(h,p,m) do not enjoy the simple transformation prop-
erties of their canonical counterparts. In particular, the
kinetic four-momentum pα

.
= (h/c,p) is generally not

a four-vector. One can easily check this, e.g., by using
pα = (cN)−1

∫
τα0 dV with ταβ taken from Sec. V C and

N = γN ′(1 + v · v′g/c2), (100)

E ′ = ~ω′N ′, P ′ = ~k′N ′. (101)

Still, simple expressions are obtained from Eqs. (96)
for isotropic fluid medium at rest; namely,

h ≈ ~ω, p ≈ ~ωvg/c
2, m ≈ (x× vg)~ω/c2. (102)

Since here vg is assumed to be parallel to k, one also gets
that p is parallel to P, m is parallel to M, and

p/P = m/M ≈ 1/(npng). (103)

These match the traditional Abraham formulas [1, 45],
hence seen to hold for waves of arbitrary (not necessar-
ily electromagnetic) nature. Yet it is clear now that
the traditional formulas are, in fact, approximate and
generally invalid for moving and hot media, in contrast
with the Minkowski formulas for the canonical quantities
[Eqs. (33) and (48)] that are more universal.

VI. LINEAR ELECTROMAGNETIC WAVES

Finally, let us apply the above results to illustrate how
the properties of linear electromagnetic waves can be cal-
culated explicitly within our general approach, without
using Maxwell’s equations for the wave envelope. Note
also that similar calculations can be performed for non-
linear waves too, for which L can be constructed from
first principles as well. Some of nonlinear GO effects ren-
dered transparent this way, in fact, may not be captured
correctly by other existing theories. For an expanded
discussion of these issues see Refs. [104–107].

A. Wave Lagrangian density

First, let us consider a nondissipative wave, as usual.
The wave Lagrangian density can be expected in the form
L = L(0) − U , where

L(0) .
=

1

16π
(Ẽ
∗ · Ẽ− B̃

∗ · B̃) (104)

is that in vacuum [104], Ẽ and B̃ are the electric and
magnetic field envelopes, and U is the potential energy
density of the wave-medium interaction [cf. Eq. (78)].
For linear, i.e., dipolar interaction, we can take [141,
Secs. 4.2, 4.8, 5.7, 6.2]

U = −1

4
Re
(
Ẽ
∗ · P̃ + B̃

∗ · M̃
)
. (105)

Here P̃ is the electric dipole moment density (i.e., the po-

larization), and M̃ is the magnetic dipole moment den-
sity (i.e., the magnetization); also, one factor 1/2 comes
from the time-averaging, and the other 1/2 comes from

the fact that P̃ and M̃ are linear functions of Ẽ and B̃,
correspondingly. Now let us introduce D̃ and H̃ via

D̃
.
= Ẽ + 4πP̃

.
= ε̂ · Ẽ, (106)

B̃
.
= H̃ + 4πM̃

.
= µ̂ · H̃, (107)

assuming that the permittivity tensor ε̂ and the perme-
ability tensor µ̂ (not to be confused with the kinetic angu-
lar momentum density µ) are Hermitian so the assump-
tion of zero dissipation be satisfied. One gets then [10, 86]

L =
1

16π

(
Ẽ
∗ · ε̂ · Ẽ− B̃

∗ · µ̂−1 · B̃
)

(108)

(here µ̂−1 is the tensor inverse to µ̂), also meaning that

U = − 1

16π

[
Ẽ
∗ · (ε̂− 1̂) · Ẽ− B̃

∗ · (µ̂−1 − 1̂) · B̃
]
.

(109)

In agreement with Refs. [104, 105], this implies assigning
the following ponderomotive potentials to particles (or
fluid elements) comprising the medium:

Φ = −Ẽ
∗ · α̂ · Ẽ/4− B̃

∗ · β̂ · B̃/4, (110)
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where α̂ and β̂ are the particle electric and magnetic
polarizabilities [66], and

ε̂ = 1̂ +
∑
s

4πn(s)〈α̂〉(s), (111)

µ̂−1 = 1̂−
∑
s

4πn(s)〈β̂〉(s). (112)

B. Parametrization and dispersion

Remember that there is a freedom in defining a, so
there are various options for how to parameterize the

wave Lagrangian density. First, let us consider Ẽ and Ẽ
∗

as independent vector fields; i.e., a = (Ẽ, Ẽ
∗
). In this

case, it is convenient to write

L(0) =
1

16π

(
Ẽ
∗ · Ẽ− c2

ω2
|k× Ẽ|2

)
(113)

(where we used that B̃ = ck× Ẽ/ω) and

L =
1

16π

[
Ẽ
∗ · ε̂ · Ẽ− c2

ω2
(k× Ẽ

∗
) · µ̂−1 · (k× Ẽ)

]
,

(114)

correspondingly. Using that

(k× Ẽ
∗
) · µ̂−1 · (k× Ẽ) =

− (Ẽ
∗ × k) · µ̂−1 · (k× Ẽ) =

− Ẽ
∗ · {k× [µ̂−1 · (k× Ẽ)]}, (115)

one can further rewrite Eq. (114) as follows:

L =
Ẽ
∗

16π
·
{
ε̂ · Ẽ +

c2

ω2
k×

[
µ̂−1 · (k× Ẽ)

]}
. (116)

Then, varying L with respect to Ẽ
∗

yields the following
dispersion relation:

ε̂ · Ẽ +
c2

ω2
k×

[
µ̂−1 · (k× Ẽ)

]
= 0, (117)

in agreement with Maxwell’s equations [142, Sec. 3.4].

Similarly, varying L with respect to Ẽ yields the complex-
conjugate equation.

Alternatively, if the polarization vector e is prescribed
(or considered as an independent field), one can as well

introduce a scalar amplitude instead, say, a = |Ẽ|. This
yields L = D(ω,k)a2, with D(ω,k) given by

D =
1

16π

[
e∗ · ε̂ · e− c2

ω2
(k× e∗) · µ̂−1 · (k× e)

]
.

(118)

The dispersion relation that follows [Eq. (30)] is Eq. (117)
multiplied by e∗.

C. Wave action and canonical EMT

The action density I is now obtained straightforwardly
by differentiating L [e.g., Eq. (114)] with respect to ω:

I =
1

16π

[
Ẽ
∗ · ε̂ω · Ẽ +

2

ω
H̃
∗ · B̃− B̃

∗ · (µ̂−1)ω · B̃
]
,

where we used H̃
∗ ·B̃ = B̃

∗ ·H̃, due to µ̂ being Hermitian.
From L = 0 [Eq. (30)], one also has

Ẽ
∗ · D̃ = H̃

∗ · B̃. (119)

Thus, I = I(E) + I(B), where

I(E) =
1

16π

[
Ẽ
∗ · ε̂ω · Ẽ +

1

ω
Ẽ
∗ · ε̂ · Ẽ

]
, (120)

I(B) =
1

16π

[
1

ω
H̃
∗ · µ̂ · H̃− B̃

∗ · (µ̂−1)ω · B̃
]
. (121)

One can further substitute

B̃
∗ · (µ̂−1)ω · B̃ = B̃

∗ · (µ̂−1)ω · µ̂ · H̃ =

= −B̃
∗ · µ̂−1 · µ̂ω · H̃ = −H̃

∗ · µ̂ω · H̃, (122)

where we used (µ̂−1 · µ̂)ω ≡ 0. Therefore,

I =
1

16πω

[
Ẽ
∗ · (ωε̂)ω · Ẽ + H̃

∗ · (ωµ̂)ω · H̃
]
, (123)

whence the elements of the wave canonical EMT
[Eq. (26)] are readily found; namely,

E = ωI, Q = vgωI, P = kI, Π̂ = kvgI. (124)

D. Dissipative waves

In the presence of dissipation, the dispersion relation
flowing from Maxwell’s equations is similar to that in
Sec. VI B. Namely, it can be written as D(Ω,K) = 0,
where D has the same form as in Eq. (118), yet now with

ε̂ = ε̂′ + iε̂′′, µ̂ = µ̂′ + iµ̂′′. (125)

where ε̂′ and µ̂′ are Hermitian, and iε̂′′ and iµ̂′′ are anti-
Hermitian. Using that

(µ̂′ + iµ̂′′)−1 ≈ µ̂′−1 − iµ̂′−1 · µ̂′′ · µ̂′−1, (126)

we can hence write, for D evaluated at real (ω,k), that
D = D′ + iD′′, where D′ and D′′ are real and given by

D′ =
1

16π

[
e∗ · ε̂′ · e− c2

ω2
(k× e∗) · µ̂′−1 · (k× e)

]
,

D′′ =
1

16π

[
e∗ · ε̂′′ · e

+
c2

ω2
(k× e∗) · µ̂′−1 · µ̂′′ · µ̂′−1 · (k× e)

]
.
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According to Sec. IV D, we can infer I directly from
Eq. (123) by replacing D with D′, so

I =
1

16πω

[
Ẽ
∗ · (ωε̂′)ω · Ẽ + H̃

∗ · (ωµ̂′)ω · H̃
]
. (127)

Then the known formula [70, Sec. 80] for the energy den-
sity is recovered from E = ωI. Other local properties of
the wave are found from Eqs. (32) and (48), the dissipa-
tion rate Γ is found from Eq. (65), and Eq. (71) yields

ıloss =
1

8π

(
Ẽ
∗ · ε̂′′ · Ẽ + H̃

∗ · µ̂′′ · H̃
)
, (128)

where we substituted κ = 2, since A = a2. The ex-
pression for the dissipation power density, wloss = ωıloss,
hence also agrees with the known formula [70, Sec. 80].

E. Kinetic EMT

Assuming that dissipation is negligible and the
medium is isotropic, the wave kinetic EMT, as well as the
kinetic angular momentum, can be found using results
obtained in Sec. V. Specifically, one can use Eqs. (75)
and (76) in the general case, substituting Eq. (110) for
Φ. In the single-fluid approximation, Eqs. (90), (91),
and (94) can be used in combination with Eqs. (123) and
(124) taken in the medium rest frame. Due to Eq. (109),
one can also take, in particular,

R = −γ
2v

c2

(
n
∂ε

∂n

|Ẽ|2

16π
− n ∂µ

−1

∂n

˜|B|2

16π

)
, (129)

where the expression in parenthesis (equal to the
interaction-Lagrangian density −U) is Lorentz-invariant.
Hence R can be attributed to electrostriction and mag-
netostriction [86, 143]. Besides, one can show that
Eqs. (170) and (171) of Ref. [86], derived there from dif-
ferent considerations, are recovered from our Eqs. (90),
(91), and (94) as a special case. The proof is straightfor-
ward and will not be presented here.

F. Special case µ̂ = 1̂

Since B̃ is proportional to Ẽ, one usually can define the
high-frequency medium-response tensors ε̂ and µ̂ such
that µ̂ = 1 (in a selected frame of reference). As this
is done often, e.g., in plasma physics [142], let us also
simplify some of the above expressions for this particular
case. First of all, Eq. (108) yields

L =
1

16π

[
Ẽ
∗ · ε̂′ · Ẽ− c2

ω2
|k× Ẽ|2

]
, (130)

or L = L(0) + Ẽ
∗ · χ̂′ · Ẽ/(16π), where L(0) is the vacuum

Lagrangian [Eq. (113)], and we introduced the electric
susceptibility χ̂

.
= ε̂− 1. Then the wave energy is

E =
1

16π

[
Ẽ
∗ · (ωε̂′)ω · Ẽ + |B̃|2

]
, (131)

or, equivalently [due to Ẽ
∗ · ε̂′ · Ẽ = |B̃|2; cf. Eq. (119)],

E =
1

16πω
Ẽ
∗ · (ω2ε̂′)ω · Ẽ. (132)

Also, as usual, the canonical momentum density equals

P = kE/ω. (133)

One can show, using Eq. (117), that the latter is just
a more concise form of the corresponding expression in
Ref. [144]. Contrary to Ref. [145], calculated there is thus
not the total, but only the canonical momentum (and the
canonical energy) of the wave; see also Refs. [146, 147].

Following Ref. [142], let us also separate the energy
flux Q into the electromagnetic part and the kinetic part.
Specifically, using Q = −ωLk, one can write it as Q =

S + K, where S = −ωL(0)
k , and

K = − ω

16π
Ẽ
∗ · χ̂′k · Ẽ. (134)

The latter is recognized as the energy flux density caused
by the presence of the medium [142, Chap. 4], whereas

S =
c2

16πω

{
(k× Ẽ

∗
) · (k× Ẽ) + (k× Ẽ

∗
) · (k× Ẽ)

}
k

=
c2

16πω

{
k ·
[
Ẽ
∗ × (k× Ẽ)

]
+ k ·

[
Ẽ× (k× Ẽ

∗
)
]}

k

=
c2

16πω

{
Ẽ
∗ × (k× Ẽ) + Ẽ× (k× Ẽ

∗
)
}

=
c

8π
Re (Ẽ× B̃

∗
) (135)

is the time-averaged Poynting vector, i.e., the “vacuum
part” of Q. [Here we substituted Eq. (113) and used un-
derlining to specify where the differentiation applies.] Re-
calling that Q = Evg, one then also recovers the known
formula [142, Chap. 4]

vg = (S + K)/E , (136)

and, in particular, for a single-fluid dielectric at rest,

ε = E , ρ = (S + K)/c2, µ = [x× (S + K)]/c2.

For example, for an electromagnetic wave in vacuum,
the above results yield ω2 = c2k2, so vg = c2k/ω = cn,

where n
.
= k/k. Then E = Ẽ2/(8π); c2P and Q are equal

to each other (so the EMT is symmetric, and canonical
quantities coincide with kinetic quantities) and S = ncE ;

also, Π̂ = nn E equals minus the time-averaged Maxwell
stress tensor. Thus, in this case, the wave EMT coin-
cides with the electromagnetic stress-energy tensor [69,
Sec. 32]. Besides, M and µ are both equal to x× S/c2,
in agreement with the traditional definition of the wave
angular momentum density in vacuum [132].
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VII. CONCLUSIONS

In this paper, we restate classical GO axiomatically
within the field-theoretical approach, also extended to
account for dissipation. The concept of a photon in a
dispersive medium is introduced, and photon properties
are calculated unambiguously. In particular, the canon-
ical and kinetic momenta and angular momenta carried
by a photon, as well as the two corresponding EMTs,
are derived straightforwardly from first principles of La-
grangian mechanics. The Abraham-Minkowski contro-
versy pertaining to the definitions of these quantities is
thereby resolved, and corrections to the traditional for-
mulas for the photon kinetic quantities are found. An
application of axiomatic GO to electromagnetic waves is
also presented, yet merely as an example, whereas our
main results apply to waves of arbitrary nature.

The work was supported by the NNSA SSAA Pro-
gram through DOE Research Grant No. DE274-FG52-
08NA28553 and by the U.S. DOE through Contract No.
DE-AC02-09CH11466.

APPENDIX A: AUXILIARY FUNCTION Gλ
µ

Here, we summarize the properties of a dimensionless
matrix function Gλ

µ introduced in Eq. (83). First of all,
notice an obvious equality

(Λ−1)λν(v) = Λλν(−v), (A1)

which can also be checked by confirming that

Λµλ(−v)Λλν(v) = δµν . (A2)

Then a direct calculation yields

G0
0l = 0, (A3)

Gi0l = Λil, G0
il = ηijΛ

j
l, (A4)

Gijl = (δilvj − ηjlvi)(γ/c)/(γ + 1), (A5)

where we introduced the notation

Gλµl ≡ (Gλ
µ)l ≡ (c/γ)(Λ−1)λν (∂Λνµ/∂v

l). (A6)

(In particular, notice that the three l-components, Gνµl,
at v = 0 happen to be the well-known Lorentz boost
generators.) Let us now define the function

Gνµl
.
= gνλG

λ
µl. (A7)

Due to Eqs. (16), one finds the latter to be

G00l = 0, (A8)

G0il = −Gi0l = −ηijΛj l, (A9)

Gijl = (ηilvj − ηjlvi)(γ/c)/(γ + 1), (A10)

so, in particular,

Gνµ = −Gµν , (Gµν)l ≡ Gµνl. (A11)

Hence Eq. (82) becomes

∂vL
′ = −γGλ

µgλνT ′νµ/c = −γgνλGλ
µT ′νµ/c

= −γGνµT ′νµ/c = γGµνT ′νµ/c, (A12)

which is exactly Eq. (84), where we substituted Eq. (A8)
and introduced

Pl
.
= (γ/c)(Gi0lT ′0i +G0ilT ′i0), Bl

.
= (γ/c)GijlT ′ji.

Finally, due to Eqs. (A9)-(A10),

Pl = γ(ηijΛ
j
lE ′v′ig /c2 − ηijΛj lP ′i)

= γΛj l(E ′v′gj/c2 − P ′j) = [γΛ̂ · (E ′v′g/c2 −P ′)]l,

[(γ + 1)c2/γ2]Bl

= (ηilvj − ηjlvi)P ′jv′ig = (v′glvjP ′j − P ′lviv′ig )

= [v′g(v ·P
′)−P ′(v · v′g)]l = [v × (v′g ×P ′)]l,

whence Eqs. (85) and (86) readily follow.
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