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A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary,
axisymmetric distribution functions (f) in the conventional banana regime for both ions and elec-
trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision
operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f
(called h). We work in a 4D phase space in which ψ defines a flux surface, θ is the poloidal angle,
v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic
moment parameter. We expand h in finite elements in both v and λ. The Rosenbluth potentials,
Φ and Ψ, which define the integral part of the collision operator, are expanded in Legendre series
in cosχ, where χ is the pitch angle, Fourier series in cos θ, and finite elements in v. At each ψ,
we solve a block tridiagonal system for hi (independent of fe), then solve another block tridiagonal
system for he (dependent on fi). We demonstrate that such a formulation can be accurately and
efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J.
Comput. Phys. 37, pp 183-204 (1980).] allowing us to work with realistic magnetic geometries.
The bootstrap current is calculated as a simple moment of the distribution function. Results are
benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD
code (e.g., M3D-C1 [S.C. Jardin, et al., Computational Science & Discovery, 4 (2012).]).

I. INTRODUCTION

There are numerous causes for the sudden and
catastrophic loss of toroidal plasma confinement.
These disruptions can be set off, for example, by
a piece of debris entering the plasma, a buildup of
high-Z impurities leading to radiative collapse, or
the crossing of magnetohydrodynamics (MHD) sta-
bility thresholds. One of the most common causes of
disruptions is the neoclassical tearing mode (NTM).
NTMs can occur when the temperature and pressure
profiles flatten across a magnetic island in the core
of a toroidally-confined plasma. This causes a reduc-
tion in the neoclassical bootstrap current, driven by
gradients in these profiles, within the island. As the
bootstrap current outside of the island remains un-
affected, the resulting hole in the bootstrap current
profile can lead to further growth in the island size.
If the island grows large enough such that it alters
the macroscopic magnetic equilibrium, the plasma
can become MHD unstable and confinement is lost.
A recent study on the Joint European Torus1 (JET)
found that these NTMs are the single most com-
mon root cause of disruptions2. Avoidance of these
modes is expected to place a severe limit on plasma β
for the ITER3 experiment, in which very few disrup-
tions can be tolerated4. Thus, a good understanding
of and predictive capability for NTMs is crucial to
the success of the ITER campaign.

A realistic and accurate numerical study of neo-
classical tearing modes, in addition to several other
core plasma instabilities, such as sawtooth modes,
requires a hybrid code. Such simulations must accu-
rately account for both the kinetic trapped particle
dynamics that produce the bootstrap current and
the magnetohydrodynamic evolution of the plasma
equilibrium due to changes in the current profile.
Furthermore, as magnetic islands are inherently
three-dimensional structures, the code must work
for nonaxisymmetric magnetic geometries. While
sophisticated, three-dimensional MHD time evolu-
tion codes exist (e.g., NIMROD5 and M3D-C16), it
is more difficult to find kinetic neoclassical codes
that can be used in such a study. The XGC07

and DKES8 codes do solve for the bootstrap cur-
rent in 3D toroidal geometries. XGC0, however,
is a PIC code that requires enormous computing
power. DKES uses a variational method to cal-
culate neoclassical quantities but uses the Lorentz
collision operator, which includes only pitch angle
scattering. While this is the dominant process for
electron-ion collisions in low-collisionality plasmas
(such as those found in the cores of reactor-grade,
toroidally-confined plasmas that we would like to
study), energy scattering is just as important for
like-particle collisions9. As Belli and Candy recently
showed10, the use of model collision operators to
study the bootstrap current, even ones substantially
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more sophisticated than the Lorentz operator, can
lead to errors of 5-10% compared to the full Fokker-
Planck-Landau collision operator. Furthermore, the
DKES code has been found to have difficulty con-
verging at extremely low collsionalities11. Several
other neoclassical codes are widely used in the com-
munity, including NCLASS12, CQLP/CQL3D13,14,
and NEO10,15. The NCLASS code uses a truncated
form of the Hirshman-Sigmar16 moment expansion
of the collision operator and evaluates just the cor-
responding lower moments of the distribution func-
tions. The CQLP/CQL3D codes include the com-
plete nonlinear Fokker-Planck-Landau collision op-
erator, while the most recent version of the NEO
code10 uses the complete linearized Fokker-Planck-
Landau collision operator. Both then solve for the
full distribution functions. All of these codes, how-
ever, assume a 2D axisymmetric toroidal geometry,
limiting their use in studies involving magnetic is-
lands. Thus, we require a new code that is applica-
ble to the cores of high-temperature fusion plasmas
and has the ability to study neoclassical dynamics
in three spatial dimensions.
An appropriate analytic model that could form

the basis of such a code has been developed in Refs.
[9, 17]. It features a coupled system of ion and
electron fluid and drift-kinetic (DKE) equations in
general 3D real space and 2D (gyroaveraged) veloc-
ity space with Fokker-Planck-Landau linearized col-
lision operators. The equations follow an asymptotic
expansion in the small parameter δ ∼ ρi/L≪ 1, the
ratio of the ion gyroradius to the macroscopic scale
lengths. Additional orderings of small mass ratio
between electrons and ions and of low collisionality
relevant to the high temperature plasmas of fusion
interest are assumed, such that

(me/mi)
1/2 ∼ ν∗ ∼ δ. (1)

Here, the dimensionless collisionality parameter
ν∗ ∼ L/λcoll is the ratio between the macroscopic
length scale and the collisional mean free path (for
all species with comparable temperatures) λcoll =
vths/νs, with vths and νs as the thermal velocity and
the collision frequency of species s. This mass ratio
ordering results in the ratio of the electron gyrora-
dius to the macroscopic scale being δe ∼ ρe/L ∼ δ2.
The expansion is carried consistently to the fre-
quency scale where collisions begin to influence the
dynamics, ωcoll ∼ δ2vthi/L ∼ δ3vthe/L. Thus the
electron DKE contains terms of order δ3 ∼ δeν∗ but
not δ4 ∼ δ2e . This is the conventional neoclassical or-
dering in the banana regime. For the ions, however,
second-order terms in the ion gyroradius parame-
ter δ are kept, accounting for finite banana-width
effects.
A numerical solution of this complete set of equa-

tions would provide a closure for an extended MHD
code, ideally suited for studying macroscopic core
plasma phenomena like NTMs. The equations are
complex, however, and there is no guarantee that an
efficient computational method could be found that
would make such hybrid fluid and drift-kinetic simu-
lations feasible. Thus, it is prudent to first examine
these equations in some reduced form. In this paper,
we present a new code, the Neoclassical Ion-Electron
Solver (NIES) that solves the ion and electron sta-
tionary DKEs in an axisymmetric geometry, con-
sidering the leading low-collisionality contributions
under the conventional neoclassical banana ordering
for both species. This means relaxing the conditions
of Eq. 1 to

(me/mi)
1/2 ∼ δ, 1 ≫ ν∗ ≫ δ, (2)

so that the ion DKE needs to retain only its first-
order in δ terms and a direct comparison with con-
ventional neoclassical banana results can be carried
out. In Section II, we present the spatially two-
dimensional axisymmetric equations to be solved (in
CGS units), expressed in the mean flow reference
frame representation as derived in Ref. [9]. We then
describe in Section III the expansions and computa-
tional methods that have been used in NIES. Results
from the code are discussed in Section IV, including
convergence studies and a benchmark of the Sauter
analytic fits18 for the neoclassical equilibrium flows
and bootstrap current.

II. ANALYTIC MODEL

In a time-independent, axisymmetric toroidal sys-
tem, the electromagnetic fields can be written as

B = ∇ψ ×∇ζ +RBζ∇ζ (3)

E = −∇V − V0∇ζ. (4)

Here, ψ is the poloidal flux per radian (a constant on
each nested flux surface), ζ is the azimuthal angle,
V is the single-valued electric potential and 2πV0
is the constant toroidal loop voltage. We take the
plasma to be quasineutral and to contain a single
ion species, and we assume, for simplicity, the ion
charge to be Z = 1 (ei = −ee = e, ni = ne = n).

In their leading order, the density, tempera-
tures, electric potential and RBζ are flux functions:
n(ψ), Ts(ψ), V (ψ), and I(ψ) ≡ RBζ . In addition,
the leading-order mean flow velocity of each species
is

us = Us(ψ)B+ cR2

[

dV

dψ
+

1

esn

d(nTs)

dψ

]

∇ζ, (5)
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where Us is the parallel flow stream function of
species s, such that dI/dψ = en(Ui − Ue).
As has been shown in past work9, retaining first-

order accuracy in its Larmor radius, δs = ρs/L, and
referred to the moving frame of its mean flow, the
gyroaveraged distribution function of species s can
be expressed as

f̄s =
(

1 + gs,0 + gs,1 v‖
)

fMs + hs. (6)

Here, fMs is the leading-order Maxwellian defined
as

fMs =
n

(2π)3/2v3ths
exp

(

− v2

2v2ths

)

(7)

with vths =
√

Ts/ms,

gs,0 = −es∆V
Ts

− ∆n

n
−
(

msv
2

Ts
− 3

)

∆Ts
2Ts

(8)

represents a perturbative redefinition of the
Maxwellian with ∆V , ∆n and ∆Ts equal to the dif-
ferences between the actual electric potential, den-
sity and temperatures and their leading-order V (ψ),
n(ψ) and Ts(ψ), and

gs,1 = −
[

msUsB

Ts
− mscI

2esBTs

(

msv
2

Ts
− 5

)

dTs
dψ

]

.

(9)
The last term, hs, is the so-called non-adiabatic
piece which obeys the reduced drift-kinetic equation

v‖(b · ∇θ)∂hs
∂θ

− Cs [hs] = Ssv‖. (10)

We work in the four-dimensional phase space defined
by (ψ, θ, v, λ) where θ is the poloidal angle and v is
the magnitude of the random velocity in the mov-
ing frame of the considered species’ mean flow. The

dimensionless magnetic moment parameter λ is de-
fined by

λ(ψ, θ, χ) = sin2 χ
Bmax(ψ)

B(ψ, θ)
, (11)

where χ = arctan(v⊥/v‖) is the pitch angle and
Bmax(ψ) is the maximum value of B on the ψ flux
surface. We note that λ is an adiabatic invariant;
particles with λ < 1 are passing particles, while
those with λ > 1 are trapped particles. In terms
of the phase space variables (ψ, θ, v, λ), the moving
frame relative parallel velocity is the double-valued
function

v‖(ψ, θ, v, λ) = ±v [1− λB(ψ, θ)/Bmax(ψ)]
1/2

.
(12)

Consistent with our mean flow reference frame repre-
sentation, the function gs,1 (9) has the non-standard
term proportional to Us and the non-Maxwellian
part of the distribution function, f̄s − fMs, is such
that its v‖ moment vanishes.

The collision operator Cs in Eq. 10 is the gy-
roaverage of the homogeneous component of the lin-
earized Fokker-Planck-Landau operator. In general,
we maintain the operator to the order of Cs[hs] ∼
νsδsfMs, though, for electrons, we also keep several
terms of higher order in order to ensure the regu-
larity of the equation near v = 0. Here we have
introduced the collision frequency of species s, de-
fined by

νs =
4πe4n ln Λs
m2
sv

3
ths

. (13)

Thus, our form of the collision operator is

Cs[hs] =νDs(ψ, v)L[hs] +
νsv

3
ths

v2
∂

∂v

{

ξs

[

v
∂hs
∂v

+
v2

v2ths
hs

]

+ ξs′

[

v
∂hs
∂v

+
msv

2

ms′v2ths′
hs

]}

+
νsvths
n

fMs

(

4πv2thshs − Φs[hs] +
v2

v2ths

∂2Ψs[hs]

∂v2

)

. (14)

Here,

νDs(ψ, v) =
νsv

3
ths

v3
[ϕs − ξs + ϕs′ − ξs′ ] , (15)

where ϕs is the error function and ξs is the Chan-

drasekhar function, each of argument v/vths:

ϕs = ϕ

(

x =
v

vths

)

=
2√
2π

∫ x

0

exp(−t2/2)dt (16)



4

ξs = ξ

(

x =
v

vths

)

=
1

x2

[

ϕ(x)− 2x√
2π

exp(−x2/2)
]

;

(17)
the Lorentz operator is

L[hs] =
2Bmaxv‖

Bv2
∂

∂λ

(

λv‖
∂hs
∂λ

)

(18)

and the variables Φs[hs] and Ψs[hs] are the Rosen-
bluth potentials, defined by

1

v2
d

dv

(

v2
∂Φs
∂v

)

+
1

v2 sinχ

∂

∂χ

(

sinχ
∂Φs
∂χ

)

= −4πhs

(19)

1

v2
d

dv

(

v2
∂Ψs
∂v

)

+
1

v2 sinχ

∂

∂χ

(

sinχ
∂Ψs
∂χ

)

= Φs.

(20)
We have chosen to express the equations for the
Rosenbluth potentials (i.e. the integral part of the
collision operator) in the (v, χ) variables, while the
rest of the collision operator (i.e. its differential
part) remains expressed in the (v, λ) variables. This
will prove advantageous for the algorithm that will
be used in our numerical solution of the drift-kinetic
equation. In Eqs. 14 and 15, the terms containing
s′ are due to collisional cross-species interactions.
They are present for the electrons (s = e) as they
interact with both themselves and the ions (s′ = i).
The ions (s = i), however, only interact apprecia-
bly with themselves due to their large relative mass.
Thus, the terms that would indicate interaction with
electrons (s′ = e) are taken to be zero in the ion case.
The right-hand side of Eq. 10 represents the

source terms that drive the neoclassical distribution
function. For electrons, it can be shown9 that

Se =

{

eV0I

TeBR2
+ νe

(

UiB +
cI

enB

dP

dψ

)

vthe
v2thiv

ξi

+
νemecI

eBTe

dTe
dψ

vthe
v

[

2ϕe − 10ξe

+
1

2
ϕi −

5v2the
2v2thi

ξi

]}

fMe, (21)

where P = n(Ti + Te) is the total pressure. Each
term represents, in order, the ohmic drive, interac-
tion with the ion flow due to collisional friction, pres-
sure gradient drive, and electron temperature gradi-
ent drive. For the ions, we again drop terms that
would involve interaction with the electrons in ad-
dition to the ohmic drive term, because of the large
relative ion mass. Thus, the source for the ions is
only the ion temperature gradient drive, given by

Si = −νimicI

eBTi

dTi
dψ

vthi
v

[2ϕi − 10ξi] fMi. (22)

Since Eq. 10 has the same form as the standard
neoclassical drift-kinetic equation16,19,20, its pertur-
bative solution in the conventional banana regime
characterized by δs ≪ ν∗s ≪ 1 is

hs = ς(v‖)H(1− λ)Ks(ψ, v, λ) + hevens (ψ, θ, v, λ).
(23)

Here, ς(v‖) = sign(v‖) = ±1 and H is the Heavyside
step function. Whereas the first term in Eq. 23,
ςHKs, is odd with respect to v‖, includes only pass-
ing particles and is ordered as O(δsfMs), h

even
s is

even with respect to v‖, includes both passing and
trapped particles and is of the order of δsν∗sfMs.
This higher-order term obeys the equation

v‖(b · ∇θ)∂h
even
s

∂θ
− Cs [ςHKs] = Ssv‖. (24)

Dividing by v‖ and taking the contour integral of
Eq. 24 along a magnetic field line at constant ψ, v,
and λ yields

∮

ψ,v,λ

dl

v‖
Cs [ςHKs] = −

∮

ψ,v,λ

dlSs, (25)

where the contour is taken between the turning
points for trapped particles and over one complete
poloidal turn for passing particles. For simplicity,
we rewrite Eq. 25 in symbolic shorthand form as

Cs[Ks] = −Ss. (26)

The above solvability condition is satisfied triv-
ially for λ > 1 (i.e., the trapped particles). In the
passing domain with λ < 1, Eq. 25 must be solved
numerically to determine the form of Ks. Having
done so, the condition that f̄s − fMs has zero par-
allel velocity moment determines the parallel flow
stream function as

Us(ψ) =
2π

nBmax

∫ ∞

0

dvv3
∫ 1

0

dλKs(ψ, v, λ). (27)

Since, from Eq. 5, the parallel current is

j‖ = enb · (ui−ue) = en(Ui−Ue)B+
cI

B

dP

dψ
, (28)

knowledge of Ki and Ke allows us to calculate the
leading-order ohmic and bootstrap currents for small
collisionality and gyroradii.

III. COMPUTATIONAL METHODS

A. Fundamental Equations

Eqs. 19, 20, and 26 form a set of coupled integral-
differential equations that define Ks, Φs, and Ψs.
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While, for a given magnetic field, the ion equations
are completely closed, the electron source term, Eq.
21, requires knowledge of the ion solution, Ki, in or-
der to determine Ui. Thus, we need to solve Eqs.
26 and 27 for the ions first; then we can use this so-
lution to solve for Ke completely. Furthermore, the
set of equations contains no integrals or derivatives
with respect to ψ. This allows us to solve for Ui
and Ue on one flux surface at a time and to treat ψ
as just a parameter in the equations. Accordingly,
from now on we shall drop ψ when writing the argu-
ments of functions. We note that solving for Ui and
Ue involves generally the same algorithm and that in
the following discussion, we treat Ui as some known
quantity when solving the electron equations.
As we must solve Eq. 26 in the passing domain,

the contour integral is taken to be

∮

ψ,v,λ

dl · · · =
∫ 2π

0

dθBJ · · · , (29)

where J = [∇ψ ×∇θ · ∇ζ]−1
is the Jacobian de-

fined by the magnetic equilibrium. Then, applying
the contour integral to Eq. 14 (divided by v‖) and
calling

y(θ, λ) = cosχ =

[

1− λ
B

Bmax

]1/2

, (30)

the left-hand side of Eq. 26 becomes

Cs [Ks] =
2νDs(v)

v

∂

∂λ

(

η1(λ)λ
∂Ks

∂λ

)

− νsvths
nv

fMs

∫ 2π

0

JB
y(θ, λ)

Φsdθ +
νsv

nvths
fMs

d2

dv2

∫ 2π

0

JB
y(θ, λ)

Ψsdθ

+ νsη2(λ)
v3ths
v3

[

∂

∂v

{

ξs

[

v
∂Ks

∂v
+

v2

v2ths
Ks

]

+ ξs′

[

v
∂Ks

∂v
+

msv
2

ms′v2ths′
Ks

]}

+
4π

n
v2fMsKs

]

. (31)

Here we have made use of the fact that the integrals
are taken with ψ, v, and λ held constant and thatKs

does not depend on θ. We have defined two functions
entirely determined by the magnetic equilibrium:

η1(λ) = Bmax

∫ 2π

0

J y(θ, λ)dθ (32)

η2(λ) =

∫ 2π

0

JB
y(θ, λ)

dθ. (33)

Next, we expand the Rosenbluth potentials in a
Legendre series in cosχ and Fourier series in cos θ
(for an equilibrium with up-down symmetry):

(

Φs
Ψs

)

=

M
∑

m=0

2L−1
∑

l=1,odd

(

Φl,ms (v)
Ψl,ms (v)

)

Pl(y) cosmθ,

(34)

where only the odd l’s are kept because the source
of the Poisson equations for Φs and Ψs is odd in v‖.
The integers M and L are determined by how many
modes in each series are needed to reach convergence
of the solution.

Defining

al,m(λ) =

∫ 2π

0

JB
y(θ, λ)

Pl (y) cosmθdθ, (35)

we can rewrite Eq. 31 as

Cs [Ks] =
2νDs(v)

v

∂

∂λ

(

η1(λ)λ
∂Ks

∂λ

)

− νsvths
nv

fMsa
l,mΦl,ms +

νsv

nvths
fMsa

l,m d2

dv2
Ψl,ms

+ νsη2(λ)
v3ths
v3

[

∂

∂v

{

ξs

[

v
∂Ks

∂v
+

v2

v2ths
Ks

]

+ ξs′

[

v
∂Ks

∂v
+

msv
2

ms′v2ths′
Ks

]}

+
4π

n
v2fMsKs

]

(36)

where the sum over the repeated indices l and m is implied. This, by Eq. 26 must equal −Ss. Applying
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the integral along the field line to Eq. 21, we find
that

Se =
{

eV0I

Te

∫ 2π

0

J
R2

dθ

+
νevthe
v2thiv

ξi

(

Ui

∫ 2π

0

JB2dθ +
cI

en

dP

dψ

∫ 2π

0

J dθ
)

+
νemecI

eTe

dTe
dψ

vthe
v

[2ϕe − 10ξe

+
1

2
ϕi −

5v2the
2v2thi

ξi

] ∫ 2π

0

J dθ
}

fMe (37)

and, from Eq. 22,

Si = −νimicI

eTi

dTi
dψ

vthi
v

[2ϕi − 10ξi] fMi

∫ 2π

0

J dθ.
(38)

Next, we must determine Φl,ms and Ψl,ms . Plugging

Eq. 34 into Eqs. 19 and 20, then using the identities

1

sinχ

∂

∂χ

[

sinχ
∂

∂χ
Pl(y)

]

= −l(l + 1)Pl(y), (39)

∫ π

0

Pl(y)Pl′(y) sinχdχ =
2

2l + 1
δll′ , (40)

and

∫ 2π

0

cosmθ cosm′θdθ = πδmm′(1 + δm0), (41)

we find a set of equations for each (l,m) that are
independent of each other:

1

v2
d

dv

(

v2
∂Φl,ms
∂v

)

− l(l + 1)

v2
Φl,ms = bl,ms (42)

1

v2
d

dv

(

v2
∂Ψl,ms
∂v

)

− l(l + 1)

v2
Ψl,ms = Φl,ms . (43)

The inhomogeneous term bl,ms results from the in-
ner product of Pl(cosχ) and cosmθ with the source
−4πςHKs:

bl,ms (v) = −2(2l + 1)

1 + δm,0

∫ 2π

0

cosmθ

∫ 1

0

Pl (y)Ks(v, λ)
B

yBmax
dλdθ. (44)

B. Boundary conditions

The boundary conditions to be imposed on
Ks(v, λ) are:

Ks(v = 0, λ) = 0 (45)

Ks(v = vmax, λ) = 0 (46)

limλ→0 λ
1/2 ∂Ks(v, λ)

∂λ
= 0 (47)

Ks(v, λ = 1) = 0. (48)

Eq. 45 is required so that ςHKs is continuous and
vanishes at v = 0 since it is odd in v‖. Eq. 46 is truly
a condition at v = ∞ and ensures the physical con-
dition that the distribution function decays at large
velocities. Since the driving terms in Eqs. 21 and 22
are all proportional to fMs, the solution should drop

rapidly to zero beyond a few multiples of vths. Thus,
it will be sufficient to take Ks(v = vmax, λ) = 0,
where the value of vmax > vths can be increased until
the solution converges numerically. Eq. 47 is a reg-
ularity condition at λ = 0 which ensures that, when
expressed in terms of v⊥ = v(λB/Bmax)

1/2, the gy-
rophase averaged distribution function has the re-
quired zero derivative with respect to v⊥ at v⊥ = 0.
Finally, Eq. 48 is required so that the distribu-
tion function is continuous at the trapped-passing
boundary λ = 1. The above set of boundary condi-
tions on Ks(v, λ) does not guarantee the physically
necessary continuous derivative of the distribution
function with respect to λ at the trapped-passing
boundary. In order to achieve this, further analy-
sis of a boundary layer solution near λ = 1, to be
matched to the solution considered here for λ < 1,
would be necessary. This would result in a modifica-
tion of the boundary condition (48), to be replaced
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by a condition of the form

Ks(v, λ = 1) = ν
1/2
∗s κs(v)

∂Ks(v, λ = 1)

∂λ
, (49)

which introduces a finite-collisionality correction of

order ν
1/2
∗s . This will be the subject of future work,

the present paper being limited to the zeroth colli-
sionality order results obtained with the boundary
condition (48).
For the Rosenbluth potentials in Eqs. 42 and 43,

we apply the following boundary conditions:

Φl,ms (v = 0) = 0 (50)

Ψl,ms (v = 0) = 0 (51)

dΦl,ms
dv

(v = vmax) = − l + 1

vmax
Φl,ms (v = vmax) (52)

dΨl,ms
dv

(v = vmax) = − l − 1

vmax
Ψl,ms (v = vmax). (53)

The conditions given by Eqs. 50 and 51 are reg-
ularity conditions at v = 0 for our odd values of
l. Since at large v, Ks is negligible, the equation
governing Φl,ms (42) near vmax is essentially homo-
geneous. The condition given by Eq. 52 ensures
that only the homogeneous solution that is regular
at large v, namely Φl,ms ∝ v−l−1, appears in our so-
lution there. Likewise, since Φl,ms drives Ψl,ms in Eq.
43, the regular second Rosenbluth potential should
behave like Ψl,ms ∝ v−l+1 at large v. This condition
is enforced by Eq. 53.

C. Galerkin Finite Element Method

Eq. 36 (set equal to the negative of either Eq. 37
or 38) and Eqs. 42 and 43 for all (l,m) form a closed
set of coupled partial differential equations. To solve

these equations, we use the Galerkin finite element
method. We expand Ks in finite elements in both v
and λ,

Ks(v, λ) =

N
∑

i=0

J
∑

j=0

Ki,j
s φi(v)φj(λ). (54)

and all of the Φl,ms and Ψl,ms in finite elements in v,

(

Φqs(v)
Ψqs(v)

)

=

N
∑

i=0

(

Φi,qs
Ψi,qs

)

φi(v). (55)

Here we have defined an index q which serves to re-
place the set (l,m) and runs from q = 1, Q with
Q = L(M + 1). We use piecewise continuous lin-
ear functions for both φi(v) and φj(λ); these are
unity on the grid points v = vi and λ = λj , re-
spectively, and zero at all other nodes. Neither the
v-grid nor the λ-grid is assumed to be uniform, al-
lowing us to group elements in regions of particu-
larly complex structure. All that is required is that
v0 = 0, vN = vmax, λ0 = 0, λJ = 1, and both vα
and λα monotonically increase as α increases. Fur-
thermore, we should note that a property of these
linear elements is that φα only overlaps with φα+1

and φα−1.
With these elements, we apply the Galerkin

method to Eqs. 36, 37, 38, 42, and 43. We introduce
an inner product notation,

(ab)v =

∫ vmax

0

ab dv (56)

(ab)λ =

∫ 1

0

ab dλ, (57)

and note that any φα contained inside ( )v is φα(v)
while any one contained inside ( )λ is φα(λ). Fur-
thermore, a prime on any φα indicates a derivative
with respect to the appropriate variable; thus, φ′α is
a piecewise constant function.

For simplicity of expressions, we multiply both Cs
and Ss by v3 before taking the weak form. Doing
so, from Eq. 36,

(

φpv
3 (φrCs[Ks])λ

)

v
=− 2

(

φpv
2νDsφi

)

v

(

φ′rη1λφ
′
j

)

λ
Ki,j
s

− νsv
3
ths (φrη2φj)λ

{

(

φ′p [ξs + ξs′ ] vφ
′
i

)

v
+

(

φ′p

[

ξs
v2

v2ths
+ ξs′

msv
2

ms′v2ths′

]

φi

)

v

+
4π

n

(

φpv
2fMsφi

)

v

}

Ki,j
s

− νsvths
n

(

φpv
2fMsφi

)

v
(φra

q)λ Φ
i,q
s − νs

nvths

(

[

φpv
4fMs

]′
φ′i

)

v
(φra

q)λΨ
i,q
s , (58)
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where the summation over the repeated indices i, j,
and q are implied. In addition, we have integrated by
parts within certain inner products, noting that one
or both of the finite elements are zero on the bound-
ary of the integrals which eliminates any boundary
terms. The exception to this is for the inner prod-

uct of a boundary element with itself. The equations
containing such terms, however, are replaced by the
boundary conditions defined in Section III B. Thus,
the boundary terms are zero in all relevant cases.
Applying the same operator to Eqs. 37 and 38 , we
find

(

φpv
3 (φrSe)λ

)

v
=(φr)λ

{

eV0I

Te

(

φpv
3fMe

)

v

∫ 2π

0

J
R2

dθ +
νevthe
v2thi

(

φpv
2ξifMe

)

v

(

Ui

∫ 2π

0

JB2dθ +
cI

en

dP

dψ

∫ 2π

0

J dθ
)

+
νemecIvthe

eTe

dTe
dψ

(

φpv
2

[

2ϕe − 10ξe +
1

2
ϕi −

5v2the
2v2thi

ξi

]

fMe

)

v

∫ 2π

0

J dθ
}

(59)

(

φpv
3 (φrSi)λ

)

v
=− νimicIvthi

eTi

dTi
dψ

(φr)λ
(

φpv
2 [2ϕi − 10ξi] fMi

)

v

∫ 2π

0

J dθ. (60)

Multiplying Eqs. 42 and 43 by v2 and then taking
the weak form, the Rosenbluth potential equations
become
[

(

φ′pv
2φ′i

)

v
+ l(l + 1) (φpφi)v

]

Φi,qs +
(

φpv
2φi

)

v
Dj,qKi,j

s = 0

(61)
[

(

φ′pv
2φ′i

)

v
+ l(l + 1) (φpφi)v

]

Ψi,qs +
(

φpv
2φi

)

v
Φi,qs = 0,

(62)

where, again, integration by parts has been used and
the sum over j is implied. In Eq. 61, we have in-
serted Eq. 54 into Eq. 44 in order to rewrite bqs
as

bqs(v) =

N
∑

i=0

J
∑

j=0

Dj,qKi,j
s φi(v) (63)

where

Dj,q = −2(2l + 1)

1 + δm,0

∫ 2π

0

cosmθ

∫ 1

0

Pl (y)
φj(λ)B

yBmax
dλdθ

(64)

D. Solution Method

The equation for Ks formed by setting Eq. 58
equal to the negative of Eq. 59 or 60 (depending on
the species s), together with equations for the Rosen-
bluth potentials, Eqs. 61 and 62, can be written in
the form of a single matrix equation. All homoge-
neous terms in those equations have a tridiagonal
form in v since the velocity inner products are only
nonzero for i = p + 1, i = p, and i = p − 1. Thus,

the matrix equation takes a block tridiagonal form
given by

Ap
s ·Yp+1

s −Bp
s ·Yp

s +Cp
s ·Yp−1

s = Fps . (65)

Here, p runs from 1 to N and the solution vectors
are defined as

Yp
s =





Kp
s

Φp
s

Ψp
s



 , (66)

where

Kp
s =

















Kp,1
s
...

Kp,j
s
...

Kp,J
s

















, Φp
s =

















Φp,1s
...

Φp,qs
...

Φp,Qs

















, Ψp
s =

















Ψp,1s
...

Ψp,qs
...

Ψp,Qs

















.

(67)
The matrix Ap

s is composed of nine submatrices
and can be written in the form

Ap
s =





A
p
s1 A

p
s2 A

p
s3

A
p
s4 A

p
s5 A

p
s6

A
p
s7 A

p
s8 A

p
s9



 . (68)

Likewise, Bp
s and Cp

s have similar forms. Submatrix
1 is a J × J tridiagonal matrix corresponding to the
coefficients multiplying Ki,j

s in Eq. 58. Submatrices
2 and 3 are dense J × Q matrices and correspond
to the coefficients in Eq. 58 that multiply Φi,qs and
Ψi,qs , respectively. Submatrix 4 is a dense Q × J
matrix corresponding to the coefficient of Ki,j

s in
Eq. 61. Submatrix 5 is a diagonal Q × Q matrix
corresponding to the coefficient of Φi,qs in Eq. 61.
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The Q×Q submatrix 6 and the Q× J submatrix 7
are entirely zero. Submatrices 8 and 9 are diagonal
Q×Q matrices and correspond to the coefficients in
Eq. 62 multiplying Φi,qs and Ψi,qs , respectively. In
the elements of the submatrices defined by Eqs. 58,
61, and 62, i = p+1 inAp

s , i = p forBp
s , and i = p−1

for Cp
s . Furthermore, the elements all have opposite

signs in Bp
s due to the sign in Eq. 65. Lastly, we

note that C0
s = 0 and AN

s = 0
The inhomogeneous term of Eq. 65, Fps is a vector

composed of three subvectors:

Fps =





F
p
s1

F
p
s2

F
p
s3



 . (69)

Here, the subvector 1 has length J and corresponds
to the negative of either Eq. 59 or 60, depending
on the species s. Since Eqs. 61 and 62 are homo-
geneous,the subvectors 2 and 3 are of length Q and
are both entirely zero. Finally, we note that all of
these matrices may be modified on the boundary in
order to enforce the boundary conditions described
in Section III B.
With Ap

s , B
p
s , C

p
s , and Fps all properly defined, we

follow the standard block tridiagonal algorithm21 to
solve Eq. 65 for all of the Yp

s . This algorithm only
requires inverting the matricesAp

s , B
p
s , andCp

s , each
of size (J + 2Q) × (J + 2Q), and thus scales like
O(N × (J + 2Q)3). As will be demonstrated in Sec-
tion IVA, the structure in the v-direction is typically
much more complex than in the λ-direction. Thus,
the fact that this algorithm is linear in the number
of velocity finite elements makes it particularly well-
suited for solving this problem.

IV. RESULTS

A. Distribution functions

The NIES code has been used to solve for the
odd contribution to the ion and electron distribu-
tion functions, Ks, on each of 64 flux surfaces in
a large aspect ratio equilibrium (Figure 1a) and
128 flux surfaces in a realistic equilibrium from
the National Spherical Torus Experiment22 (NSTX)
(Figure 1b). These magnetic equilibria come from
the fixed-boundary, toroidal MHD equilibrium code
JSOLVER23. We chose a one volt constant loop volt-
age, or V0 = 1

2πvolts. The density, temperature, and
pressure profiles used are also shown in Figure 1,
along with each equilibrium’s corresponding trapped
particle fraction, defined by

ft = 1− 3

4

〈

B2

B2
max

〉∫ 1

0

λdλ

〈1− λB/Bmax〉
. (70)

Here, the flux surface average is defined by

〈. . .〉 =
∫ 2π

0
dθJ . . .

∫ 2π

0
dθJ

. (71)

The electron and ion temperatures are taken to
be equal, though this is not required by the code.
Lastly, we chose the ion mass to be that of a single
proton.

Figure 2 shows a typical Ke plotted versus v (nor-
malized to vthe0, the on-axis electron thermal veloc-
ity) and λ. The flux surface of this Ke is noted in
Figure 1b. Slices of this distribution function are
presented in Figure 3. Here we have also shown the
shape of the distribution function due to each driv-
ing source term from Eq. 59. Given the chosen
parameters, the ohmic drive gives by far the largest
contribution to Ke. That said, at small v, the ohmic
drive becomes negligibly small and the other sources
dominate, mainly the pressure gradient drive. Fig-
ure 4 shows the corresponding ion solution for this
flux surface.

In this study, we used a baseline case with
N = 256 equally-spaced velocity grid points out
to vmax = 6vthe0. In addition, we used J = 128
equally-spaced λ grid points, two Legendre polyno-
mials (L = 2) and two Fourier modes (M = 1).
To demonstrate convergence, we have examined the
distribution function at increased resolution, maxi-
mum velocity, and mode numbers. Figure 5 shows
the difference between these solutions and the base-
line case for the electrons along the slices plotted in
Figure 3, normalized to the peaks of the slices in the
baseline case. Figures 5a and 5b demonstrate that
changes in the grid spacing or size provide very little
correction to the solution. As shown in Figures 5c
and 5d, increasing the number of Fourier modes has
a more substantial effect than increasing the number
of Legendre polynomials, but these corrections are
still quite small (<∼ 0.1%).
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FIG. 1. (Color online). Left: The magnetic field strength in tesla in (a) a large aspect ratio JSOLVER equilibrium
and (b) an NSTX JSOLVER equilibrium along with some corresponding flux surfaces. Right: For each equilibrium,
the density n (normalized to 1 × 1020m−3), temperature T = Te = Ti (normalized to ∼ 700eV), and pressure P
(normalized to ∼ 2.3 × 104Pa) used in this study. The trapped particle fraction fT is calculated from the magnetic
equilibrium on the left. In (b), the dashed flux surface on the left and the dashed line on the right show the location
used for detailed study in Section IVA.
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FIG. 2. (Color online). Example of the solution for Ke in an NSTX equilibrium in units of s3m−6 at ψ̃ ≈ 0.15. The
corresponding density, temperatures, pressure, and trapped particle fractions can be seen in Figure 1b. The relevant
grid parameters are N = 256, J = 128, L = 2, M = 1, and vmax = 6vthe0. This N corresponds to a uniform velocity
grid step size of hv ≈ 0.023 while this J corresponds to a uniform λ grid spacing of hλ ≈ 0.0078.
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FIG. 3. (Color online). The baseline case (FIG 2) decomposed by driving source. In blue: slices along the velocity
direction of the electron distribution function at λ = 0.25; use the bottom axis. In red: slices along the λ direction
of the electron distribution function at v = 1.5vthe0; use the top axis. The Ui and ∇P terms are shown together as
they have the same structure in velocity space (see Eq. 59). The green dots show where the corresponding velocity
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FIG. 4. (Color online). Cuts through a baseline ion dis-
tribution function using the equilibrium shown in Figure
1b and having N = 256, J = 128, L = 2, M = 1, and
vmax = 6vthi0. In blue: slice along the velocity direction
at λ = 0.25; uses the bottom axis. In red: slice along the
λ direction at v = 1.5vthi0; uses the top axis. The green
dot shows where the velocity and λ cuts would intersect
each other in a full 3D plot.
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and Fourier modes. For all curves, the parameter changed from the baseline case is noted in the legend.
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B. Parallel current calculations and benchmark

against Sauter’s model

From Eqs. 21, 22, 26, and 27, it follows that the
stream functions have the forms

Ue = a0
eV0I

〈

R−2
〉

νeme 〈B2〉 + a1

[

Ui +
cI

en 〈B2〉
dP

dψ

]

+ a2
cI

e 〈B2〉
dTe
dψ

(72)

and

Ui = ai
cI

e 〈B2〉
dTi
dψ

, (73)

where a0, a1, a2, and ai are all dimensionless param-
eters depending only on ψ. Then, from Eq. 28, one
gets

〈

j‖B
〉

=− a0
e2n

νeme
V0I

〈

R−2
〉

− (a1 − 1)cI
dP

dψ

− a2cnI
dTe
dψ

− ai(a1 − 1)cnI
dTi
dψ

. (74)

This can be easily compared to the Sauter model18,
which provides some of the most commonly used for-
mulas for the bootstrap current. It writes the flux
surface averaged j ·B as

〈

j‖B
〉

= σneo
〈

E‖B
〉

− cI

[

L31

dP

dψ
+ L32ne

dTe
dψ

+L34αni
dTi
dψ

]

. (75)

The neoclassical conductivity, σneo, and the coef-
ficients L31, L32, L34, and α were found by fit-
ting the results for the bootstrap current from the
CQLP code13, using a linearized Fokker-Planck-
Landau collision operator and the adjoint method24

to compute only the first velocity moment of the
distribution functions (as needed to determine the
mean flows and current). Performing these fits over
a wide variety of equilibria, they used only the
trapped particle fraction, ft, two collisionality pa-
rameters, ν∗e and ν∗i, and the ion charge, Z, as free
variables. As NIES is based on a zeroth-order colli-
sionality drift-kinetic analysis, we would expect our
code to have good agreement with the Sauter model
in the ν∗e = ν∗i = 0 limit with Z = 1. In this case,
the Sauter analytic fits reduce to

σneo
σSptz

= 1− 1.36ft + 0.59f2t − 0.23f3t , (76)

where σSptz ≈ 1.96
(

3
√

π
2
e2n
meνe

)

is the Spitzer resis-

tivity,

L31 = L34 = 1.7ft − 0.95f2t + 0.15f3t + 0.1f4t , (77)

L32 = −1.26(ft−f4t )+2.24(f2t −f4t )−1.77(f3t −f4t ),
(78)

and

α = − 1.17(1− ft)

1− 0.22ft − 0.19f2t
. (79)

Comparing 74 to 75, we see that

σneo = a0
e2n

νeme
(80)

L31 = L34 = a1 − 1 (81)

L32 = a2 (82)

α = ai (83)

The values for σneo/σSptz, L31, L32, and αL34 for
both the Sauter model and the NIES code are plot-
ted in Figure 6. The NIES values were calculated
in the two equilibria described by Figure 1. The
Sauter and NIES values agree universally to within
a few percent. Any difference of this magnitude can
likely be attributed to the Sauter model’s being an
analytic fit and not the exact solution for any given
equilibrium. Thus, this benchmark provides verifi-
cation that NIES properly solves the zeroth-order
collisionality drift-kinetic equation.

The ion flow coefficient, ai, is a common parame-
ter of interest in its own right. We have plotted the
Sauter and NIES values for this parameter in Figure
7.

V. CONCLUSION

NIES provides a new tool for calculating elec-
tron and ion distribution functions and the boot-
strap current deep in the banana regime in gen-
eral axisymmetric toroidal geometries and with the
linearized Fokker-Planck-Landau collision operator.
Efficient convergence to the values of the bootstrap
current predicted by the Sauter analytic fits demon-
strate that the model is correct and is being prop-
erly solved. The fact that, restricted to the leading
low-collisionality (banana) order, the present NIES
code obtains the full distribution functions using
the Fokker-Planck-Landau collision operator, means
that, in one way or another, it has some capabil-
ities beyond those of DKES8 or NCLASS12. Of
the continuum codes, only the CQLP/CQL3D13,14

codes and the most recent, Fokker-Planck version
of NEO10 are more inclusive. In any case, our ap-
proach has the unique feature of solving for the dis-
tribution functions directly in the moving reference
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FIG. 6. (Color online). A comparison between the output of the NIES code with the Sauter analytic fits in the
zeroth-order collisionality limit. The Sauter model is plotted in red. Results from NIES for a large aspect ratio (LAR)
equilibrium are in blue, while the results for an NSTX equilibrium are in green. In (a), the triangles correspond to
the calculated neoclassical conductivity ratio while the circles correspond to the calculated pressure gradient drive
coefficient. In (b), the triangles correspond to the calculated electron temperature gradient drive coefficient, while
the circles correspond to the calculated ion temperature gradient drive coefficient.

frame of each species’ macroscopic flow, which sim-
plifies the task of evaluating accurately the higher
gyrotropic moments needed for the fluid closure,
namely the pressure anisotropy, the parallel heat
flux, and the parallel collisional friction force. The
2D NIES code provides a proof of principle that such
a formulation9,17 can be solved efficiently. We intend
to continue this work in pursuit of an efficient neo-
classical solver in three spatial dimensions. A first,
near-term step would be to extend the code to finite
but still small collisionality, allowing the distribution
function to vary poloidally. In the longer term, we
will work in nonaxisymmetric geometries, allowing
us to solve for the bootstrap current around mag-
netic islands. By coupling such a code with an ex-
tended MHD solver (e.g., M3D-C1), we will be able
to study the evolution of core plasma instabilities
that depend on both MHD and neoclassical effects,
such as the neoclassical tearing mode or sawtooth
instability.
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