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Comment on “Three-dimensional numerical investigation of electron transport with

rotating spoke in a cylindrical anode layer Hall plasma accelerator” [Phys. Plasmas

19, 073519 (2012)]

C. L. Ellison,1 K. Matyash,2 J. B. Parker,1 Y. Raitses,1 and N. J. Fisch1

1)Princeton Plasma Physics Laboratory, Princeton, NJ 08543

2)Greifswald University, Greifswald, D-17487, Germany

(Dated: 21 August 2012)

The oscillation behavior described in [Tang et. al, Phys. Plasmas 19, 073519 (2012)]

differs too greatly from previous experimental and numerical studies to claim obser-

vation of the same phenomenon. Most significantly, the rotation velocity in [Tang et.

al, Phys. Plasmas 19, 073519 (2012)] is three orders of magnitude larger than that of

typical “rotating spoke” phenomena. Several physical and numerical considerations

are presented to more accurately understand the numerical results of [Tang et. al,

Phys. Plasmas 19, 073519 (2012)] in light of previous studies.

1



Oscillations are an important aspect of Hall thruster behavior as they influence cross-

field electron transport and, correspondingly, thruster efficiency. The “rotating spoke”,

originally observed by Janes and Lowder1 in 1966, has attracted recent interest in both the

cylindrical2–5 and annular6,7 configurations of the Hall thruster. A recent paper by Tang et.

al8 presents numerical studies of an azimuthally rotating electron density perturbation which

is claimed to be the rotating spoke oscillation. In this comment, we address two features

of the numerical study in Ref.8. First, the rotation speed and frequency are too large to

be described as the rotating spoke without further justification. Experimental observations

of the rotating spoke are in the kHz range, whereas the numerical results in Tang et. al8

describe a 12.5 MHz oscillation. Second, the simulation results fall short of modeling self-

sustained Hall thruster operation due to the lack of an electron source and the short time

duration.

The so-called “rotating spoke” is a low-frequency azimuthal oscillation observed in

both cylindrical and annular Hall thrusters1–3,6,7,9. It was originally observed using az-

imuthally separated electrostatic probes1 and more recently detected using high-speed cam-

era imaging2,3,6. Experiments have operated across a variety of thruster configurations, sizes,

and operating parameters including magnetic field geometry, gas type and flow rate, and

discharge voltage (see Ref.6 for a parametric study in the annular Hall thruster geometry).

The experimentally-observed rotation velocity has been on the order of 103 m/s, ranging

from 500 m/s in Ref.6 to 7×103 m/s in Ref.1. In contrast, Tang et. al8 observe a rotation

speed of 106 m/s - three orders of magnitude larger than the experimental observations.

The large discrepency in rotation speed and frequency requires additional justification to

be described as the rotating spoke instead of oscillations more commonly observed in the

MHz range10–16.

One reason for classifying the observed rotation in Ref.8 appears to be the difference

between the azimuthal rotation speed and the E × B drift speed. The 106 m/s rotation

in Tang et. al8 is 37% of the E × B speed with B = 175 Gauss and E = 470 V/cm. For

comparison, Ellison et. al observe a 2×103 m/s rotation which is 10% of the E × B speed

using B = 850 Gauss and E = 20 V/cm. To rule out mere E × B rotation, the location

where the electric field is measured is important, and it is unclear from Figure 4 in Ref.8

that 470 V/cm is an appropriate estimate of the electric field near the electron cloud. Also,

without a rigorous understanding of the rotating spoke mechanism the scaling with the E
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× B speed is not the only relevant measure. The experimental rotation speeds are also near

the ion sound speed and ion thermal velocity, for instance, which do not scale with the E

× B speed. The similar time scales have led several authors to suggest the rotating spoke

is related to ionization phenomena1,3,5,6,17, and until a better theoretical understanding is

established, it’s important to keep these parameters in mind.

Aside from the rotation speed discrepency, the simulation of Tang et. al8 lacks a cathode

electron source and is shorter than the time required for the initial plasma distribution to

extinguish. Consequently, the observed rotation is not likely to model the self-sustained

plasma discharges studied during experiments, but instead the transient relaxation of an

initial distribution of particles. The non-neutral plasma observed in Ref.8 cannot persist

in steady state because the excess charge will be forced to the electrodes by the perturbed

electric field. A more rigorous study investigating the rotating spoke should include several

milliseconds of sustained plasma to resolve ionization-relevant time scales for evaluating the

rotation mechanism.

Overall the present oscillation in Ref.8 appears distinct from the rotating spoke. For one,

the variety of experimental configurations in which the rotating spoke has been observed have

measued kHz-scale frequencies with rotation velocities on the order of 103 m/s. In contrast,

the 12.5 MHz rotation observed by Tang et. al requires justification beyond comparison with

the E × B speed to be connected with the rotating spoke. Further separating the numerical

results from the experimental observations is the absence of a self-sustained discharge in the

numerical model.

This work was supported by DOE Contract Number DE-AC02-09CH11466 with addi-

tional support from the Air Force Office of Science Research.
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