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Toroidal precession is commonly understood as the orbit-averaged toroidal drift of

guiding centers in axisymmetric and quasisymmetric configurations. We give a new,

more natural description of precession as a geometric phase effect. In particular, we

show that the precession angle arises as the holonomy of a guiding center’s poloidal

trajectory relative to a principal connection. The fact that this description is phys-

ically appropriate is borne out with new, manifestly coordinate-independent expres-

sions for the precession angle that apply to all types of orbits in tokamaks and

quasisymmetric stellarators alike. We then describe how these expressions may be

fruitfully employed in numerical calculations of precession.
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I. INTRODUCTION

Toroidal precession can be described as the orbit-averaged toroidal drift1 of guiding

centers in axisymmetric or quasisymmetric configurations. It is a well-known2,3 and well-

studied4,5 phenomenon that plays a fundamental role in a number of resonant processes in

tokamaks and quasisymmetric stellarators. For instance, it can provide a mechanism for

stabilizing the resistive wall mode and sawtooth oscillations, as in Refs. 6, 7, 8 and 9. Or it

can lead to ripple diffusion in the presence of discrete coils10.

The precession angle is typically calculated in one of two ways. One approach3 is based

on expressing the guiding center equations of motion in magnetic coordinates. The evolution

equation for the toroidal angle is first expressed as a time integral over one bounce period,

which is then converted to an integral over the poloidal angle. Another approach4 is based on

expressing the guiding center equations in action-angle coordinates. The action variables are

first calculated by integrating the guiding-center Lagrange one-form around two fundamental

cycles on each invariant torus. Then the Hamiltonian is expressed in terms of the actions

so that the frequencies of motion can be calculated by differentiation. In general, existing

methods for calculating the precession angle are closely tied to particular coordinate systems,

be it flux coordinates or otherwise.

This is a curious state of affairs because the precession angle is a physically meaningful

quantity11 that is in no way dependent on the coordinate system chosen to descirbe dynamics.

It means the existing interpretation of precession as orbit averaged drift, while technically

correct, is somewhat unnatural. A natural interpretation would reflect the coordinate-

independent nature of precession by providing coordinate-independent expressions for the

precession angle.

The present work has emerged as a result of our desire to find such an interpretation. The

latter developed as we studied problems where a tokamak’s symmetry axis varies slowly with

time. In these cases, it was more direct to work with the god-given cartesian coordinates than

a time-dependent system of flux coordinates. This observation led us to search for alternative

ways to express the precession angle that were not tied to special coordinate systems, a search

that ultimately left us wanting a deeper geometric understanding of precession.

What has emerged from our investigation is both satisfying and surprising. Satisfying

because we have indeed found a nice geometric interpretation of precession that leads to
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coordinate-independent expressions for the precession angle in arbitrary12 quasisymmetric

configurations. For tokamaks, these are our expressions 12 and 17, and for stellarators Eqs.

30 and 31. The surprise is the relationship between these expressions and the now-famous

geometric phases studied in quantum mechanics13, and elsewhere in plasma physics14–16.

The canonical example of a geometric phase was discovered by Berry17, who studied

problems similar to the following. Suppose a spin 1/2 particle evolves in a uniform magnetic

field whose direction is slowly cycled. After a single cycle, the quantum adiabatic theorem

dictates that the particle’s state, |ψ|, remains the same. However, the particle’s phase

acquires a contribution proportional to the solid angle subtended by the magnetic field

vector in the course of the cycle. This is the Berry phase. It is known as a ‘geometric’ phase

because it only depends on the geometry of the system’s path in parameter space. It is also

an example of holonomy, which is the defining feature of geometric phases in general. We

have included an introduction to the mathematics behind holonomy in Appendix A for the

interested reader.

It turns out that toroidal precession has exactly the same structure as Berry’s phase; it is

a physical manifestation of a geometric phase. This point is not obvious at first glance. But

the seeds of the relationship are contained in a suggestive analogy. To wit, if one identifies

a guiding center’s “state” and “phase” with its location in the constants of motion space

(E, µ, pφ) and its toroidal angle, respectively, then the precession angle begs to be interpreted

as a geometric phase. Indeed, after a guiding center’s poloidal location is cycled in the course

of a bounce period, its state (E, µ, pφ) remains unchanged because (E, µ, pφ) are constants of

motion. However, its phase is altered by an amount equal to the precession angle. Cycling

the guiding center’s poloidal location is analogous to cycling the magnetic field direction in

the spin 1/2 example above. Likewise, the conservation of the state variables is analogous

to the preservation of |ψ|. The only way to complete this analogy, then, is to identify the

precession angle with Berry’s phase.

Of course, this suggestive analogy lacks in a few respects. In particular, it does not

suggest what the analogue of the solid angle should be in the case of precession. That is, if

Berry’s phase is equal to the solid angle of the path in parameter space, then there should

be some geometric property of curves in the poloidal plane that gives the precession angle,

and the analogy does not indicate what this could be.

We will therefore proceed to systematically fill in all of the details of this analogy via
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a careful analysis of the guiding center equations of motion. Notably, it will become clear

that the role played by solid angle in the spin 1/2 example must be filled by what we dub

precession holonomy. This quantity, like solid angle, is an example of holonomy18,19, meaning

it fits the definition of a geometric phase. It can be ascribed to any curve in the ‘parameter

space’, which in our case is the poloidal plane. Likewise, a poloidal trajectory’s precession

holonomy gives the precession angle, just as the solid angle of a path in parameter space

gave the Berry phase. We will then show how to calculate the precession holonomy. By a

stroke of luck, the resulting formula will turn out to be easy to express without reference to

coordinates.

The paper is structured as follows. In the first part of the paper, sections II, III, and IV,

we treat the special case of tokamaks, rather than more general quasisymmetric configura-

tions. Section II contains a discussion of how ideas from the theory of geometric phases may

be used to help reconstruct a guiding center’s toroidal dynamics from its poloidal dynamics.

To compliment this discussion, we have also included an introduction to geometric phases in

Appendix A. This sets the stage for us to introduce the precession holonomy for tokamaks

in section III. Section IV then completes our treatment of precession in tokamaks. There

we derive a coordinate-independent expression for the tokamak precession holonomy and

discuss how it can be used to numerically calculate the precession angle. After this, we

leave the small world of tokamaks, and turn to arbitrary quasisymmetric configurations in

section V. In this final section, we generalize the results from the first part of the paper to

obtain coordinate independent expressions for the precession angle in any quasisymmetric

stellarator.

II. CONNECTIONS AND RECONSTRUCTION

In this section, we will apply ideas from Ref. 19 related to reconstruction to guiding

center motion in tokamaks. Reconstruction refers to the process of obtaining a full solution

to a system of Hamiltonian equations with symmetry from a solution in the reduced phase

space. As the authors show in Ref. 19, the general reconstruction procedure has an elegant

formulation in terms of principal connections, which we will define in our context shortly.

These connections, one of which we will introduce below, are intimately related to geometric

phases, as we discuss in Appendix A. Ultimately, this insight will be what leads to our new
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expressions for the precession angle.

We start from the non-canonical Hamiltonian formulation of guiding center motion found

by Littlejohn20–22. The guiding center phase space, P , is the cartesian product of the physical

domain D and the parallel velocity axis, P = D×R. The symplectic structure on P is given

by the Lagrange tensor −dϑ, where

ϑ(x, v‖) = qA(x) · dx+mv‖b(x) · dx, (1)

A is the magnetic field’s vector potential, q the particle charge, m the particle mass, and b

the unit vector in the direction of the magnetic field. Note that we will not always use bold

characters for vectors. This Lagrange tensor, together with the Hamiltonian,

H(x, v‖) = µ|B|(x) +
1

2
mv2

‖, (2)

determine the dynamical vector field X : P → TP via Hamilton’s equations23 iXdϑ = −dH .

X captures all of the lowest order drifts, but contains small corrections that guarantee it

defines a genuine Hamiltonian system. For example, this means it exactly conserves the

energy given by Eq. 2 and the phase-space volume dϑ ∧ dϑ.

We will assume that A is chosen to be invariant under rotations of the physical domain

D about the z-axis. Noether’s theorem23 then gives the conservation of canonical angular

momentum. This invariant can be conveniently expressed in terms of the infinitesimal

generator of rotations about the z-axis, ξ(x) = Reφ, where R is the major radius, using the

formula

pφ = ϑ(ξ) = qA · ξ +mv‖b · ξ. (3)

We will also assume that the toroidal (azimuthal) component of B never vanishes. This

allows for swapping the v‖ coordinate with pφ.

Because pφ is a constant of motion, guiding center dynamics in the four-dimensional phase

space takes place on the three-dimensional level sets pφ = const. Therefore, we can restrict

attention to a single level set pφ = l. In the (x, v‖) coordinates, this level set has non-trivial

shape. However, in (x, pφ) coordinates, it is simply a copy of D. Thus, the dynamics on

pφ = l are given by a vector field ẋl : D → TD defined on D:

ẋl = −
∇H × b

B∗
‖

+
∂H

∂pφ

ξ, (4)
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where B∗
‖ = q|B|+λ|B|b ·∇× b, λ = (pφ − qA · ξ)/(B · ξ), and now H is expressed in (x, pφ)

coordinates as H = µ|B| + |B|2λ2/2m. In particular, ∂H/∂pφ = |B|2λ/(mB · ξ). We now

shift our attention to analyzing the integral curves (field lines) of this vector field.

Because ẋl is invariant under rotations about the z-axis, its poloidal component gives

complete information about the poloidal dynamics, i.e.

(ẋl)P = ẋl − ẋl · eφeφ = −
∇H × ξ

ρ|ξ|2
, (5)

with ρ = |B|B∗
‖/(B · ξ), gives a well defined dynamical system in the poloidal plane whose

solutions are equal to the poloidal projection of the solutions to the full dynamical system

defined by ẋl. Thus, the poloidal plane serves as the reduced phase space for guiding centers

in tokamaks. In fact, it can be shown that (ẋl)P is a Hamiltonian system in this reduced

phase space relative to a certain symplectic structure.

Conversely, the full trajectories of ẋl can be “reconstructed” from the poloidal trajectories.

In order to see how, it is extremely useful to take a short detour and introduce the notion

of a principal connection on D24. This is merely an axisymmetric assignment to each point

x in D a plane, Hx, that is complementary to the span of ξ(x). A typical Hx is depicted

in Figure 1. Notice that if vx is any vector emanating from the point x, then because Hx is

complementary to the span of ξ(x), vx has a unique decomposition vx = A(vx)ξ(x)+hor(vx),

where hor(vx) is contained in Hx and A(vx) is some number. Thus, hor and A are well-

defined projection-like operations, with the former known as the horizontal projection and

the latter the vertical projection. Because A acts linearly on vectors emanating from any

fixed x in D, it is also known as a connection one-form. Note that, by the axisymmetry of

the arrangement of planes Hx, the connection one-form A must also be axisymmetric.

Returning to the issue of reconstructing full trajectories from poloidal trajectories, sup-

pose some principal connection is prescribed on D. If we express ẋl as

ẋl = (ẋl)P + φ̇ξ (6)

and apply the vertical projection operator, then we obtain

φ̇ = A [ẋl] − A [(ẋl)P ] (7)

as an evolution equation for the toroidal angle. Here A is known as a gauge field associated to

A. In this case, it is a one-form whose action on vectors is given by first dropping the toroidal
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FIG. 1. A depiction of a typical Hx. As is true for all such planes, the toroidal direction defined

by eφ(x), which in this case is depicted by an arrow, does not lie in Hx. If the subspace spanned

by eφ(x) is denoted Vx, then we have TxD = Hx ⊕ Vx.

component and then applying A. Due to axisymmetry, both sides of Eq. 7 are functions

independent of toroidal angle φ. Therefore the whole expression can be evaluated along

a poloidal trajectory γ(t) and integrated in time for one bounce period T . The resulting

expression for the precession angle is then

∆φ =

∫ T

0

A [ẋl] (γ(t))dt−

∮

A. (8)

The second term is the integral of the gauge field A around the loop traced out by the

poloidal trajectory γ. It is known as the holonomy19 of the connection around γ. Thus, the

second term represents a geometric phase. Notice that it is manifestly independent of how

the integration curve is parameterized. The first term does not have this nice property; in

general, the time integral requires detailed information about the time dependence of the

poloidal trajectory. For this reason, the latter is known as the dynamic phase.

If a different connection were to be used, then the geometric and dynamic phases would

be different. However they would always sum to give the same result ∆φ. In particular, if

a connection could be found such that ẋl was horizontal, i.e. A(ẋl) = 0, then ∆φ would be

realized as a purely geometric phase. In the next section we will present such a connection.
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FIG. 2. An example toroidal region, D, with the FPSOs displayed as toroidal rings. Typically, for

fixed values of µ and pφ, there will be two or three FPSOs, one corresponding to the center of the

passing trajectories, another to the center of the trapped trajectories, and a third to the tip of the

largest banana orbit. In the case depicted, perhaps the tip of the largest banana tip lies outside of

the toroidal domain, leaving just two FPSOs within D.

III. A CONNECTION FOR THE TOROIDAL PRECESSION

If a connection renders ẋl horizontal, then for each x in D, Hx must contain ẋl whilst

remaining complimentary to the span on ξ. Such a plane will certainly not exist at those

points where ẋl is parallel to ξ. These points correspond to zeros of the poloidal vector field

(ẋl)P . Moreover, by axisymmetry, if x is one such point, then the entire circle of revolution

passing through x must consist of similar points (see Figure 2). These circles of revolution

are known as the fixed-point stagnation orbits3,25, or FPSOs. Due to the presence of these

FPSOs, a connection that renders ẋl horizontal must have a restricted domain of definition

that at least excludes the FPSOs, if not even more points. Therefore, in what follows we

will assume that D has had its FPSOs removed.

On this redefined D, it turns out there is a connection that at once renders ẋl horizontal

and exists at all points. This means that it is not necessary to remove any more points from

D than we already have. For each point x in D, this connection’s horizontal subspace Hx
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is equal to the span of the vectors DH(x) and ẋl(x), where

DH = ∇H −
b · ∇H

b · ξ
ξ. (9)

The following simple reasoning will show

ẋl ·DH × ξ = ẋl · ∇H × ξ 6= 0, (10)

and that Hx is an axisymmetric assignment of planes. This will prove that Hx gives a well

defined principal connection.

First of all, note that none of the three vectors that appear in Eq. 10 vanish on the region

we are considering; ξ does not have zeros, if ẋl were zero, then (ẋl)P would be zero, and ∇H

only vanishes when (ẋl)P does. Then notice that ẋl and ξ must be tangent to the surfaces

defined by H = const. (remember that pφ = l now). This much proves Eq. 10. Finally,

because DH and ẋl are axisymmetric vectors, the planes Hx are manifestly arranged in an

axisymmetric manner.

By identifying this connection, in accordance Eq. 8, the toroidal precession angle is now

seen to be a purely geometric phase. This can be checked directly by evaluating the dynamic

phase in Eq. 8 using an expression for the connection one-form A. The latter is simply given

by

A =
ẋl × DH · dx

ẋl ×DH · ξ
. (11)

We will derive an expression for the holonomy of this connection, which we call precession

holonomy, in the next section.

IV. PRECESSION HOLONOMY AND ITS INTERPRETATION

In order to calculate the precession holonomy of poloidal trajectories in tokamaks, all

we must do is substitute the expression for the connection one-form given in the previous

section into Eq. 8. Because A(ẋl) = 0, the dynamic phase is 0, leaving just the geometric

phase to calculate. The latter is given by

∆φ = −

∮

C

A = −

∮

C

ẋl × DH · dx

ẋl × DH · ξ
(12)

= −

∮

C

B · dx

B · ξ
−

∮

C

∂H/∂pφ

(∇H)2
∇H × B∗ · dx,
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where B∗ = ∇× (qA + λB) = ρξ. Recall that, at this point, C is the closed curve in the

poloidal plane defined by the equations pφ = l, H = Eo, and φ = φo, where l and Eo are

a particle’s canonical angular momentum and energy, respectively, and φo is an arbitrary

toroidal angle. But as we will show when we generalize to quasisymmetric configurations,

the above expression will remain valid even when C is continuously deformed within the

drift surface. Thus, Eq. 12 is a very flexible, coordinate-independent expression for the

precession angle, ∆φ.

Eq. 12 can also be expressed in terms of surface integrals using Stoke’s theorem. But

before naively converting the line integral in Eq. 12 into a surface integral, we must account

for the fact that D does not contain the FPSOs. The presence of these ‘holes’ in D implies

that C need not be the boundary of some closed two-dimensional surface contained in D.

However, if we add to C tiny loops, Li, such that the i’th tiny loop encircles the i’th FPSO

encircled by C, then the resulting curve is the boundary of some two-dimensional surface

S. In symbols, C ′ ≡ C +
∑

i Li = ∂S. C ′ is also depicted in Figure 3.

Stoke’s theorem can now be applied in the obvious way to convert the line integral around

C ′ into a surface integral over S. We choose the orientations of the Li to be opposite to that

of C so that the result is

∮

C

A = −
∑

i

∮

Li

A +

∫

S

dA, (13)

where the integrand dA is known as the curvature of the connection. It can be calculated

as follows. If A = w · dx, for some vector field w, then dA is simply ∇×w · dS.

Typically in tokamaks, a guiding center will encircle just one FPSO, so i = 1 is the only

term in the sum. Moreover, this FPSO usually corresponds to an elliptic fixed point of (ẋl)P .

Thus, if L1 is chosen to lie on one of the constant energy tori who stay very close to the

FPSO, then
∮

L1

A ≈ Toφ̇o, where To is the deeply trapped (or deeply passing) bounce (or

circulation) period, and φ̇o is φ̇ evaluated on the FPSO. With L1 chosen in this way, Eq. 13

can be re-written

∮

C

A = −Toφ̇o + P

∫

So

dA, (14)

where So is a surface whose boundary consists of C and a single point on the FPSO. The P

in front of the surface integral denotes a principal value evaluation. It should be calculated

as follows. Let Eǫ be a continuous family of energy values such Eo is the energy of the
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FIG. 3. A schematic of the curve in the poloidal plane C ′. The precession angle is given by

integrating the gauge field around C. In order to convert the latter line integral into a surface

integral, the gauge field’s singularities must be carefully accounted for. These singularities, denoted

here with black dots, occur on the FPSOs. By encircling them with smaller loops Li and appending

these Li to the original integration path, Stoke’s theorem may be applied to convert the line

integral of the gauge field over the modified integration path into a surface integral over S, the

region bounded by the modified integration path. This then gives the precession angle as a surface

integral plus residues from the FPSOs.

stagnation orbit. Let Sǫ be a family of surfaces such that for every ǫ > 0, ∂Sǫ consists of C

and a loop Lǫ that tightly encircles the stagnation orbit while staying in the surface H = Eǫ.

Then

P

∫

So

dA = lim
ǫ→0

∫

Sǫ

dA. (15)

Now we bring Eq. 14 into its final form by making use of the identity

dA = −
1

ρ
∇ ·

(

ρ
∂H

∂pφ

∇H

(∇H)2

)

B∗ · dS (16)

+
1

(b · ξ)2

(

b · ∇ × b

)

ξ · dS.

Substituting this into Eq. 14, we obtain the precession angle in terms of surface integrals
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and a residue from the FPSOs

∆φ =Toφ̇o + P

∫

So

1

ρ
∇ ·

(

ρ
∂H

∂pφ

∇H

(∇H)2

)

B∗ · dS (17)

−

∫

So

1

(b · ξ)2

(

b · ∇ × b

)

ξ · dS.

The first term represents the precession angle of the FPSO, as it is the limiting value

the precession angle assumes in the deeply trapped (or passing) limit. The second term

is a measure of the amount of “charge”, or source, for the field F = ∂H
∂pφ

∇H
(∇H)2

contained

in a constant energy torus. The appropriate way to calculate this charge is by taking the

divergence of F relative to the volume form σ = ρdx∧dy∧dz. σ is actually the volume form

induced by the Liouville volume, dϑ∧ dϑ, so we have dubbed this term a symplectic charge.

Finally, the last term measures the total amount of magnetic torsion b · ∇ × b contained

in the same constant energy torus. This term does not have to be evaluated as a principal

value because the integrand is non-singular. Moreover, it gives the holonomy of another

principal connection defined on D. For this connection, the horizontal subspace at a point

x in D is defined to be those vectors that are perpendicular to b(x). Its vertical projection

is given by

Ab =
b · dx

b · ξ
. (18)

Notice that this connection appears in the definition of DH . Indeed, DH = ∇H −

Ab(∇H)ξ = horb(∇H), the horizontal part of the gradient.

Between equations 12 and 17, we now have a pair of complimentary coordinate-independent

expressions for the precession angle in an arbitrary tokamak, the first giving a line integral

representation and the second a surface integral representation. Because these expressions

realize the precession angle as the precession holonomy of a poloidal trajectory, they also

demonstrate that precession, like Berry’s phase, is a type of geometric phase phenomenon.

Therefore we can see that it is physically appropriate to interpret toroidal precession as a

geometric phase.

Aside from these expressions’ conceptual appeal, they are also useful for practical numer-

ical calculations of the precession angle. This is because all of the quantities that appear in

these expressions can be computed in a straightforward fashion in any coordinate system.

In particular, in up-down symmetric configurations, Eq. 12 easily leads to a way to evaluate
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the precession angle in (|B|, ψp)-coordinates, where ψp = A · ξ. In these coordinates, the

integration curve in Eq. 12 can be parameterized by ψp explicitly using energy conservation,

|B|(ψp) =
−mµ +

√

m2µ2 + 2Hmλ2(pφ, ψp)

λ2(pφ, ψp)
, (19)

where H is the relevant particle’s energy, and λ = (pφ − qψp)/(B · ξ). Once the components

of the metric tensor and the major radius R are found in these coordinates, this parameter-

ization can be used to reduce the calculation of the precession angle to one ψp integral for

each relevant value of (E, µ, pφ). Simple root finding is necessary to determine the limits of

integration for these integrals. This entire procedure poses no serious difficulty because |B|,

ψp, and R can readily be extracted from existing equilibrium reconstruction codes.

Note that because no approximations are made on the integration path, this approach

easily accounts for all finite-orbit-width effects, and works just as well for passing particles

as for trapped particles. Also note that all of the functions that appear in our integrals that

cannot be expressed analytically in terms of ψp and |B| are functions of position only, i.e.

they can be determined numerically before specifying a particles energy, angular momentum,

or magnetic moment. These two features may make this approach an especially attractive

one to implement in stability codes such as MISK26 or MARS-K27. In these codes, functions

of the precession frequency are integrated over the constants of motion space. In order to

speed the evaluation of these integrals, thin banana approximations are often made, meaning

finite-orbit-width effects are lost. The approach we have just outlined may allow these codes

to retain finite-orbit-with effects while only incurring a minimal penalty in computation

time.

V. GENERALIZATION TO QUASISYMMETRIC CONFIGURATIONS

Now we turn to the task of generalizing the results of the previous section to the more

general class of quasisymmetric stellarators. Because these configurations are more compli-

cated geometrically than those we have considered so far, our treatment of precession also

acquires some complications. In particular, in this section we will draw much more heav-

ily on Cartan’s calculus of differential forms23. But, as we will show, while our treatment

becomes more advanced, the expressions for the precession angle that we derive are only

marginally more complicated than what we found for tokamaks. Readers not as interested

13



in the analysis as the resulting expressions can skip straight to Eqs. 30 and 31, which we

have expressed using standard vector calculus notation to the extent possible.

We begin with a convenient definition of a quasisymmetric magnetic field. A quasisym-

metric magnetic field is a divergence free field B such that there exists a continuous family of

spatial transformations Φθ : D → D parameterized by the angle θ that satisfies the following

properties.

Φθ1
◦ Φθ2

= Φθ1+θ2
(20)

Φ0 = identity

Φ∗
θB = B

Φ∗
θ (B · dx) = B · dx

Φ∗
θ|B| = |B|,

where B = iB(dx ∧ dy ∧ dz) is the magnetic field expressed as a two-form.

This definition is only slightly different from the typical definition28 of quasisymmetry.

The condition Φ∗
θB = B is equivalent to the common requirement that the magnetic field

possess flux surfaces. Likewise, the condition Φ∗
θ|B| = |B| is very nearly the usual require-

ment that |B| only depend on a single combination of Boozer angles. On the other hand,

the condition Φ∗
θ (B · dx) = B · dx is apparently absent from the usual definition. Nonethe-

less, this is an entirely sane condition to include in the definition of quasisymmetry for two

reasons. First, by including this condition in the definition of a quasisymmetric magnetic

field, it can be shown that quasisymmetric fields are precisely those magnetic fields that

lead to guiding center dynamics that possess a spatial symmetry, and therefore a Noether

conserved quantity, pφ. Second, it may be shown that if a magnetic field with flux surfaces

and symmetric |B| is also an ideal equilibrium, J × B = ∇p, then Φ∗
θ (B · dx) = B · dx is

satisfied automatically. Thus, if we restrict attention to ideal equilibria, then the definition

of quasisymmetry given here is completely equivalent to the usual one. Otherwise, while

this definition may indeed be different from the usual one, it includes the absolute minimum

set of assumptions on B to guarantee the existence of pφ.

This Noether conserved quantity is an especially important ingredient in our generaliza-

tion of the results from the first part of the paper. It is given by

pφ = ϑ(ξ) = qA · ξ +mv‖b · ξ, (21)
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where the vector potential is chosen to be invariant under the family of transformations Φθ,

and the vector ξ is given by

ξ(x) =
d

dθ

∣

∣

∣

∣

θ=0

Φθ(x). (22)

Note that it is formally identical to the invariant in the axisymmetric case. This formal

similarity is the key to our generalization.

Indeed, just as in the axisymmetric case, we swap the v‖ coordinate for pφ and then

restrict to the level set pφ = l. The equations of motion on this level set, which again is just

a copy of D, then have the same form as in the axisymmetric case,

ẋl = −
∇H × b

B∗
‖

+
∂H

∂pφ

ξ. (23)

And we are then faced with formally the same problem in formulating precession as a geo-

metric phase: we must find a connection that renders ẋl horizontal. Likewise, the connection

that accomplishes this task is formally the same: it is defined by the span of the vectors ẋl

and DH .

However, there is a technical difference. The assignment of planes Hx in the axisymmetric

case was required to axisymmetric. Because now axisymmetry has been replaced with

quasisymmetry, the assignment of planes in the current setting should be quasisymmetric.

In terms of the connection one-form, this means

Φ∗
θA = A. (24)

If DH were defined exactly as it was in the axisymmetric case, then the assignment of

planes given by the span of ẋl and DH would not be quasisymmetric, in general. The

reason for this boils down to the fact that the ordinary gradient operator ∇ does not always

commute with the transformations Φθ. The most unfortunate consequence of this failure to

commute is that the ordinary gradient of a function that is invariant under the family of

transformations Φθ need not be an invariant vector field. On the other hand, it is simple to

define a new gradient operator that does commute with the transformations Φθ. First we

define the averaged metric tensor, 〈g〉,

〈g〉 (ux, vx) =
1

2π

∫ 2π

0

(Φ∗
θg) (ux, vx)dθ, (25)
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where ux, vx are vectors emanating from an arbitrary point x in D, and g is the standard

metric tensor on D. Then we define the symmetric gradient of a function f , ∇symf , in the

same manner the usual gradient is defined, but with the usual metric tensor replaced by the

averaged metric tensor:

〈g〉 (∇symf, w) = df(w), (26)

where w is an arbitrary vector field on D. By using the symmetric gradient of the Hamilto-

nian in the definition of DH ,

DH = ∇symH −Ab(∇symH)ξ, (27)

our definition of the connection can be shown to satisfy Eq. 24. In particular,

A =
ẋl ×DH · dx

ẋl × DH · ξ
(28)

is a legitimate connection one-form of a principal connection that renders ẋl horizontal in

quasisymmetric stellarators.

Now we turn to calculating the precession holonomy of a poloidal trajectory. This holon-

omy will give the precession angle, ∆Θ. But before we present the calculation, we should

be clear about what the precession angle is in a quasisymmetric configuration. After all,

we cannot employ the simple toroidal coordinate φ that was available in the axisymmetric

case. Indeed, we have not introduced any coordinates at all at this point. Therefore, the

precession angle needs a coordinate independent definition, which is as follows. Suppose

a particle completes a bounce or circulation period. Its position at the beginning of this

period, a, is related to its position at the end of the period, b, via Φ∆Θ(a) = b. ∆Θ is the

precession angle.

In order to calculate ∆Θ, we could, in principle, work out an expression for a gauge field

A and then insert this into Eq. 8. However, this would require identifying a poloidal plane.

In quasi-symmetric stellarators, there is not a single canonical choice of a poloidal plane -

there are many such choices! Instead we will use a simple trick to calculate the holonomy

that only makes use of the surfaces H = const. and A.

First, we recall the so-called Cartan structure equation29,

dA(hor(v), hor(w)) = dA(v, w), (29)
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for any vectors v, w. This identity is valid for any principal connection. Because ẋl and ξ

form a basis for the planes tangent to a level set H = const. and hor(ξ) = 0, the structure

equation implies that dA vanishes when restricted to H = const.. Thus, A restricted to this

level set is closed, meaning the integral of A along any curve in this level set will be left

unchanged if the curve is continuously deformed within the level set, keeping the end points

fixed. This elementary result is proven in any introductory text on differential geometry, for

instance see Ref. 30.

Now we integrate A along a special curve contained in the surface H = Eo, which we will

assume is compact and without boundary. The first arc of the curve, C1, will follow some

arbitrary initial condition a in H = Eo along the trajectory of ẋl passing through that point

for one bounce period. Note that, by the classification of surfaces, the connected components

of H = Eo must be tori. Also note that the end points a and b of C1 satisfy b = Φ∆Θ(a),

by definition of the precession angle. The second arc of the curve, C2, will then travel from

the termination point of C1, b, back to a along the field line of ξ that joins a with b. The

total circuit C = C1 + C2 is then a closed loop that encircles the the torus containing a,

Ta, one time poloidally. Therefore we may as well have integrated A along any other closed

loop that encircles Ta once poloidally. However, our particular choice of curve makes the

integral simple to evaluate. Indeed, because ẋl is horiztonal,
∫

C1

A = 0. Moreover, because

A(ξ) = 1,
∫

C2

A = −∆Θ. Therefore, we have derived the following coordinate-independent

expression for ∆Θ:

∆Θ = −

∮

C

A = −

∮

C

ẋl × DH · dx

ẋl ×DH · ξ
(30)

= −

∮

C

B · dx

B · ξ
−

∮

C

∂H/∂pφ

(∇symH)2
∇symH × B∗ · dx,

where C is any closed curve encircling Ta in the same sense as a trajectory of ẋl. Also,

(∇symH)2 = 〈g〉 (∇symH,∇symH). Applying Stoke’s theorem in a similar manner as in the

axisymmetric case, we also obtain

∆Θ =Toφ̇o + P

∫

So

1

ρ
∇ ·

(

ρ
∂H

∂pφ

∇symH

(∇symH)2

)

B∗ · dS (31)

−

∫

So

1

(b · ξ)2

(

b · ∇ × b

)

ξ · dS.

With Eqs. 30 and 31 in hand, we have now completed the generalization of the axisymmetric

results to quasisymmetric configurations.
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VI. CONCLUSION AND FUTURE WORK

We have thus succeeded in demonstrating that the precession angle in both axisymmetric

and quasisymmetric configurations is a geometric phase. Moreover, we have shown that this

physically appropriate interpretation leads to the coordinate-independent expressions for

the precession angle, Eqs. 12 and 17 in tokamaks, and Eqs. 30 and 31 in quasisymmetric

stellarators. Such coordinate independent expressions for the precession angle have been

missing from the literature.

We have also used these expressions to identify a new method for calculating the preces-

sion angle numerically. The latter amounts to evaluating our Eq. 12 in (|B|, ψp)-coordinates.

This method may be an attractive one to implement in stability codes such as MISK or

MARS-K as it could allow for these codes to account for missing finite-orbit-width effects

at only a minimal computational cost.

Our results are not applicable to fields with nulls in the toroidal field. These fields are of

interest in the magnetic fusion community as they include those found in dipole experiments,

RFPs, and FRCs. Therefore, it would be interesting to extend our results by allowing for

toroidal field nulls.
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Appendix A: Elements of the theory of Geometric Phases

What is a geometric phase? Probably the most accessible example comes from spherical

geometry. Suppose an unlucky ant is made to walk around a special circuit on the surface of

a model globe, while performing an equally special stunt. The circuit begins at an arbitrary

point A on the equator. It then proceeds north along a line of longitude until reaching

the north pole. At the pole, the direction of the path abruptly rotates by θ radians before
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heading south again along the line of longitude defined by the path’s new heading. Upon

reaching the equator once more, the path finally returns to the starting point A along the

equator. The stunt the ant is to perform while taking this journey consists of carrying a tiny

rod at a constant angle relative to the direction it walks. When the ant changes direction

at the ‘kinks’ in the path, it is not to rotate the rod under any circumstances.

If the ant manages to pull off this strange maneuver without a hitch, a keen observer

would then notice that the initial and final orientations of the rod were different; the device

would have suffered a rotation by θ radians. This rotation angle is a geometric phase or

holonomy. It manifested itself through the ants endeavor to hold the rod parallel to itself

while walking around the circuit.

More generally, geometric phases measure the rotation of ‘geometric data’ after it is

transported ‘parallel to itself’ around a curve in a ‘parameter space’. In the ant example,

the geometric data were the vectors tangent to the sphere, while the parameter space was the

sphere itself. Meanwhile, in the spin 1/2 example, the geometric data were the wavefunction

phase factors, and the parameter space was the sphere representing different orientations of

the magnetic field.

Therefore, in order to think of the precession angle as a geometric phase, we would like

to regard toroidal phases as the geometric data to be transported, and the poloidal plane

as parameter space. This much is clear in light of the analogy between Berry’s phase and

precession we are looking for. But what could it mean to “transport a toroidal phase parallel

to itself”? In the ant example, parallel transport of a vector was intuitive; by keeping the

angle between the rod and the path constant, the rod is always translated parallel to itself31.

On the other hand, in the spin 1/2 example, and in precession especially, there does not

appear to be an intuitive notion of parallelism.

A deeper look at the ant example offers clues. The key is formulating the ant’s transport

process in what we will call the space of geometric data, D. The latter is defined as the

collection of all vectors tangent to the sphere, together with their basepoints, i.e. the sphere’s

tangent bundle23. We denote a typical element of this space by vp, where p is a point on the

sphere, the basepoint, and v is a vector that lies in the plane tangent to the sphere at p. We

also define a projection map π which takes an arbitrary point in the space of geometric data,

vp, and returns the point in parameter space it is attached to, π(vp) = p. Note that there

are four independent directions one can travel in the space D. Two of these correspond to
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keeping the base point, p, fixed while varying the tangent vector v. These are known as the

vertical directions. The other two correspond to the freedom in changing the basepoint p.

Suppose we prescribe an arbitrary circuit for the ant to walk. The circuit can be formal-

ized as a curve γ : [0, 1] → S2 on the sphere with γ(0) = γ(1) = A, where A is the circuit’s

starting point. If the ant transports an initial vector vA ‘parallel to itself’ as it navigates

the circuit, then it traces out a curve in D, γ̃(t) = v(t)γ(t), that satisfies π(γ̃(t)) = γ(t). We

say that ant has taken a curve in the parameter space, γ(t), and produced lifted curve γ̃(t)

in the space of geometric data, D.

This lifted curve γ̃, like all curves, has a tangent vector γ̃′(t) for each t. In particular,

uvA
≡ γ̃′(0) is a tangent vector at vA, i.e. uvA

∈ TvA
D, because γ̃(0) = vA. If the circuit

the ant walked were different, but the initial vector vA was the same, then uvA
would, in

general, be a different vector in TvA
D. However, the collection of uvA

obtained by considering

all of the possible circuits the ant could walk forms a linear subspace HvA
⊂ TvA

D whose

dimension is equal to the dimension of the parameter space. Hx is essentially a copy of

TAS
2. Moreover, no vector in HvA

other than the zero vector points purely in one of the

vertical directions in D. If there were such a vector in HvA
, it would correspond to a circuit

on the sphere consisting of just one point. But on such a circuit, the ant will not alter

the initial vector vA, meaning the corresponding lifted curve in D would have zero velocity.

Therefore, if VvA
⊂ TvA

D denotes the span of vectors that point in the vertical directions,

then TvA
D = HvA

⊕VvA
, where ⊕ denotes direct sum of vector spaces. This means that an

arbitrary vector wvA
∈ TvA

D has a unique decomposition, wvA
= hvA

+ evA
, with hvA

∈ HvA

and evA
∈ VvA

.

Because vA, the initial vector for the transport process, is arbitrary, we come to the

conclusion that the ant’s rule for transporting vectors defines a two-dimensional subspace

Hvp
⊂ Tvp

D for each vp ∈ D. Such an assignment of subspaces, which are called horizontal

subspaces, is known as an Ehresmann connection19 on D. An Ehresmann connection splits

all of the tangent spaces to D into horiztonal and vertical subspaces, TvA
D = HvA

⊕VvA
.

Now suppose that, instead of specifying the ant’s rule for transporting vectors, we only

told the ant about the Ehresmann connection on D that we just discussed. Does this object

contain enough information for the ant to deduce what the transport rule is? It turns out

the answer is yes. Given an initial vector, if the ant endeavors to transport this vector so it

traces out a curve γ̃ in D with γ̃′(t) ∈ Hγ̃(t), then it can be shown that the curve γ̃ it finds
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is unique and equal to the curve it would have produced had we given the ant the transport

rule explicitly. Therefore, we see that the ant’s rule for transporting vectors parallel to

themselves can be losslessly encoded into an Ehresmann connection on D.

More generally, on an arbitrary space of geometric data, D, it is possible to specify an

Ehresmann connection. Given a point d ∈ D, an Ehresmann connection is an assignment of

a plane Hd such that TdD = Hd ⊕ Vd. We also have the following general theorem proven

in Ref. 19.

Theorem 1 Suppose an Ehresmann connection is specified on a space of geometric data

D. If γ is a curve in the parameter space, and γ̃ is a lift of γ with fixed initial condition,

then if γ̃′ is horizontal, γ̃ is unique.

These two facts are used to define what it means to transport geometric data parallel

to itself in general. Given a space of geometric data D, we first define an Ehresmann

connection. Note that there is a good amount of freedom in this step. Then we suppose we

are given a loop in the parameter space γ and an initial piece of geometric data do. The

parallel transport of do along the curve γ is then defined as the unique lift of γ, γ̃, with the

properties γ̃(0) = do and γ̃′(t) ∈ Hγ̃(t).

Likewise, holonomy can be defined in this general context. First set P equal to the

parameter space for our space of geometric data D. For an arbitrary point p ∈ P , set

Dp equal to the collection of geometric data attached to the point p. Given a loop in P ,

γ : [0, 1] → P , that starts and ends at po ∈ P , an arbitrary d ∈ Dpo
can be parallel

transported along γ, giving the curve γ̃ : [0, 1] → D. In particular, γ̃(1) defines a new element

of Dpo
, holpo

(d) ∈ Dpo
. It is not difficult to show that the mapping holpo

: Dpo
→ Dpo

, which

implicitly depends on the loop in parameter space γ, is a one-to-one mapping. Therefore,

holpo
determines an element of the transformation group of Dpo

. This group element is the

holonomy of the curve γ.

Often times, the mappings holpo
only depend on a finite number of parameters. For

instance, in the ant example, holA was always a linear rotation of vectors. Two-dimensional

rotations are, or course, parameterized by a single angle, θ. In these cases, we specify

the parameters of the holonomy of a curve rather than the holonomy itself, but make no

linguistic distinction between the two.
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