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Abstract

The modification of particle distributions by magnetohydrodynamic modes is an important topic

for magnetically confined plasmas. Low amplitude modes are known to be capable of producing

significant modification of injected neutral beam profiles. Flattening of a distribution due to phase

mixing in an island or due to portions of phase space becoming stochastic is a process extremely

rapid on the time scale of equilibrium parameter changes in an experiment. In this paper we

examine the effect of toroidal Alfvén eigenmodes (TAE) and reversed shear Alfvén eigenmodes

(RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted

mode amplitudes using perturbative linear theory. It is found that for the equilibrium of a hybrid

scenario even at ten times the predicted saturation level the modes have negligible effect on these

distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that

are much more global, is somewhat more susceptible to induced loss due to mode resonance, with

alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the

assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive

and more unstable modes. An analysis of the existing mode-particle resonances is carried out to

determine which modes are responsible for the profile modification and induced loss. We find that

losses are entirely due to resonance with the counter-moving and trapped particle populations,

with co-moving passing particles participating in resonances only deep within the plasma core and

not leading to loss.

PACS numbers: 52.25.Fi, 52.25.Gj
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I. INTRODUCTION

The resonant interaction of magnetohydrodynamic (MHD) modes with a particle distri-

bution can produce significant modification of the distribution and even induce large scale

particle loss through profile avalanche, and is an important topic for magnetically confined

plasmas. Low amplitude Alfvén modes are known to be capable of producing significant

modification of injected neutral beam profiles[1–5]. Since magnetic field ripple is a strong

function of position, increasing rapidly near the plasma edge, a broadened profile can lead

to an increase of stochastic trapped particle ripple loss[6]. In this work we examine ITER[7]

equilibria for unstable toroidal Alfvén eigenmodes (TAE) and reversed shear Alfvén eigen-

modes (RSAE) capable of growing to an amplitude producing significant modification of

the alpha particle or injected beam profiles. We have examined several ITER equilibria,

looking for those unstable to TAE and RSAE modes, produced either by the alpha par-

ticle or the beam distribution. It is found that generally most modes are stable, so the

number of unstable modes is small. The saturation amplitudes of the unstable modes are

determined theoretically. The cases most susceptible to TAE instability have a region of

reversed shear. A previous work[8] using ad hoc estimations for mode amplitude revealed

no losses due to TAE or RSAE modes. The present analysis, using theoretically predicted

mode amplitudes, is in agreement with these results for hybrid scenario equilibria, where the

most unstable modes have a toroidal mode number of n = 8. In contrast to this a case with

severe reversed shear, and a much larger spectrum of radially wider modes with n ranging

from 1 to 14 does exhibit some induced loss. In section II we outline the theory used to

obtain saturated mode amplitudes. In section III we review the methods used to determine

the mode-particle resonances responsible for producing profile modification. In section IV

we describe the toroidal field ripple and the particle distributions. In section V we discuss

the hybrid scenario equilibrium, and in section VI we examine an equilibrium with strongly

reversed shear. Conclusions are given in section VII.

II. MODE SATURATION

In previous work it has been possible to verify theoretically predicted mode spectra and

amplitudes with experimental observations for the study of the effect of these modes on
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particle distributions [2, 3]. The same study for ITER limits us to a theoretical prediction

of spectra and saturation amplitudes. The saturation of TAE modes, driven unstable by a

high energy particle distribution is due to a balance of nonlinear growth and damping effects

mediated by the appropriate modifications of the fast ion distribution near the resonances.

We employ the nonlinear theory of kinetic instabilities near threshold to calculate the

saturation level of TAE amplitudes assuming that each resonance of the unstable mode

with energetic ions is not overlapped with another mode in phase space[9] The theory is

embedded for routine runs into the hybrid MHD/kinetic NOVA-K code[10]. This code is

coupled to nonlinear simulation runs and resonance analysis using the guiding center code

ORBIT[2, 3]. This procedure is used here for the first time to produce the amplitude level

for TAE spectra in the equilibria describing ITER plasmas and to predict the effect of such

modes.

The amplitudes are computed in NOVA-K balancing the background damping with the

linear and nonlinear fast ion drives and averaging them over phase space. The expression for

the TAE amplitudes is derived in two asymptotic regimes connected to each other using an

interpolation formula, the asymptotic local limits having been obtained independently. The

two regimes differ in the ratio ωb/νeff , which is much smaller or larger than unity, where νeff

is the effective collision frequency and ωb is the particle trapping frequency in the perturbed

fields of the mode[10]. The interpolation formula is

γd
γL

=
[

1 + 0.57U (Γ) / (1 + 1.45/U (Γ))1/3
]−1

, (1)

where the bar means phase space averaging over the mode structure with the local contri-

bution to the growth rate used as weighting factor in the averaging, Γ is the phase space

coordinate of the particle location, and U (Γ) = (ωb/νeff )
3.

It was noted that the above equation works well especially in the near threshold regime

whereas in the regime when the amplitude of the mode is strong it slightly deviates from

the numerically obtained amplitudes. In the regimes of interest the most relevant case is

when γd/γL . 1 where the application of Eq. 1 is justified.
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III. RESONANCES

Instability is not sufficient to predict the effect of a given mode on the driving particle

distribution. It is necessary to know the mode amplitude, the size of the phase space islands

produced by the saturated mode, and to ascertain whether the possibility of overlap can lead

to avalanche and large scale profile changes. A numerical simulation by following particle

trajectories in the presence of a spectrum of modes reveals losses and profile modification,

but does not establish which modes are responsible for the interactions.

The interaction of particle distributions and MHD modes can be studied in the guiding

center approximation. Using the guiding center drift approximation a particle orbit in

an axisymmetric system is completely described by the values of the toroidal canonical

momentum Pζ , the energy E and the magnetic moment µ. Particle spatial coordinates of

the guiding center are given by ψp, θ, ζ, respectively the poloidal flux coordinate, and the

poloidal and toroidal angles. The magnetic field is given by

~B = g∇ζ + I∇θ + δ∇ψp, (2)

and in an axisymmetric equilibrium using Boozer coordinates g and I are functions of ψp

only[15].

The guiding center Hamiltonian is

H = ρ2
‖B

2/2 + µB + Φ, (3)

where ρ‖ = v‖/B is the normalized parallel velocity, v‖ is the particle velocity parallel to the

magnetic field, µ is the magnetic moment, and Φ the electric potential. Canonical momenta

are

Pζ = gρ‖ − ψp, Pθ = ψ + ρ‖I, (4)

where ψ is the toroidal flux, with dψ/dψp = q(ψp), the field line helicity. The equations of

motion in Hamiltonian form are

θ̇ =
∂H

∂Pθ
Ṗθ = −∂H

∂θ

ζ̇ =
∂H

∂Pζ
Ṗζ = −∂H

∂ζ
. (5)

Equations for advancing particle positions in time, also in the presence of flute-like pertur-

bations of the form δ ~B = ∇×α~B with ~B the equilibrium field and α a function of ψp, θ, ζ,
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and t can easily be derived[15]. The guiding center equations including MHD perturbations

are realized using a fourth order Runge-Kutta algorithm in the code ORBIT[16].

The magnetic perturbation δ ~B = ∇×α~B exactly represents the cross field magnitude of

the perturbation, responsible for producing magnetic islands if the mode is non ideal, and

most important for the production of resonances for the ideal modes considered in this work.

It is simply related to the ideal MHD displacement ~ξ. In addition, using α to describe the

perturbation introduces an electric field parallel to ~B proportional to the mode frequency.

Since this is forbidden in ideal MHD, a potential must be introduced to cancel this field if

the α form is to represent an ideal perturbation. Expand α in a Fourier series of the form

α =
∑

m,n αm,n(ψp)sin(nζ−mθ−ωt). Now add an electric potential Φ to cancel the parallel

electric field induced by d ~B/dt, with

∑

m,n

ωBαm,nsin(nζ −mθ − ωt) − ~B · ∇Φ/B = 0, (6)

giving a very simple expression if one uses Boozer coordinates with I independent of θ,

(gq + I)ωαmn = (nq −m)Φmn. We also find that alpha is simply related to the cross field

component of the ideal displacement.

αmn =
(m/q − n)

(mg + nI)
ξψmn. (7)

In the present version of NOVA-K the data for the ξ(ψp) eigenfunctions is passed to

ORBIT rather than the data for αmn(ψp). This is numerically preferable because of the

singularity arising when constructing ξ(ψp) from αmn(ψp) due to numerical misalignment of

the zeros in nq −m and αmn(ψp).

The magnetic moment µ is conserved by the interaction of a particle with a mode with

frequency much smaller than the cyclotron frequency, so only Pζ and E are modified by

interaction with it. For a perturbation of a single n the Hamiltonian is a function of the

combination nζ − ωt. Then from Ṗζ = −∂H
∂ζ

and dE
dt

= ∂H
∂t

, we find that for fixed n we

have E−Pζω/n = constant in time, simply a statement of energy conservation in the mode

frame.

It is fairly easy to assess the effect of a given mode on a particle distribution by examining

a Poincaré plot for a particular choice of either co-passing and trapped or counter-passing

particles, which we refer to as a kinetic Poincaré plot to distinguish it from a plot of the

magnetic field. Points are plotted in the poloidal cross section whenever nζ − ωnt = 2πk
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with k integer. The toroidal motion then gives successive Poincaré points in the poloidal

cross section ψp, θ, or better, since Pζ is constant in the absence of perturbations, the Pζ , θ

plane. Individual modes produce islands in the phase space of the particle orbits, which

through phase mixing produce local flattening of the particle distribution. In previous work

methods have been developed for scanning the whole distribution space to discover important

resonances[17, 18], and these techniques have been used to find the locations of resonance

islands produced by a given mode spectrum for ITER discharges.

Only through resonance can small amplitude waves modify a particle distribution. With-

out resonance the trajectories in phase space occupy Kolmogorov Arnold Moser[14] (KAM)

surfaces that are topologically equivalent to nonintersecting planes. Excursion from the

original drift surfaces is proportional to the mode amplitude for nonresonant motion, but

proportional to the square root of the amplitude for resonances, and thus for small am-

plitudes modes only resonances are important. A Poincaré point, indicating one passage

through the wave, which is a function of nζ−mθ−ωnt, occurs when nζ−ωnt = 2πk, with k

integer. For there to be m′ periodic fixed points in θ we also require ∆θ = 2πl/m′ between

successive points with l integer. Here m′ is the number of islands in a poloidal cross section

Poincaré plot. Thus the particle can return to receive the same impulse from the wave by

passing through the fixed finite set of θ values, for those values of m in the perturbation

that are also consistent with the number of islands poloidally. The helicity of the resonance

is then

h(Pζ , E, µ) =
∆ζ − ωn∆t/n

∆θ
=
m′

nl
, (8)

which must be rational, where ∆ζ, ∆θ, ∆t refer to one transit. For qualitative understanding

only, use a low energy approximation for passing particles with ∆ζ = q∆θ. Further using a

large aspect ratio approximation find R∆ζ = v‖∆t giving

h = q

[

1 − ωnR

nv‖

]

. (9)

This equation displays the strong effect of the parallel velocity on the existence of resonances.

IV. TOROIDAL FIELD RIPPLE AND PARTICE DISTRIBUTIONS

We have also included the effect of toroidal magnetic field ripple, since it can assist in

producing losses of trapped high energy particles. ITER ripple is given by a document of
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FIG. 1: ITER ripple magnitude along the outer midplane.

the database of the magnetic field produced by TF coils, Ferromagnetic Inserts, and Test

Blanket Modules magnetized in toroidal and poloidal magnetic fields (15MA DT scenario

at burn)[7]. The data was fit by the following expression

δB

B
= d0e

√
(x−xr)2+brz2/wsin(Nφ), (10)

with X the major radius position, and Z the vertical coordinate. For ITER N = 18, xr = 500

cm, w = 43.5 cm, d0 = 3.16 × 10−6, br = 0.49. The magnitude of the ripple along the outer

midplane is shown in Fig. 1. Only near the plasma edge can the ripple be effective in

promoting trapped particle loss.

Monte Carlo representations of the expected slowing down alpha particle and beam par-

ticle distributions were obtained from TRANSP[11, 12] for the discharges used. The energy

distributions are shown in Fig. 2. The distributions are fitted analytically for use in NOVA-

K and directly provided for ORBIT simulations as lists of one million or more particles.

V. HYBRID SCENARIO

It is generally found that only equilibria with flat, or even reversed q profiles have a

significant spectrum of unstable TAE modes. The equilibrium and q profile for one hybrid

scenario case 40500T02 at t=350 sec, extensively studied in [13], are shown in Fig. 3.

Shown in Fig. 4 are the poloidal harmonics of an unstable TAE mode in the discharge
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FIG. 2: Alpha particle and beam distributions. At left the energy distributions from the Monte

Carlo particle lists, with n the density, scale arbitrary but equal for the two species, at right the

radial profiles.

FIG. 3: ITER equilibrium and q profile for a hybrid scenario discharge.

shown in Fig. 3, with a frequency of 56.5 kHz, toroidal mode number n = 8, and poloidal

harmonics ranging from m = 10 to 18. The magnitudes of the ideal displacement ξ are in

centimeters with a maximum value of 1.5× 10−3cm. Note that the mode is restricted to the

range of flux values corresponding to the region of reversed shear. No unstable global modes

were observed due to strong edge continuum and trapped electron collisional dampings.
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FIG. 4: Saturated TAE mode harmonics, for modes appearing in the hybrid scenario, n = 8,

10 ≤ m ≤ 18, f = 56.5 kHz. The magnitude of ξ is in centimeters.

Shown in Fig. 5, is a section of the E, Pζ plane from 1000 to 3000 keV showing all

resonances for alpha particles with µB0 = 100keV , ie deeply passing particles. Similar

results are found for all values of µB0 and hence pitch. The nearly vertical lines are domain

boundaries for particle types, the far left line being the last closed flux surface (W ) and the

far right line the magnetic axis (A). See [17, 18] or [15] for a more complete description of

these boundaries and the methods used in finding resonance locations.

Such resonances typically exist over a large range of energy, as is clearly shown, but

induced particle motion by the mode is only along lines given by E − Pζω/n = constant,

and only within a resonance, not along the nearly vertical resonance surfaces. One of these

lines along which the mode operates is shown between 2500 and 2800 keV , labelled P in the

E, Pζ plane. Also shown is a Poincaré plot of the alpha particle phase space in the presence

of the TAE mode along this line.

The resonance with the largest phase space island is the 12 island chain on the far

right, which exists for the full energy range examined, almost from 1 MeV to 3 MeV. Over

this whole range the island widths are small and approximately constant, as shown in the

Poincaré plot of Fig. 5. Note that the range of Pζ along which the Poincaré plots are

shown is not the whole plasma cross section, but includes those values for which the mode

amplitude is significant. For these plots the mode is that of Fig. 4, with the theoretically
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FIG. 5: Resonant modification of the alpha particle distribution with mode amplitude 10 times

predicted saturation level for the mode of Fig. 4. The figure on the left shows the E, Pζ plane

from 1000 to 3000 keV, µB0 = 100keV , with all resonances marked. The plasma edge is marked

W (wall), the axis A. On the right is a kinetic Poincaré plot along the line E − Pζω/n = constant

shown in the E, Pζ plane and labelled P. The distribution consists entirely of co-passing particles.

predicted saturated amplitude multiplied by a factor of 10. Even multiplied by a factor of 10

the perturbations produce only very small islolated islands, on the order of one millimeter

in width, with minimal possibility of modification of the distribution. Island size scales as

the square root of the mode amplitude, so these resonances are about one third this size if

the calculated perturbation amplitudes are used, and can be seen only using local restricted

Poincaré plots. In addition, the cyclotron radius of the alpha particles in this equilibrium

is approximately 3 cm, so the effect of these phase space islands would be additionally

diminished by the cyclotron motion as the mode inversed radial wavevector is comparable

with the gyroradius, which is not in ORBIT simulations.

Similar results are obtained for the beam particle distribution, again with islands too

small to produce a significant modification of the distribution.

VI. ADVANCED, OR REVERSED SHEAR SCENARIO

We now consider an advanced scenario equilibrium with strong shear reversal, where one

can expect the largest spectrum of TAE modes to occur The equilibrium and q profile for
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FIG. 6: Reversed shear equilibrium and q profile along the outer midplane.

FIG. 7: Examples of saturated TAE mode harmonics in the reversed shear equilibrium. Modes

present had toroidal and poloidal mode numbers in the range n = 1 − 14, 1 ≤ m ≤ 146. for a full

list of the unstable modes see Table 1. The magnitude of ξ is in centimeters.

scenario case 40000B11 at 250 sec, a strongly reversed shear equilibrium is shown in Fig. 6.

In Fig. 7 are shown some of the TAE modes resulting in this equilibrium. Some of the modes

with low toroidal mode numbers (n) are rather global in extent, and modes with higher n

values are more localized. Unstable modes with significant magnitude have n values ranging

from 1 to 14, with typically eight poloidal harmonics for each mode. The complete harmonic
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structure of these instabilities is listed in Table I. A total of 131 poloidal harmonics were

present in the numerical simulations with ORBIT.

We note that the advanced scenario is relatively more unstable to AEs due to in part

the elevated q profile and wide region of near zero shear. This is an important factor to

include in the analysis of such plasmas especially when this low shear region is located near

the strongest gradient of the α particle pressure profile.

In Fig. 8 is shown the total loss versus TAE amplitude in the reversed shear equilibrium,

where A = 1 is the value computed in NOVA-K, giving losses of a little over one percent

in a simulation of 4 msec. All harmonics are multiplied by the same factor A for these

simulations. The losses increase much more rapidly than linearly with mode amplitude be-

cause of stochastization caused by mode overlap. There are a sufficient number of localized

resonances so that an increase in amplitude can lead to island overlap and stochastic redis-

tribution of beam and alpha particles. More consistent analysis of saturation amplitudes in

the presence of mode overlap may come from a quasi-linear theory, which is beyond the scope

of this paper. But for the present work this is not relevant, since islands are small enough

that overlap of islands due to a single mode does not occur. The overlap of islands due

to two modes of different frequencies, examined in [17], is a significantly more complicated

problem.
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Table I. Modes in the Reversed Shear Scenario

Mode harmonics Amplitude kHz

1 1/1 - 7/1 1.7 × 10−2 137

2 9/2 - 17/2 3.2 × 10−3 156

3 17/2 - 23/2 1.7 × 10−3 72.9

4 26/4 - 34/4 6.9 × 10−4 148

5 37/6 - 45/6 2.3 × 10−3 85.3

6 49/8 - 57/8 9.8 × 10−4 154

7 62/11 - 70/11 6.9 × 10−4 148

8 71/12 - 79/12 6.9 × 10−4 156

9 80/12 - 88/12 1.5 × 10−3 150

10 90/12 - 98/12 2.0 × 10−3 79.3

11 99/12 - 107/12 2.1 × 10−4 71.4

12 110/14 - 118/14 8.8 × 10−4 148

13 120/14 - 128/14 9.8 × 10−4 151

14 128/14 - 136/14 3.4 × 10−4 144

15 138/14 - 146/14 1.5 × 10−3 84.2

There is some effect of ITER field ripple on the mode induced loss. Also shown in Fig.

8 is the original particle beta distribution in minor radius as well as the loss distribution

of particles in the reversed shear equilibrium as a function of perpendicular energy µB and

total energy, with and without ripple. The inclusion of ripple produces larger losses in the

region of large µB, corresponding to trapped particles, which are susceptible to stochastic

ripple transport. The ripple has an effect primarily on the loss channel of particles with

energy a little over 2 MeV and with µB greater than 2 MeV .

From Fig. 8 we see that losses are peaked at µB ≃ 800keV and at µB ≃ 1700keV .

We now turn to an examination of the resonances produced by these modes in order to

understand the loss process, examining only these two values of µB where the losses are

concentrated. ORBIT produces plots of the location of resonances in the plane of Pζ , E

for fixed µ for individual modes, consisting of a single n value and frequency, but including

all poloidal harmonics[17, 18]. Losses turn out to be produced by very few of the modes

involved, most modes only giving rise to profile modification deep within the plasma.
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FIG. 8: Top left, loss vs TAE amplitude, with A = 1 the value computed by NOVA-K, giving a

loss of slightly over one percent in a period of 4 msec. Top right is the radial distributions of beam

and alpha particle beta. The lower plots show histograms of loss vs µB and E with and without

ripple, showing increase of deeply trapped particle loss due to combined effect of modes and ripple.

In Fig 9a are shown the resonance locations of all modes for particles with µB = 800keV ,

with those for co-moving passing and trapped particles shown in black and those for counter-

moving particles in red. The loss boundary for the co-moving particles is the right half of the

parabola labeled R, and that for counter-moving particles the left half of the smaller parabola

labeled L. We note that resonances for the co-moving passing particles are all deep in the

plasma core, far away from the loss boundary, whereas the resonances for the counter-moving

passing particles are at the loss boundary, with strong losses predicted around 1200 keV ,
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FIG. 9: Mode resonances for all modes, for both the co-moving and counter-moving passing parti-

cles and trapped particles, in (a) for µB = 800keV and in (b) for µB = 1700keV . The co-moving

and trapped particle resonances are shown in black and the counter-moving resonances in red. The

resonance of the co-moving particles are far away from the loss boundary (R), but some of the

resonances for the counter-moving particles are located at the loss boundary (L).

many into the domain of trapped loss particles (TL), and also above 2000 keV . Essentially

all of these losses are due to the global n = 1 mode. The higher n value modes produce the

resonances located deep within the plasma, but do not contribute to loss. There are also

resonances for trapped particles (T) near the loss boundary at the lower limit of E = 800keV .

Since this simulation was for µB = 800keV energies below this are not possible, but losses at

lower energies are most probably present for lower values of µB, contributing to the observed

losses peaked at 500 keV .

In Fig 9b are shown the resonance locations of all modes for particles with µB = 1700keV ,

with those for co-moving passing and trapped particles shown in black and those for counter-

moving particles in red. The loss boundary for the co-moving particles is the parabola

labeled R, and that for counter-moving particles the smaller parabola labeled L. Again we

note that resonances for the co-moving passing particles are all deep in the interior of the

plasma, far away from the loss boundary, whereas the resonances for the counter-moving

passing particles are at the loss boundary, with strong losses predicted around 2500 keV ,

many into the domain of trapped loss particles (TL). Large differences in the existence of
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FIG. 10: Kinetic Poincaré plots showing resonances producing losses in the counter-moving passing

domain(a) due to the 137 kHz mode with n = 1, and in the trapped domain (b) due to the 73

kHz mode with n = 2.

resonances are expected, see Eq. 9, but a simple reason for the co-moving particles to

resonate only deep within the core is not obvious. Only the low n modes, with n = 1, 2

contribute to the loss of counter-moving passing particles, the higher n value modes only

produce resonances with these particles deep within the plasma core.

There are also resonances in the trapped particle domain (T), along the boundary with

trapped loss, leading to significant loss of trapped particles. All modes contribute to this

loss of trapped particles. We conclude that the only induced losses by the modes are on

the counter-passing population and the trapped particle population, with co-moving passing

particles not participating in mode resonance leading to loss. Furthermore the low n modes

are the most dangerous, and in particular the global n = 1 mode produces most of the loss

of the counter passing particles.

In Fig. 10 are shown examples of the resonances producing loss in the counter passing

domain, due to the 137 kHz n = 1 mode (a), and in the trapped domain, due to the 73 kHz

n = 2 mode (b). Kinetic Poincaré plots are capable of examining only a single mode at a

time, along a line E−Pζω/n = c. The plot for the counter passing trajectories was initiated

at E = 1200 keV . In the counter passing domain many bands of islands are observed near

the plasma edge, corresponding to the resonant domain seen in Fig. 9, producing direct loss
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of particles due solely to the n = 1 mode. The plasma boundary is at Pζ/ψw = -1.1 and

all points to the left of Pζ/ψw = -.93 were directly lost indicating that this region is fully

stochastic. Farther away from the plasma edge good KAM surfaces exist, and thus there is

no loss from deeper within the plasma. The trapped particle plot, initiated at 1600 keV ,

shows a more complex structure, with a large number of small stochastic resonance bands

extending some distance from the plasma boundary, again capable of producing loss. In

addition similar structure is seen for several modes with n > 1. The combined effect of these

modes produces the large band of resonances seen in Fig. 9, leading to losses from some

distance within the plasma.

VII. CONCLUSION

An examination of proposed ITER hybrid equilibria and a calculation of spectra of satu-

rated TAE modes produced by alpha particle and beam profiles shows that only very small

nonintersecting resonance islands are produced, much too small to make noticable changes

in the alpha or beam profiles, and in fact much smaller than the cyclotron radius of the

alpha particles. The larger size of ITER and the large field strength, and the consequent

small drift excursions of orbits produces resonant islands much smaller and less numerous

than what was observed in DIII-D[2, 3]. We conclude that for these equilibria the threat of

profile modification by TAE instabilities is nonexistent.

But in the case of an advanced reversed shear equilibrium the situation is somewhat

different. Here losses of over one percent can be produced by the combined effect of the

predicted TAE mode spectrum and magnetic field ripple. The ripple only adds a small

amount to the induced losses, but it is worth remembering that these results rely on the

TRANSP deduced alpha particle profile and the predicted magnetic shim reduced ripple

magnitude. If this profile is significantly broadened by sawtooth activity or if the ripple

is in fact larger the results would be very different. Also if in fact the estimates for TAE

mode saturation are too small the losses and profile modification could be much stronger. An

analysis of the existing mode-particle resonances determined which modes are responsible for

the profile modification. We find that losses are entirely due to resonance with the counter-

moving and trapped particle populations, with co-moving passing particles participating in

resonances only deep within the plasma, providing some profile modification but not leading
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to loss. The dominant loss of counter passing particles is produced by the global low n

modes, predominantly the large n = 1 mode, with all modes participating in the induced

loss of trapped particles.

We should note that the method used is based on the linear theory and inheritably

perturbative, that is the TAE/RSAE spectrum and mode structure are given by the MHD

theory and their modifications by the particle distributions are not taken into account.

This is justified by the relatively low values of their amplitudes used as predicted by the

nonlinear theory and by the absence of the wave-particle resonance overlapping. Because

of this low amplitude approximation the used approach excludes such known phenomena

as EPMs (Energetic Particle Modes). For them to be included one would need to rely

on strong modifications of the mode structures such as in the case of n=m=1 fishbones

or nonperturbative AEs [19], which have characteristic large mode amplitudes and beyond

the perturbative approach. We also do not consider such nonperturbative effects as the

possible phase alignment between the modes. This again seems unlikely given the low mode

amplitude and the isolation of the separate mode particle resonances.

The offered approach to the fast ion relaxation work should benefit from the studies of

the nonlinear evolutions of the Alfvenic modes to confirm or to question the applicability

of the used perturbative theory. The modification of the TAE/RSAE mode structures and

spectrum can be addressed if important. The most natural way for further studies would

be to develop a quasilinear theory such as described in Ref [20].
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