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This paper presents a calculation of neoclassical toroidal viscous (NTV) torque in-

dependent of large-aspect-ratio expansions across kinetic regimes. The Perturbed

Equilibrium Nonambipolar Transport (PENT) code was developed for this purpose,

and is compared to previous combined regime models as well as regime specific limits

and a drift kinetic δf guiding center code. It is shown that retaining general ex-

pressions, without circular large-aspect-ratio or other orbit approximations, can be

important at experimentally relevant aspect ratio and shaping. The superbanana

plateau, a kinetic resonance effect recently recognized for its relevance to ITER, is

recovered by the PENT calculations and shown to require highly accurate treatment

of geometric effects.
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I. INTRODUCTION

The toroidal rotation of magnetically confined plasma in tokamaks has important stabi-

lizing effects, and the control of this rotation is of great importance in designing the next

generation of fusion experiments such as ITER and future reactors. It has long been known,

however, that magnetic nonaxisymmetries in tokamaks as small as δB/B ≈ 10−4 can have

significant effects on the rotation as increased neoclassical toroidal viscosity (NTV) leads

to increased toroidal flow damping1–3. Recently, these effects have received much attention

as a potential method of rotation and stability control using applied nonaxisymmetric per-

turbations to alternately decrease or increase the plasma rotation4–6. It is thus critical to

develop models that can accurately predict the effects of non-axisymmetry in tokamaks on

toroidal rotation.

When magnetic field strength cannot be expressed as a function of a flux surface label ψ

and distance along a field line l, such that B = B(ψ, l), the action J =
¸
dlMv‖ of a particle

with mass M and velocity parallel to the field lines v‖ is not conserved on flux surfaces and

the particle experiences radial drifts across flux surfaces7. This radial transport depends on

the particle species and is not intrinsically ambipolar. The resulting nonambipolar transport

produces radial currents that in turn produce J×B toroidal torque, where J is the current

density. This torque from nonambipolar transport in tokamaks is called neoclassical toroidal

viscous (NTV) torque, and been observed to be the dominant influence on rotation in the

presence of the non-resonant nonaxisymmetric perturbations3,4,8.

Theoretical predictions of the NTV torque, however, are nontrivial due to detailed phase

space structure that is dependent on different particle orbits, precessions, and collisions. A

number of theories have been developed in limited regimes to simplify or ignore one or more

such dependencies. The effects of passing and trapped particles are studied separately and

various trapped particle particle effects are also studied separately in many different collision-

ality (ν) regimes including the 1/ν regime, ν_
√
ν regime, superbanana-plateau regime, and

superbanana regime, or combined using approximate connection formulae assuming pitch-

angle collisions9. Recognizing the practical importance of overlapping between the regimes,

a combined NTV model has been developed using a Krook collision operator but including

all bounce and precession orbits10. The combined theory, valid across the range of kinetic

regimes, is fully implemented in general aspect ratio and shaped plasmas by the Perturbed
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Equilibrium Nonambipolar Transport (PENT) code developed in conjunction with the Ideal

Perturbed Equilibrium Code (IPEC)11,12 and initial NTV torque predictions are presented

in the following sections.

This paper is organized as follows. Section II outlines the combined NTV theory, includ-

ing a complete treatment of pitch angle dependencies in the bounce frequency, precession

frequency and perturbed action. The validity of previous circular large-aspect-ratio and

orbit approximations for trapped particles is discussed in Sec. III. Finally, the generalized

PENT computation is shown to recover expected limiting behavior for superbanana plateau

more precisely compared to the previous approximations in Sec. IV. Section V contains

concluding remarks.

II. COMBINED NTV THEORY

In this section we derive an analytical form of the toroidal torque that arises from neoclas-

sical ambipolar transport, often referred to as neoclassical toroidal viscous (NTV) torque,

valid across kinetic regimes. The results reproduce those previously developed in a re-

duced large-aspect-ratio (RLAR) limit10,13, but are given here in their most general form.

The derivation thus serves an important purpose in orienting the reader to the geometry

dependent quantities and their ultimate role in the NTV torque. The structure of the

derivation will be as follows: First, a general form for toroidal torque in magnetic coor-

dinates is expanded using a anisotropic perturbed pressure tensor and linear expansion of

the non-axisymmetric equilibrium quantities. Next, the torque is written in its phase space

representation and closed using the first order linearized drift-kinetic equation. The zeroth

order drift-kinetic solution, a Maxwellian distribution function, is used in the final step to

connect to familiar offset rotation physics4,14.

The general relation, given by Boozer15, for toroidal torque in a closed magnetic confine-

ment device is,

Tϕ =

ˆ
d3x

(
∂x

∂ϕ
· ∇ ·
←→
Π

)
= −1

2

∑
ij

ˆ
d3x

∂gij
∂ϕ

Πij, (1)

where g is the coordinate metric tensor and
←→
Π is the pressure tensor with equilibrium

←→
Π = 0 on magnetic surfaces. We now introduce a simple tensor pressure, in which the

parallel and perpendicular pressures are distinct
←→
Π =

(
δp‖ − δp⊥

)
b̂b̂ + δp⊥

←→
I 15,16. We
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define our field in Clebsch representation with magnetic coordinates (ψ, ϑ, α) such that

B = ∇α×∇ψ where ψ is the poloidal flux and the poloidal angle is defined as relating the

toroidal angle α to the standard toroidal angle φ = α + q(ψ)ϑ with the safety factor q17,18.

This gives,

b̂b̂ij =

(
∂x
∂ϑ
· ∂xi
∂x

JB

)(
∂x
∂ϑ
· ∂xj
∂x

JB

)
=

δiϑδ
j
ϑ

(JB)2 ,

and,

gϑϑ =
∂x

∂ϑ
· ∂x

∂ϑ
= (JB)2 ,

where we have introduced the Jacobian J −1 = ∇ψ×∇ϑ · ∇α. The torque equation is thus

expanded to,

Tϕ = −1

2

∑
ij

ˆ
d3x

(
δp‖ − δp⊥

)
(JB)2

∂

∂ϕ
(JB)2 + δp⊥

←→
I
∂gij
∂ϕ

, (2)

which can be further simplified noting the identities
←→
I = gij and

∑
ij g

ij∂gij/∂ϕ =

(2/J )∂J /∂ϕ,

Tϕ = −
ˆ
d3x

(
δp‖ − δp⊥

) 1

B

∂B

∂ϕ
+ δp‖

1

J
∂J
∂ϕ

. (3)

The equilibrium Jacobian and magnetic field are assumed axisymmetric with small non-

axisymmetric perturbations. To first order, these perturbed quantities are the change in

flux surface arc-length J = J (ψ, ϑ)(1 + ∇ · ξ) and the Lagrangian perturbed field B =

B(ψ, ϑ) + δB(ψ, ϑ, ϕ). This gives,

Tϕ = −
´
d3x

[(
δp‖ − δp⊥

) 1

B

∂δB

∂ϕ
+ δp‖

∂

∂ϕ
(∇ · ξ)

]
,

(4)

where the non-perturbed quantities are all the zeroth order axisymmetric values and the

integrand -a second order quantity- represents the toroidal torque in a non-axisymmetric

perturbed equilibrium.

Much of the important physics associated with NTV torque is a result of kinetic effects,

thus far absent from this derivation. Inserting the phase space integral definitions of each

perturbed pressure, δp‖ =
´
d3vMv2

‖f1 and δp⊥ =
´
d3vMv2

⊥f1/2 where f1 is the perturbed

distribution function, into (4) and converting to energy coordinates (E = Mv2/2, µ =

Mv2
⊥/2B) we arrive at a more insightful form of the toroidal torque,
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Tϕ = − 4π

M2

ˆ
d3xdµdEf1

JBM
v‖

[
(2E − 3µB)

∂

∂ϕ

δB

B

+ (2E − 2µB)
∂

∂ϕ
(∇ · ξ)

]
. (5)

Note that the second term in the bracket above corresponds to the arc-length change in

the perturbed equilibrium, but is often ignored in the large-aspect-ratio NTV approximation

with µB ≈ E for trapped particles.

At this point, it is necessary to solve for the perturbed distribution function. An appropri-

ate model for the ideal perturbed equilibrium is the bounce averaged, first order drift-kinetic

equation19. Explicitly, the drift-kinetic equation,

v‖ · ∇fi1 + vαdi
∂fi1
∂α
− Ci1fi1 = −vψdi

∂fi0
∂ψ

, (6)

becomes, 〈
−2πi(`− σnq)∂h

∂ϑ
v‖

B

B
· ∇ϑ− 2πinvdi · ∇α + νi

〉
δf`

=

〈
−P`−1vdi · ∇ψ

∂fi0
∂ψ

〉
,

(7)

where the subscript i refers to the particle species, numeric subscripts refer to small gyro-

radius ordering, vd is the the drift velocity, and a simple Krook collision operator Cf = −νif

is assumed. The angular brackets in Eq. (7) refer to the bounce average defined by 〈A〉b ≡¸ (
Adl/v‖

)
/
¸ (

dl/v‖
)

= ωb

2π

¸
dϑAJB/v‖ with the bounce frequency ωb ≡ 2π/

¸
dϑJB/v‖.

Note that the parallel electric field term for electrons has not been included in Eq. (6)

since the Ware pinch effect is annihilated by the subsequent bounce averaging. The bounce

average isolates the non-axisymmetry driven perturbation to the distribution20, and is well

defined only for those species with closed orbits such that,

fi1 = fi1(v, ψ)e−i2πnαe−i2π(`−σnq)h(v,ϑ) = δf`P`. (8)

Here, σ = 1(0) for passing(trapped) particles, h(v, ϑ) =
(´ ϑ

0
dθJBvαd /v‖

)
/
¸
dθJBvαd /v‖

is the α-phase of a particle as a function of ϑ, n is the toroidal mode number of the non-

axisymmetric perturbations, `−σnq is the number of toroidal transits after which the particle
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returns to an original point in space, and the phase-factor P` = e−i2π(`−σnq)h contains all the

ϑ dependence. In writing Eq. (7) we have assumed decoupling between `-species, which can

be strictly proved in the circular large-aspect-ratio limit with ωE � ωD.

The drift velocity in Eq. (7) is the sum of gradient, electric, and curvature drifts,

vd =
B

eB2
×
(
µ∇B + e∇Φ +Mv2

‖
[(B · ∇) B]

B2

)
(9)

=
v‖
B
∇×

(
ρ‖B

)
−
v‖
B3

ρ‖ [B · (∇×B)] B, (10)

where e is the charge of the particle species, Φ is the electric potential, and we have defined

ρ‖ ≡ Mv‖/eB. In writing Eq. (10) from (9) we used the conservation of total energy (E),

∇E = 0 = Mv‖∇v‖ + µ∇B + e∇Φ, and a few vector formulae.

Inserting Eqs. (8) and (10) into Eq. (6), we obtain,

[−iωb(`− nq)− in(ωE + ωD) + νi] δf` =
ωb

2πe

∂δJ−`
∂α

∂fi0
∂ψ

. (11)

Here we have defined the electric and magnetic precession frequencies as,

ωE ≡ −2π
∂Φ

∂ψ
, (12)

and,

ωD ≡ 2π

〈(
E − 3

2
µB

)
2

eB

∂B

∂ψ
+ (E − µB)

2

eJ
∂J
∂ψ

〉
b

,

(13)

as well as the variation in the action,

∂δJ±`
∂α

≡M

ˆ
dϑP±1

` δ
(
v‖JB

)
, (14)

=

˛
dϑ
JB
v‖
P±1
`

[
(2E − 3µB)

1

B

∂δB

∂α
+

(2E − 2µB)
1

J
∂

∂α
∇ · ξ

]
. (15)

Again, the bounce-averaging process has eliminated the ∂/∂ϑ terms from vα,ψdi normally

associated with axisymmetric neoclassical transport. It should be noted that by doing so,

we make the momentum transport solution inherently a nonlocal quantity. The solution

(11) is valid for both trapped and passing particles, and contains contributions from curva-

ture drifts and the perturbed arc-length in ωD and δJ` often ignored in large-aspect-ratio
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approximations10,21. The dependencies on aspect ratio and shaping enter the torque calcu-

lation through these terms.

The bounce averaged torque is given by inserting the non-axisymmetry driven perturbed

distribution (11) in the phase space integral form of the toroidal torque (5),

Tϕ =
1

eM2

ˆ
dψdαdµdER`

∣∣∣∣∂δJ`∂α

∣∣∣∣2 ∂fi0∂ψ
. (16)

Here, the resonant operator R` = ωb/ {i [(`− σnq)ωb − n (ωE + ωD)]− νi} contains the im-

portant bounce harmonic resonance physics10,13 discussed extensively in the following sec-

tions. The well known offset rotation is explicitly included in the resonant operator when

introducing the zeroth order drift-kinetic solution Maxwellian,

fi0 =
N

(2πT/M)3/2
exp

(
−E − eΦ

T

)
, (17)

where N is the species density, T is the species temperature and the density, temperature

and electric potential are all functions of the flux variable ψ only. The derivative of this

distribution with respect to ψ is taken at constant total energy,

∂fi0
∂ψ

∣∣∣∣
E

= − ef0

2πT

[
ωE + ω∗N + ω∗T

(
E

T
− 3

2

)]
. (18)

Placing Eq. (18) in Eq. (16), assuming perturbations of the form δA ∼ einα, and making a

final conversion to normalized energy coordinates (x = E/T,Λ = µB0/E) gives,

Tϕ = − n2

√
π

R0

B0

ˆ
dψNT

ˆ
dΛω̄b

∣∣δJ̄`∣∣2 ˆ dxRT`, (19)

with,

RT` =

[
ωϕ + ω∗T

(
x− 5

2

)]
x5/2e−x

i [(`− σnq)ωb + n (ωE + ωD)]− νi
. (20)

Here, B0 refers to the magnitude of the magnetic field on axis and both ω̄b = ωbR0/
√

2xT/M

and δJ̄2
` = δJ2

` /2xTMR2
0 are unit-less quantities. Note that this expression is valid for a

single, Maxwellian particle species, and should be summed over species if more than one

significantly contributes to the torque. The toroidal rotation frequency has been included
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Figure 1. Solov’ev equilibria with κ = 1, q0 = 2.2, B0 = 1T and R0 = 1m. The equilibria have

limited shaping, and approach the circular limit for εa → 0.

in Eq. (20) using radial force balance neglecting poloidal rotation ωϕ = ωE + ω∗T + ω∗N
14,22

in order to explicitly show that the resonant operator -and ultimately the torque on a given

magnetic surface- is proportional to the rotation with an offset value.

The result is left in its complex form since the imaginary component of the torque has been

shown to be proportional to the perturbed kinetic energy, 2nδWk
13. The calculations at the

heart of PENT, therefore, is physically equivalent to those done by stability codes MARS-

K23,24, MISK25,26, and MISHKA27 in the case of static, marginally stable (|Tϕ| � |2nδWk|)

resistive wall modes.

The final form given by Eqs. (19) and (20) represents an expression for the toroidal torque

and perturbed kinetic energy driven by non-axisymmetric perturbations to an axisymmetric

equilibrium valid across all kinetic regimes. Although it uses a simplified collision operator,

it contains important bounce harmonic resonance physics that can dominate the torque in

experimental devices. Here, in its complete form, the resonance operator is a function of both

energy and pitch (x,Λ), such that geometric shaping or low aspect ratio effects may influence

the NTV through sensitive resonance conditions. Capturing these kinetic resonances in the

true geometric shaping of modern experiments is an important computational task, and is

the subject of the following section.
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III. PITCH ANGLE DEPENDENCIES AND GEOMETRIC EFFECTS

The PENT code has been developed to calculate the NTV torque from Eqs. (19) and

(20), without any geometric simplifications in the bounce frequencies, precession frequencies

or perturbed action. The combined theory presented in Ref.10 used circular large-aspect-

ratio approximations and further removed pitch (Λ) dependence of bounce and magnetic

precession frequencies,

ωb ≈
√

εxΛ
2
ωt

π
K(k)
≈ π

4

√
ε

2
ωt
√
x, (21)

ωD ≈
q3Λ

ε
x

[
E(k)

K(k)
− 1

2

]
≈ q3ω2

t

4εωg
x. (22)

Here ε is the inverse aspect ratio, ωt is the transit frequency, ωg is the gyro-frequency, K and

E are the complete elliptic integrals of the first and second kind respectively and their argu-

ment is k =
√

(1− Λ + εΛ) / (2εΛ). The reduced large-aspect-ratio (RLAR) approximations

on the far right correspond approximately to the Λ-averaged circular larger-aspect-ratio ap-

proximations for trapped particles that they follow10. In practice, these were designed to

separate the computationally demanding double integration in (x, k) space of the resonant

operator assuming ωE >> ωD in most applications. The PENT code, in contrast, solves the

full bounce averaged expressions for both frequencies throughout the phase space populated

by passing and trapped particles.

The large-aspect-ratio approximation can deteriorate as the aspect ratio approaches unity

and/or shaping is introduced into the plasma equilibrium. For demonstration, the NTV

torque from trapped ions as calculated using the full and RLAR formalisms in an aspect

ratio scan of Solov’ev equilibria is presented here. The Solov’ev equilibria are analytic

solutions of the Grad-Shafranov equation for which the current and pressure profiles are

fully defined by the elongation κ, safety factor on axis q0, field on axis B0, major radius R0

and inverse aspect ratio εa = a/R0 where a is the minor radius28,29. The equilibria used here

have common parameters κ = 1, q0 = 2.2, B0 = 1T, R0 = 1m, and are henceforth referred

to solely by their inverse aspect ratio. Figure 1 shows flux surfaces for three such equilibria.

Note that the Solov’ev solution is defined for εa < 0.5, as shaping at low aspect ratio weights

the boundary towards the R = 0 vertical axis.

The ratio of the NTV torque calculated using the full calculation in PENT to the RLAR

approximation across a scan of the inverse aspect ratio is presented in Fig. 2. In each case, the
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Figure 2. The ratio of NTV torque as calculated by PENT and the RLAR approximation approaches

unity as the inverse aspect ratio εa approaches 0, but becomes aggressively large εa approaches its

maximum value of 0.5.

Solov’ev equilibrium is perturbed in IPEC using an applied 1 Gauss non-resonantm/n = 2/1

mode on the outermost flux surface where m and n are the poloidal and toroidal harmonics

respectively. The electron and deuterium ion density and temperature profiles, as well as

the electric precession profiles are set constant as n(ψ) = n0(1 − 0.7ψ), P (ψ) = P0(1 − ψ)

and ωE = ωE0(1 − ψ) with on-axis values n0 = 1.12 × 10−20m−3, P0 = 2.33 × 104Pa, and

ωE0 = 0.63kHz. The collisionality in this case is near the 1/ν collisionality regime9. As the

inverse aspect ratio approaches 0, the equilibria become cylindrical and the RLAR agrees

well with the PENT calculation. At larger εa, however, both the large-aspect-ratio and the

circular approximations begin to break and the RLAR torque significantly underestimates

the total torque predicted by the combined theory without geometric simplification.

A closer look at the simplifications (21) and (22) in the Solov’ev aspect ratio scan provides

insight into the physics missed in the RLAR approximation. Figure 3 shows the bounce and

precession frequencies in the RLAR and circular large-aspect-ratio approximations compared

to the full bounce-averaged values for all trapped particles on the ψ = 0.66 surface for repre-

sentative large and low aspect ratio Solov’ev equilibria. Note that the RLAR approximation

ignores strong Λ-dependencies. In a large-aspect-ratio case such as εa = 0.05, this reduction

can be valid for ωb in average although a subtle interplay between the disappearing ωb and

potentially large |δJ`|2 for weakly trapped particles is not accounted for. As εa increases,

ωb calculated with the full geometry can largely differ from the large-aspect-ratio and thus
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Figure 3. The pitch angle dependent profiles of the bounce (top) and magnetic precession (bottom)

frequencies in PENT (solid), the circular large-aspect-ratio approximation (dashed) and the RLAR

approximation (dotted) for trapped ions on the ψ = 0.66 surface of two Solov’ev equilibria. The

normalized axis Λ̄ = (Λ−B0/Bmax)/(B0/Bmin−B0/Bmax) increases from 0 at the trapped-passing

boundary to 1 at the deeply trapped limit.

further from the RLAR approximation. The deviation at higher εa is also severe for ωD. The

RLAR approximation ignores the sign change between the deeply and marginally trapped

species and thus will be unable to capture a limiting behavior for ωE → ωD, and it is shown

that even the circular large-aspect-ratio approximation can become significantly incorrect

for εa approaching its maximum. The next section looks in more detail at how retaining the

Λ dependence of these profiles can play an important role in describing resonance particles

precisely.

IV. PITCH ANGLE RESONANCE AND THE SUPERBANANA PLATEAU

Bounce-harmonic resonant (BHR) particles, satisfying (`− σnq)ωb − n (ωE + ωD) ≈ 0,

have been shown to dominate the nonambipolar transport and resulting toroidal torque in

kinetic regimes relevant to present day and future tokamaks10,30,31. The precision of the ωb

and ωD representation in (x,Λ) becomes critical when νi → 0 since then the integration of
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the resonant operator becomes stiff and essentially produces a δ function for BHR particles.

One such regime, the so-called Superbanana Plateau (SBP)5,21,32–34, is expected when ωE

is as small as ωD and νi → 0 < |ωD|. An analytic expression for SBP NTV characterized by

precession resonances (` = 0 BHR) has been derived in Ref.21 using circular large-aspect-

ratio approximations for ωb, ωD, and δJ as well as a Krook collision operator (known to be

accurate in this regime35,36).

The analytical SBP approximation requires an effective collisionality less than the pre-

cession frequency away from the kinetic resonance, whereas an effective collision frequency

much larger than the precession frequency results in 1/ν regime behavior37. Here, the effec-

tive collisionality will be identified by the normalized parameter ν∗ = νiRq/(ε
3/2vth), where

vth =
√

2T/M is the species thermal velocity.

Figure 4 shows the torque as calculated in PENT and the RLAR approximation as a

function of ν∗ across the SBP and 1/ν regimes for a perturbed Solov’ev equilibrium consistent

with those in Sec. III and εa = 0.3. The torque is calculated over the entire plasma. The

PENT profiles peak near the rational surface at ψ ∼ 0.66, and ν∗(ψ = 0.66) is used for the

axis in Fig. (4). Only the precession resonances (` = 0 species) are taken into account for

consistency with21, and small ωE ∼ O (ωD) is chosen to eventually reach SBP limits and to

compare with the analytic SBP calculation. One can see that the RLAR and PENT torque

calculations agree in the high-collisionality limit, but the RLAR calculation fails to capture

the plateau behavior expected at low collisionality. On the other hand, it is also shown that

the PENT plateau torque is a factor of ∼ 4 lower than the SBP calculation. In order to

compare these semi-analytic results with a more fundamental computation, the drift-kinetic

δf guiding-center particle code, POCA30,34, is used to calculate the NTV torque in the same

Solov’ev targets as shown in Fig. 4. The PENT results agree best with the POCA results,

indicating that the phase space structure of the BHR condition contains important details

beyond the circular large-aspect-ratio approximations.

The superbanana plateau captured in these PENT computations is a result of BHR par-

ticles dominating the torque with the resonance near the precession frequency zero crossing

in Λ. The analytic derivation of the SBP flux (and thus torque) relies on this resonance in

Λ, approximating the real part of the resonant operator (20) as a delta function in pitch

angle in the limit n(ωD + ωE) � ν21. It is emphasized in Ref.21 that the existence of the

plateau is a consequence of treating this singularity in the resonance operator independent
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Figure 4. NTV torque across SBP, 1/ν, and intermediate regimes as computed in PENT with full

pitch angle dependent ωb, ωD, and δJ (blue circles) compared to the RLAR approximation (red

squares) shows the PENT calculation recovers the collisionality independence of the superbanana

plateau. A SBP limit circular large-aspect-ratio calculation (dashed line) and POCA δf particle

simulation (green diamonds) are also shown.

of geometric details. Therefore, it is not surprising that the RLAR approximation failed to

capture SBP behavior32 when this singularity in Λ is not included. The analytic SBP calcu-

lation predicts the plateau behavior, but can be incorrect quantitatively in general equilibria

due to the sensitive geometric dependency of ωD.

It should be noted that global particle simulations by FORTEC-3D code did not show

the SBP limiting behavior32. It is possible that particles can be decorrelated quickly from

the sharp SBP resonant conditions in the course of radial transport or that the superbanana

regime can play more important roles in low collisionality than theoretically predicted. This

is beyond the scope of this paper but is clearly another important subject that a global

simulation can test in the future.

Figure 5 shows the pitch angle dependence of the combined theory NTV torque in PENT

smoothly transition from the isotropic 1/ν regime toward the delta function resonance be-

havior at the BHR condition for moderately trapped particles near the precession null in

the SBP limit. The amplitude of the delta function like resonance in the SBP depends

on its location in Λ, which is highly dependent on the details of ωD. Through changes

in the resonant pitch condition, the curvature drift emphasized in Sec. II has a large ef-

fect on the ultimate value of the plateau torque calculated in PENT. This, combined with
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Figure 5. The magnetic precession (top), normalized energy integrated resonant operator (middle)

and normalized cumulative integral torque (bottom) on the ψ = 0.66 surface for 4 collisionalities

spanning the SBP and 1/ν regimes. The torque is 1.7× 10−3, 1.6× 10−3, 1.1× 10−3, and 3× 10−5

Nm for ν∗ values of 9.4 × 10−5 (dark blue), 1.2 × 10−2 (green), 6.5 × 10−1 (red), and 7.7 × 101

(light blue) respectively. Sensitivity to precession resonances in Λ becomes more pronounced as the

collisionality is reduced. The Λ resonance clearly dominates the NTV torque in the low collisionality

limit.

the generalization of the perturbed action to include changes in the arc-length, brings the

combined NTV torque plateau down and into better agreement with the more general and

computationally expensive POCA results.
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V. CONCLUSIONS

This paper presents a complete form of the NTV torque in perturbed equilibria valid

across kinetic regimes for general toroidal geometry. Initial results are presented from the

PENT code developed in tandem with IPEC, and comparisons with previous approximate

methods show that the physics retained within the generalized results is important at ex-

perimentally relevant aspect ratio and shaping. Especially, the PENT calculation is shown

to recover predicted behaviors in superbanana plateau regime with improved accuracy.

The PENT code is a fast, single-processor tool for computing the torque from nonambipo-

lar transport in perturbed equilibria across kinetic regimes by including general geometric

effects. This is important, as tokamak plasmas often span multiple regimes and have strong

shaping in practice. The SBP limit in particular can be significant, since ITER may operate

largely in this regime. Like most modern tokamaks, ITER will also have strong plasma

shaping that will affect the BHR conditions and through them the ultimate value of the

NTV torque. The previous RLAR approximation was actively applied to present tokamak

experiments6,31,33,38–40 but its role will be replaced by PENT, which will offer a computa-

tionally inexpensive calculation of the toroidal torque in broader experimental conditions

up to ITER-relevant regime.
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