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Abstract

Finite-dimensional non-canonical Hamiltonian systems arise naturally from Hamilton’s principle in phase space. We
present a method for deriving variational integrators that can be applied to perturbed non-canonical Hamiltonian sys-
tems on manifolds based on discretizing this phase space variational principle. Relative to the perturbation parameter
ε, this type of integrator can take O(1) timesteps with arbitrary accuracy in ε by leveraging the unperturbed dynamics.
Moreover, these integrators are coordinate independent in the sense that their time-advance rules transform correctly
when passing from one phase space coordinate system to another.
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1. Introduction

The most famous variational principle in classical mechanics is Hamilton’s principle of stationary action [1].
According to Hamilton’s principle, a system’s path in configuration space, q(t) ∈ Q, will be a critical point of

A(q) =

∫ t2

t1
L(q(t), q̇(t), t) dt (1)

regarded as a functional of paths in configuration space with fixed endpoints. Here, L is the Lagrangian function
associated with the mechanical system in question. The closely-related Hamilton’s principle in phase space [2]
generalizes Hamilton’s principle to arbitrary exact symplectic manifolds. Specifically, if the symplectic manifold M
with symplectic form [3] −dϑ is the phase space of a mechanical system, then the phase space variational principle
asserts that a system’s path in phase space, z(t) ∈ M, will be a critical point of

S (z) =

∫ t2

t1
ϑz(t)(ż(t)) − H(z(t), t) dt (2)

regarded as a functional of paths in phase space with fixed endpoints. Now, H is the system’s Hamiltonian. This
pair of variational principles serves as the variational workhorse of modern treatments of mechanics. Hamilton’s
principle is often well-suited to the formulation of a problem, as evidenced by its applications in continuum mechanics
[4], whereas the phase space principle is naturally adapted to perturbation theory, especially in guiding center and
gyrokinetic theory [5, 6].

In this article, we will investigate variational discretizations [7] of perturbed non-canonical Hamiltonian systems
on manifolds that obey Hamilton’s principle in phase space. These perturbed systems will be specified by a phase
space manifold M; a symplectic form on M of the form −dϑ; and a time-dependent Hamiltonian functionHt = Ht +

εht, where Ht represents an unperturbed system and ε is a small parameter. Trajectories of this type of system are then
given as extremals of the action S given in Eq. (2). A wide variety of mechanical systems fit this mold, including all
perturbed canonical Hamiltonian systems. Notably, there are non-canonical perturbed Hamiltonian systems for which
Hamilton’s principle in phase space is the only known variational formulation [6]. The variational discretizations
we will be concerned with are those that exploit the small value of ε to enhance the accuracy of the discrete Euler-
Lagrange equations; see Refs. [8, 9, 10, 11] for generic variational discretizations of Hamilton’s principle in phase
space and Refs. [12, 13] for specialized methods that can be applied to Hamilton’s principle in phase space while
working in canonical coordinates.
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Discretizations of Hamilton’s principle for perturbed systems have been developed already in Ref. [14]. The dis-
crete Euler-Lagrange equations associated with these discretizations are capable of recovering previously-discovered
symplectic integrators [15, 16, 17] that exploit the small value of ε to effectively enhance their order of accuracy.
In particular, these integrators are capable of achieving up to local O(ε2). On the other hand, it seems a method
for finding discretizations of Hamilton’s principle in phase space that exploits the small value of ε has never been
discussed. One might hope that the technique used in Ref. [14] could be easily extended to treat the phase space
variational principle, but this is not the case. The derivation of the discretizations in Ref. [14] depends on the presence
of an exact discrete Lagrangian for its success. Because the usual notion of exact discrete Lagrangian [7] only applies
to Hamilton’s principle, this method cannot be transcribed to produce a similar method for discretizing Hamilton’s
principle in phase space. Thus, there is currently not a method for developing variational integrators for pertrubed
guiding center motion, or any other perturbed system whose only known variational formulation is in the form of
Hamilton’s principle in phase space.

The purpose of this article is to formulate the first discretizations of Hamilton’s principle in phase space that are
adapted to perturbed problems. These discretizations are contained in our Eqs. (37), (42), (45), and (47). Amongst
them are discretizations whose time-advance rules are accurate to any desired order in ε while allowing for O(1)
timesteps. Each discretization can be applied to any perturbed non-canonical Hamiltonian system whose continuous-
time trajectories are extremals of the action S in Eq. (2). Our method for deriving these discretizations is based on
constructing an exact discrete action for Hamilton’s principle in phase space, a task that is fundamentally different from
constructing an exact discrete action for Hamilton’s principle. The method is completely coordinate-independent, and
therefore leads to time-advance rules that transform correctly when passing from one coordinate chart on the phase
space M to another. This coordinate-independence is achieved by introducing an arbitrary affine connection on M.
We demonstrate that by initializing these two-step integration algorithms using the smooth modified system studied in
backward error analysis [18, 19, 20], the resulting discrete-time trajectories satisfy one-step algorithms that preserve
symplectic forms on M, which is a sharper result on symplecticity than that provided by the theory developed in Ref.
[7] or Ref. [10].

The presentation will be organized as follows. We specify the scope of our work and precisely define the notion of
a discretization of Hamilton’s principle in phase space in Section 2. We derive an exact discretization of Hamilton’s
principle in phase space suitible to perturbed Hamiltonian systems in Section 3. Using this exact discretization,
we present approximate yet manageble discretizations of Hamilton’s principle in phase space that can be applied to
practical problems in Section 4. In section 5, we discuss the symplecticity of the integration algorithms provided by
our discretizations. Section 6 contains two examples. We conclude with a discussion in Section 7.

2. Problem statement

Let M be a symplectic manifold with symplectic form −dϑ. Let Ht = Ht + εht be a time-dependent real-valued
function on M, where ε is a small parameter. The time-dependent vector field XHt defined by the formula

iXHt
dϑ = −dHt (3)

is known as the time-dependent Hamiltonian vector field with Hamiltonian Ht [3]. Fix t1, t2 ∈ R with t1 < t2. If
γ : [t1, t2]→ M is an integral curve of XHt , i.e.

γ′(t) = XHt (γ(t)), (4)

then γ is a critical point of the functional S (γ(t1),γ(t2)) : P(γ(t1),γ(t2)) → R, where

P(z1,z2) = {c : [t1, t2]→ M | c(t1) = z1, c(t2) = z2} (5)

and

S (γ(t1),γ(t2))(c) =

∫ t2

t1
ϑc(t)(c′(t)) −Ht(c(t)) dt. (6)
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Conversely, if c ∈ P(z1,z2) is a critical point of S (z1,z2), then c must be an integral curve of the Hamiltonian vector field
XHt . The latter pair of facts is known as Hamilton’s principle in phase space [2]. Note that for many choices of (z1, z2),
S (z1,z2) will not have any critical points; a necessary condition for the existence of a critical point is that z1 and z2 can
be connected by an integral curve of XHt .

Let τ ∈ R be a positive O(1) constant. Assume t1 = N1τ and t2 = N2τ, where N1,N2 ∈ Z. Between the
continuous-time path space, P(z1,z2), and the discrete-time path space with increment τ,

P(z1,z2) = {c : [t1, t2] ∩ (τZ)→ M | c(t1) = z1, c(t2) = z2}, (7)

there is a natural projection map π(z1,z2) : P(z1,z2) → P(z1,z2), where for each integer N1 ≤ k ≤ N2

π(z1,z2)(c)(kτ) = c(kτ). (8)

Our goal is to identify a functional S∞(z1,z2) : P(z1,z2) → R, which we will refer to as the exact discrete action, with three
properties.

(D1) If γ : [t1, t2] → M is an integral curve of the Hamiltonian vector field XHt with γ(t1) = z1 and γ(t2) = z2,
then γ must be a critical point of the functional S∞(z1,z2) ◦ π(z1,z2).

(D2) S∞(z1,z2) must be of the form

S∞(z1,z2)(c) =

N2−1∑
k=N1

L∞(ck, ck+1, τk), (9)

where ck = c(τk) and L∞ : M × M × R→ R.

(D3) If the exact discrete action is replaced with its l’th order Maclaurin polynomial in ε,

Sl
(z1,z2)(c) =

N2−1∑
k=N1

Ll(ck, ck+1, τk), (10)

then the discrete Euler-Lagrange equations [7] associated with Sl
(z1,z2) should function as a numerical integration algo-

rithm with local O(ε l+1) accuracy.
Remarks on such a functional are in order. Note that the timestep of the integration algorithm associated with

Sl
(z1,z2) is τ, which is not assumed to be small. The idea at work here is that integral curves of the unperturbed vector

field XHt can be used to approximate integral curves of XHt with O(ε) accuracy on O(1) time intervals. Thus, when
Ht describes an integrable Hamiltonian system, the practical limit on the size of τ for a fixed value of ε should be
expected to be τ � τb, where τb is the perturbation’s characteristic bounce time. Also note that because the discrete
Euler-Lagrange equations associated with Sl

(z1,z2) are given by

d(2)Ll(ck−1, ck, τ(k − 1)) + d(1)Ll(ck, ck+1, τk) = 0, (11)

they provide a two-step [21, 18, 19] integration algorithm for a first-order dynamical system on M. Thus, the standard
theory behind variational integrators [7] implies that this algorithm preserves a symplectic structure on M ×M. How-
ever, the flow of the Hamiltonian vector field XHt preserves a symplectic form on M. In Section 5 we reconcile these
qualitatively different notions of structure preservation using a minor modification of the “smooth modified system”
concept developed in [18]. Finally, note that by setting ε = 0, we move into the setting of generic Hamiltonian systems
on M, i.e. those without an a priori perturbative structure. Thus, when ε = 0 and τ is chosen to be small, S∞(z1,z2) can
be expanded in powers of τ to yield arbitrarily accurate variational integrators for generic Hamiltonian systems.

3. Derivation of an exact discrete action for Hamilton’s principle in phase space

In order to derive a functional S∞(z1,z2) that satisfies properties (D1)–(D3), we will manipulate the functional S (z1,z2)
into the form S∞(z1,z2) ◦ π(z1,z2) while making use of the following heuristic approximation principle.
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The path space approximation principle: Modifications to the functional S (z1,z2) can be made as long as they do not
change the first variation of S (z1,z2) at integral curves of XHt .

The intuitive justification of this principle is that we are mainly interested in critical points of the functional S (z1,z2)
and a critical point of S (z1,z2) will also be a critical point of S ′(z1,z2) provided these two functionals agree (modulo a
constant) in a neighborhood of the critical point.

As a convenient first step, we will pass into the “interaction picture”. Passing into the interaction picture amounts
to transforming the path space in such a way that integral curves of the unperturbed vector field XHt become trivially
constant curves. Let Ft,s : M → M be the time-dependent flow map of the unperturbed Hamiltonian vector field XHt ,
i.e. the two-parameter family of mappings characterized by the relations

Ft,t(z) = z (12)
d
dt

Ft,s(z) = XHt (Ft,s(z)). (13)

Then the interaction picture transformation from the old path space to the new path space I : P(z1,z2) → P(z̄1,z̄2), with
(z̄1, z̄2) = (z1, Ft1,t2 (z2)), is given by

I(c)(t) = Ft1,t(c(t)). (14)

After performing this change-of-path, the functional S (z1,z2) is transformed into S̄ (z̄1,z̄2) = I∗S (z1,z2), which is the push-
forward of S (z1,z2) along the mapping I. Given c̄ ∈ P(z̄1,z̄2), S̄ (z̄1,z̄2)(c̄) is readily found to be

S̄ (z̄1,z̄2)(c̄) =

∫ t2

t1
ϑc̄(t)(c̄′(t)) − ε(F∗t,t1 ht)(c̄(t)) dt + const. (15)

The constant term does not affect the location of critical points, and so we omit it from this point forward. Also note
that, by Hamilton’s principle in phase space, c̄ is a critical point of S̄ (z̄1,z̄2) if and only if c̄ is an integral curve of the
time-dependent Hamiltonian vector field XεKt , where

Kt = F∗t,t1 ht. (16)

Next, we decompose the time integral in S̄ (z̄1,z̄2) as

S̄ (z̄1,z̄2)(c̄) =

N2−1∑
k=N1

S̄ k(c̄), (17)

where

S̄ k(c̄) =

∫ τ(k+1)

τk
ϑc̄(t)(c̄′(t)) − εKt(c̄(t)) dt, (18)

and examine S̄ k(c̄) for each k. The goal of this analysis is to devise an approximation for S̄ k(c̄) that depends on c̄ only
through c̄k and c̄k+1. Let Gt,s : M → M be the time-dependent flow map of the Hamiltonian vector field XεKt . As is
readily verified, the identity

∫ τ(k+1)

τk
ϑc̄(t)(c̄′(t)) − εKt(c̄(t)) dt =

∫
¯̄ck

ϑ +

(
ε

τ(k+1)∫
τ(k+1/2)

G∗s,τ(k+1)ls ds
)
(c̄k+1)

+

(
ε

τ(k+1/2)∫
τk

G∗s,τkls ds
)
(c̄k) (19)
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holds, where

¯̄ck(t) = Gτ(k+1/2),t(c̄(t)), τk ≤ t ≤ τ(k + 1) (20)

and

ls = ϑ(XKs ) − Ks. (21)

Thus, S̄ k(c̄) could be determined using only the values of c̄ at τk and τ(k + 1) were it not for the term
∫

¯̄ck ϑ.
Observe that when c̄ is a critical point of S̄ (z̄1,z̄2), the curve ¯̄ck is constant and the integral

∫
¯̄ck ϑ vanishes. When c̄ is

infinitessimally close to a critical point,
∫

¯̄ck ϑ is given by the first variation of the functional F1 : P(z̄1,z̄2) → R, where

F1(c̄) =

∫
¯̄ck

ϑ. (22)

To calculate the variation of F1, we first compute the variation of Fo : P(z̄1,z̄2) → R at a trivial curve c̄(t) = const,
where

Fo(c̄) =

∫
c̄k

ϑ, (23)

and c̄k = c̄|[τk, τ(k + 1)]. The result is readily found to be

dFo c̄(δc̄) = ϑc̄k+1 (δc̄k+1) − ϑc̄k (δc̄k). (24)

The chain rule then implies that the first variation of F1 at a critical point of S̄ (z̄1,z̄2) is given by

dF1 c̄(δc̄) =ϑGτ(k+1/2),τ(k+1)(c̄k+1)(TGτ(k+1/2),τ(k+1)(δc̄k+1))
−ϑGτ(k+1/2),τk(c̄k)(TGτ(k+1/2),τk(δc̄k)). (25)

Here, T denotes the tangent functor as defined in Ref. [3]. Notably, the first variation of F1 at a critical point of S̄ (z̄1,z̄2)
is completely determined by δc̄ and c̄ evaluated at τk and τ(k + 1).

Guided by these observations and the path space approximation principle, we will now replace the term
∫

¯̄ck ϑ in
S̄ k(c̄) with an approximation that can be computed using only the values of c̄ at τk and τ(k + 1). We will choose this
approximation so that it agrees with

∫
¯̄ck ϑ when c̄ is a critical point and when c̄ is infinitessimally close to a critical

point. Let ∇ be an arbitrary affine connection on M. It is well-known [22] that M admits an open cover {Ui}i∈I with
two properties: (i) if z1, z2 ∈ Ui, then there is a unique geodesic segment contained in Ui with endpoints z1 and z2, (ii)
If z1, z2 ∈ Ui and z1, z2 ∈ U j, then the geodesic segment joining z1, z2 in Ui is equal to the geodesic segment joining
z1, z2 in U j. Thus, on the open neighborhood of the diagonal in M × M, O =

⋃
i∈I

Ui × Ui, we can define a real-valued

function

f (z1, z2) =

∫
I(z2,z1)

ϑ, (26)

where I(z2, z1) is the unique directed geodesic segment from z1 to z2 contained in some Ui. If O cannot be taken to be
all of M × M, assume that f has been smoothly extended to all of M × M. In terms of this possibly-extended f our
approximation for

∫
¯̄ck ϑ is ∫

¯̄ck

ϑ ≈ f (Fτk,t1 (¯̄ck), Fτk,t1 (¯̄ck+1))

−

( τk∫
t1

F∗s,t1Ls ds
)
(¯̄ck+1)

+

( τk∫
t1

F∗s,t1Ls ds
)
(¯̄ck), (27)
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where

Ls = ϑ(XHs ) − Hs. (28)

It is readily verified that this approximation is exact when c̄ is either a critical point of S̄ (z̄1,z̄2) or infinitessimally close
to such a critical point. When c̄ is a critical point, both sides of Eq. (27) obviously vanish. Likewise, regarding each
side of Eq. (27) as a functional of c̄, the two sides’ first variations at a critical point agree. The latter assertion is easy
to check using Eq. (25) and the fact that when c̄ is sufficiently close to a critical point, the right hand-side of Eq. (27)
is given by ∫

I(Fτk,t1 (¯̄ck+1),Fτk,t1 (¯̄ck))

F∗t1,τkϑ. (29)

With this approximation in place, we can now easily obtain an expression in the interaction picture for a functional
S̄∞(z̄1,z̄2) that satisfies (D1) and (D2). To see this, note that we now have S̄ k(c̄) ≈ L̄∞(c̄k, c̄k+1, τk), where

L̄∞(c̄k, c̄k+1, t) = f (Ft,t1 (¯̄ck), Ft,t1 (¯̄ck+1))

−

( t∫
t1

F∗s,t1Ls ds
)
(¯̄ck+1)

+

( t∫
t1

F∗s,t1Ls ds
)
(¯̄ck)

+

(
ε

t+τ∫
t+τ/2

G∗s,t+τls ds
)
(c̄k+1)

+

(
ε

t+τ/2∫
t

G∗s,tls ds
)
(c̄k). (30)

Thus, Eq. (17) implies

S̄ (z̄1,z̄2)(c̄) ≈
N2−1∑
k=N1

L̄∞(c̄k, c̄k+1, τk) = S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2)(c̄), (31)

where S̄∞(z̄1,z̄2) : Pz̄1,z̄2 → R is given by

S̄∞(z̄1,z̄2)(c̄) =

N2−1∑
k=N1

L̄∞(c̄k, c̄k+1, τk). (32)

This says that S̄∞(z̄1,z̄2) satisfies (D2). Also note that, by Construction, we have the following equalities when c̄ is a
critical point of S̄ (z̄1,z̄2).

S̄ (z̄1,z̄2)(c̄) = S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2)(c̄) (33)

dS̄ (z̄1,z̄2) c̄ = d
(
S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2)

)
c̄
. (34)

Therefore, any critical point of S̄ (z̄1,z̄2) is also a critical point of S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2), which says that S̄∞(z̄1,z̄2) satisfies (D1).
In fact S̄∞(z̄1,z̄2) satisfies (D3) in addition to (D1) and (D2). The proof of this statement is not substantially different

than the proof of Theorem 2.3.1 in Ref. [7]. We have therefore succeeded in identifying an exact discrete action S̄∞(z̄1,z̄2).
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However, we currently have this action expressed in the interaction picture. To remedy this, we will conlcude this
section by passing out of the interaction picture.

Passing out of the interaction picture consists of transforming the new path space P(z̄1,z̄2) back into the old path
space P(z1,z2) by applying the mapping I−1. Upon performing this change-of-path, the functional S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2)

transforms into I∗(S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2)). After some tedious, yet straightforward algebraic manipulations, we have found
this pullback is given by

I∗(S̄∞(z̄1,z̄2) ◦ π(z̄1,z̄2)) = S∞(z1,z2) ◦ π(z1,z2), (35)

where

S∞(z1,z2)(c) =

N2−1∑
k=N1

L∞(ck, ck+1, τk), (36)

and

L∞(ck, ck+1, t) =L̄∞(Ft1,t(ck), Ft1,t(ck+1), t)
= f (Φt

t+τ/2,t(ck),Φt
t+τ/2,t+τ(Ft,t+τ(ck+1)))

+Lt(ck) − Lt+τ(ck+1) +


t+τ∫
t

F∗s,t+τLs ds

 (ck+1)

+

ε
t+τ∫

t+τ/2

Φt ∗
s,t+τl

t
s ds

 (Ft,t+τ(ck+1))

+

ε
t+τ/2∫
t

Φt ∗
s,tl

t
s ds

 (ck). (37)

The notation introduced in this expression is defined as follows. The mapping Φu
t,s is the time-dependent flow map of

the Hamiltonian vector field with time-dependent Hamiltonian εF∗t,uht. In particular,

Φu
t,s = Fu,t1 ◦Gt,s ◦ Ft1,u. (38)

The function lus is given by

lus = ϑ(XF∗s,uhs ) − F∗s,uhs. (39)

Finally,

Lk =

∫ τk

t1
F∗s,τkLs ds. (40)

The functional S∞(z1,z2) is therefore a valid exact discrete action, i.e. it satisfies properties (D1)–(D3). Note that the
terms Lk(ck) − Lk+1(ck+1) in L∞ are gauge contributions in the sense that, when summed over k, they only contribute
a constant to S∞(z1,z2). Therefore they can be omitted from L∞ without affecting the location of critical points.

4. Truncations of S∞
(z1,z2)

While the discrete Euler-Lagrange equations associated with S∞(z1,z2) are rigorously satisfied by the integral curves
of XHt by property (D1), they generally do not serve as a particularly useful numerical integration algorithm. This
is because calculating L∞ is generally very difficult; the flow maps Ft,s and Φu

t,s must be known in advance. Thus, it
is important to have manageable approximations for S∞(z1,z2) on hand when developing variational integrators. To this
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end, we will now present general expressions for the first few terms in S∞(z1,z2)’s power series in ε. The utility of such
expressions follows from property (D3): if S∞(z1,z2) is replaced by its l’th order Maclaurin polynomial in ε, the resulting
discrete Euler-Lagrange equations will function as a two-step numerical integration algorithm with local O(ε l+1) ac-
curacy. We will adopt the convention that Sl

(z1,z2) denotes S∞(z1,z2)’s l’th order Maclaurin polynomial in ε.

l = 0:

When l = 0, the truncated discrete action is given by

S0
(z1,z2)(c) =

N2−1∑
k=N1

L0(ck, ck+1, τk), (41)

where

L0(ck, ck+1, t) = f (ck, Ft,t+τ(ck+1))

+Lt(ck) − Lt+τ(ck+1) +


t+τ∫
t

F∗s,t+τLs ds

 (ck+1). (42)

Recall that the function f is defined in Eq. (26). Also recall that Lτk(ck) −Lτ(k+1)(ck+1) is a gauge term and can there-
fore be omitted. The discrete Euler-Lagrange equations associated with L0 provide a two-step integration algorithm
for XHt with local O(ε) accuracy. In particular, S0

(z1,z2) serves as an exact discrete action for the unperturbed system
XHt . Therefore, L0 can be used to derive variational integrators for generic non-canonical Hamiltonian systems with-
out a perturbative structure as follows. Choose τ to be a small parameter. Then L0 can meaningfully be expanded in
a Maclaurin series in τ. From the general theory developed in Ref. [7], it follows that if L0 is replaced with its n’th
order Maclaurin series in τ, the associated discrete Euler-Lagrange equations will serve as an (n+1)’th order integrator.

l = 1:

In order to derive an expression for S1
(z1,z2), it is necessary to make use of the following identity. Let Ku

s = F∗s,uhs.
If g : M → M is an arbitrary smooth function, then

Φu ∗
t,s g =g + ε

t∫
s

Φu ∗
a,s

(
LXKu

a
g
)

da

=g + ε

t∫
s

LXKu
a
g da + ε2

t∫
s

a∫
s

LXKu
b
LXKu

a
g db da + O(ε3), (43)

where LX denotes the Lie derivative along the vector field X. Provided |t − s| = O(1), this identity can be used to
obtain an asymptotic expansion of the quantity Φu ∗

t,s g in powers of ε.
Applying this identity to Eq. (37), we obtain

S1
(z1,z2)(c) =

N2−1∑
k=N1

L1(ck, ck+1, τk), (44)
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where

L1(ck, ck+1, t) =L0(ck, ck+1, t)

+ ε

t+τ∫
t+τ/2

lts(Ft,t+τ(ck+1)) ds + ε

t+τ/2∫
t

lts(ck) ds

−

ε
t+τ∫

t+τ/2

L(2)
XKt

s
f ds

 (ck, Ft,t+τ(ck+1))

+

ε
t+τ/2∫
t

L(1)
XKt

s
f ds

 (ck, Ft,t+τ(ck+1)). (45)

The discrete Euler-Lagrange equations associated with L1 furnish a variational integrator for XHt with local O(ε2) ac-
curacy. Keep in mind that the timestep τ = O(1). Practically speaking, for a given value of ε, τ should be significantly
less than the perturbation’s characteristic bounce time. If τ is chosen to be a small parameter, then these expressions
can be expanded in powers of τ. If this expansion were to be performed and L1 were replaced with its n’th order
Maclaurin polynomial in τ, the resulting discrete Euler-Lagrange equations would yield an integration algorithm with
local O(τn+1ε2) accuracy.

l = 2:

Upon further application of Eq. (43), the l = 2 result is given by

S2
(z1,z2)(c) =

N2−1∑
k=N1

L2(ck, ck+1, τk), (46)

where

L2(ck, ck+1, t) =L1(ck, ck+1, t)

− ε2

t+τ∫
t+τ/2

t+τ∫
s

LXKt
a
lts(Ft,t+τ(ck+1)) da ds

+ ε2

t+τ/2∫
t

s∫
t

LXKt
a
lts(ck) da ds

+

ε2

t+τ∫
t+τ/2

t+τ∫
s

L(2)
XKt

a
L(2)

XKt
s
f da ds

 (ck, Ft,t+τ(ck+1))

+

ε2

t+τ/2∫
t

s∫
t

L(1)
XKt

a
L(1)

XKt
s
f da ds

 (ck, Ft,t+τ(ck+1))

−

ε2

t+τ/2∫
t

t+τ∫
t+τ/2

L(1)
XKt

s
L(2)

XKt
a

f da ds

 (ck, Ft,t+τ(ck+1)). (47)

The discrete Euler-Lagrange equations associated with L2 furnish a variational integrator for XHt with local O(ε3)
accuracy.
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5. Symplecticity

Fix a non-negative integer l. In this section we will discuss the sense in which the numerical integration algorithm
associated with Sl

(z1,z2) is symplectic. This topic is more subtle than it may first appear because the discrete Euler-
Lagrange equations associated with Ll give a two-step integrator for a first-order dynamical system on M.

First we will illustrate the sense in which the integration algorithm associated with Sl
(z1,z2) is symplectic on M ×M

by applying the methods of Ref. [7] in a straightforward manner. Recall that the discrete Euler-Lagrange equations
associated with Ll are given by

d(2)Ll(ck−1, ck, τ(k − 1)) + d(1)Ll(ck, ck+1, τk) = 0. (48)

Thus, we can define a mapping F l
k : M × M → M × M, where

F l
k(z1, z2) = (z2, f l

k(z1, z2)), (49)

and f l
k : M × M → M is defined implicitly by the equation

d(2)Ll(z1, z2, τ(k − 1)) + d(1)Ll(z2, f l
k(z1, z2), τk) = 0. (50)

F l
k allows us to parameterize the space of solutions of the discrete Euler-Lagrange equations by M ×M. In particular,

it can be used to define a mapping C : M × M → P, where P is the set of mappings [τN1, τN2] ∩ (τZ)→ M and

C(z1, z2)(τN1) = z1 (51)

C(z1, z2)(τk) = π1 ◦ F l
k ◦ F l

k−1 ◦ . . . ◦ F l
N1+1(z1, z2), N1 < k ≤ N2 (52)

Using this parameterization, we can define the restricted action on M × M, Ŝl
M×M : M × M → R, where

Ŝl
M×M(z1, z2) =

N2−1∑
k=N1

Ll(C(z1, z2)(τk),C(z1, z2)(τ(k + 1)), τk). (53)

The exterior derivative of Ŝl
M×M is readily found to be

dŜl
M×M = θN1

1 − F l∗
N2−1,N1

θN2−1
2 , (54)

where F l
N2−1,N1

= F l
N2−1 ◦ . . . ◦ F l

N1+1 and the one-forms θk
1, θ

k
2 are given by

θk
1(z1, z2)(u(z1,z2)) = dLl(z1, z2, τk)(Tπ1(u(z1,z2))) (55)

θk
2(z1, z2)(u(z1,z2)) = −dLl(z1, z2, τk)(Tπ2(u(z1,z2))). (56)

Likewise, the second exterior derivative of Ŝl
M×M is found to be

ddŜl
M×M = 0 = dθN1

1 − F l∗
N2−1,N1

dθN2−1
2 . (57)

It is clear from their definitions that the one-forms θk
1 and θk

2 differ by an exact differential,

θk
1(z1, z2) − θk

2(z1, z2) = dLl(z1, z2, τk). (58)

Therefore we have the conservation law

F l∗
k,N1

ωk is independent of k, (59)

where ωk = dθk
1 = dθk

2. We have thus shown that the time-dependent flow map F l
k,N1

on M ×M associated with Sl
(z1,z2)

preserves a time-dependent symplectic form on M × M.
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Next we will demonstrate a more refined result on the symplecticity of the integration algorithm associated with
Sl

(z1,z2). Assume that there exists a time-dependent vector field Xt on M whose associated flow map Ft,s satisfies the
discrete Euler-Lagrange equations exactly. In other words, Ft,s satisfies the equation

d(2)Ll(Fτ(k−1),τN1 (z),Fτk,τN1 (z), τ(k − 1))

+d(1)Ll(Fτk,τN1 (z),Fτ(k+1),τN1 (z), τk) = 0. (60)

for each N1 ≤ k ≤ N2 and z ∈ M. Using Ft,s, we can define a mapping C : M → P, where

C(z)(τk) = Fτk,τN1 (z). (61)

The mapping C then naturally leads to the introduction of the restricted action on M, Ŝl
M : M → R, where

Ŝl
M(z) =

N2−1∑
k=N1

Ll(Fτk,τN1 (z),Fτ(k+1),τN1 (z), τk). (62)

The identity ddŜl
M = 0 then gives the conservation law

F ∗τk,τN1
Ωk is independent of k, (63)

where Ωk = dθ̃k
1 = dθ̃k

2 and

θ̃k
1(z) = d(1)Ll(z,Fτ(k+1),τk(z), τk) (64)

θ̃k
2(z) = −d(2)Ll(Fτ(k−1),τk(z), z, τ(k − 1)). (65)

Note that θ̃k
1 = θ̃k

2. Thus, we see that the smooth modified system, which is specified by Xt, preserves a time-dependent
symplectic form on M. The sense in which this conservation law applies to the two-step integration algorithm specified
by Sl

(z1,z2) is as follows. The two step algorithm specified by the discrete Euler-Lagrange equations requires a pair of
initial conditions in order to produce a discrete-time trajectory. If the second initial condition is supplied by flowing
along Xt for τ seconds starting from the first initial condition, then the discrete trajectory produced by solving the
discrete Euler-Lagrange equations will automatically lie along an integral curve of Xt. Thus, provided the second
initial condition for our two-step method is chosen carefully, the two-step method is equivalent to the one-step method
given by the flow map associated with Xt, which we have just shown preserves a time-dependent symplectic form on
M. This result is consistent with the discussions found in Refs. [20, 18, 19] that explain the advantages of choosing
the second initial condition for a two-step integrator using the smooth modified system.

The question of whether or not the vector field Xt exists seems to be incompletely resolved. Using the methods of
Hairer, who calls Xt the smooth modified system [18, 19], an asymptotic series for Xt in powers of ε can be developed
in a straightforward manner if one assumes the ansatz

Xt = XHt + εY1
t + ε2Y2

t + . . . (66)

While, in general, this series diverges, such divergence does not necessarily imply that an Xt with the desired properties
fails to exist. It is possible, for instance, that the series (66) can be resummed in the sense of Borel [23] to give Xt. Note
that this existence question is not resolved by the result proved in Ref. [24]. Indeed, two step variational integrators
tend to not be absolutely stable and therefore cannot be treated with the methods of Ref. [24].

Regardless of the answer to the existence question, the asymptotic series (66) can often be computed and then
truncated at some order. While this truncated vector field will not have a flow map that exactly satisfies the discrete
Euler-Lagrange equations, by truncating at a sufficiently high order, it can be made to satisfy the discrete Euler-
Lagrange equations with any desired level of accuracy. This fact has already been exploited to improve the stability
properties of multi-step variational integration methods in [20]. It would be interesting to also exploit it to develop
energy and symplecticity bounds for the discretizations of Hamilton’s principle in phase space developed here. We
leave this to future consideration. Note that existing proofs of bounded energy errors for variational integrators only
apply to discretizations of Hamilton’s principle, and not to discretizations of Hamilton’s principle in phase space;
when the second initial condition supplied to a two-step discretization of Hamilton’s principle in phase space is not
chosen to lie along an integral curve of Xt, there are known examples of poor energy behvaior [25, 26].
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6. Examples

In this section we will illustrate the use of our discretizations of Hamilton’s principle in phase space to develop
variational integrators for a pair of perturbed Hamiltonian systems. In order to illustrate that L∞ gives discrete Euler-
Lagrange equations that are exactly satisfied by the appropriate continuous-time trajectories, we will first treat the
harmonic oscillator regarded as a perturbed rigid rotor. In this example, L∞ is simple to calculate and it is a simple
matter to verify that true solutions to the harmonic oscillator differential equation satisfy L∞’s discrete Euler-Lagrange
equations. We will then use the first-order (in ε) approximation for L∞, L1, to derive a variational integrator for a
non-canonical Hamiltonian system that describes the nearly-integrable flow of magnetic field lines in a nominally
axisymmetric geometry. This second example is less trivial than the Harmonic oscillator in the sense that the field
line dynamics are non-linear and L∞ is impossible to calculate; the computation of L1 is already an onerous task to
perform without the aid of symbolic manipulation software.

example 1:

Consider the canonical Hamiltonian system on R2 specified by the symplectic form −dϑ, with ϑ = y dx, and the
Hamiltonian function H = y2/2 + εx2/2. Clearly, this system describes the dynamics of a harmonic oscillator with
frequency

√
ε. Equivalently, we can regard H as describing a perturbed rigid rotor, where H = y2/2 describes the

unperturbed dynamics of the rotor, and εh = εx2/2 describes the perturbation. This second interpretation allows us to
employ our discretizations of Hamilton’s principle in phase space that are adapted to perturbed problems to develop a
variational integrator for this problem.

In order to identify this integrator, we will calculate L∞ explicitly using Eq. (37). The ingredients that enter into
such a calculation are (i) introducing an affine connection on R2, (ii) finding an expression for the function f (z1, z2),
(iii) finding an expression for the unperturbed flow map Ft,s, (iv) finding an expression for for Φu

t,s, and (v) evaluating
the necessary time integrals that appear in the expression for L∞. We will now go through each of these steps in turn.

(i) We will use the obvious connection on R2 associated with the standard inner product 〈u, v〉 = u1v1 + u2v2.
Relative to this connection and between any pair of points in z1, z2 ∈ R2, there is a unique geodesic segment equal
to the convex hull of {z1, z2}. The unique parameterization of this geodesic segment with parameter λ ∈ [0, 1] and
orientation z1 → z2 is given by

I(z2, z1)(λ) = (1 − λ) z1 + λ z2. (67)

(ii) The connection chosen in the previous step renders the computation of f (z1, z2) analytically tractable. Indeed,
we have

f (z1, z2) =

∫
I(z2,z1)

y dx

=

∫ 1

0
(y1 + λ (y2 − y1)) (x2 − x1) dλ

=
1
2

(x2 − x1) (y1 + y2). (68)

(iii-iv) The unperturbed flow map Ft,s is given by

Ft,s(x, y) = (x + (t − s) y, y). (69)

Determining this flow map is a simple matter because the Hamiltonian underlying the unperturbed dynamics is merely
H = y2/2. The flow map of XH , Ft,s, is also simple to identify because the dynamics of a simple harmonic oscillator
with frequency

√
ε are very well understood. Indeed, we have

Ft,s(x, y) =

(x cos(
√
ε(t − s)) +

y
√
ε

sin(
√
ε(t − s)), y cos(

√
ε(t − s)) −

√
εx sin(

√
ε(t − s))). (70)
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On the other hand, the flow map Φu
t,s is associated with the time-dependent Hamiltonian

εF∗t,uht(x, y) = ε(x + (t − u) y)2/2, (71)

which is not the Hamiltonian for any commonly encountered dynamical system. Nevertheless, it is easy to check that
Φu

t,s can be expressed in terms of Ft,s and Ft,s according to

Φu
t,s = Fu,t ◦ Ft,s ◦ Fs,u. (72)

Thus, between Eqs. (69) and (70) we have identified an explicit expression for Φu
t,s (that we will not display).

(v) Finally, we can calculate L∞ by directly evaluating Eq. (37). Modulo guage terms, L∞ is given by

L∞(z1, z2) = −
1
2

(y2x1 − y1x2) cos(
√
ετ)

−
1
2

(
1
√
ε

y2y1 +
√
εx2x1

)
sin(
√
ετ). (73)

It is simple to verify the the discrete Euler-Lagrange equations that follow from this expression for L∞ are exactly
satisfied by the solution to the harmonic oscillator differential equation. This is true regardless of how large or small
the timestep τ is chosen.

In this case, L∞ can technically be expanded in powers of ε regardless of the value of τ. This follows from the fact
that the radius of convergence of the Maclaurin series of either sin(x) or cos(x) is infinite. However, when

√
ετ � 1

these series converge much more rapidly than when
√
ετ ≥ 1. Thus, we expect that truncating L∞’s Maclaurin se-

ries in ε after only a few terms will lead to a reasonably-accurate integrator for this perturbed rigid rotor only when
√
ετ � 1, which is precisely the condition that τ be much less than the characteristic bounce time 1/

√
ε.

example 2:

Next, we will summarize the application of the discretizations developed in this work to a non-trivial non-canonical
perturbed Hamiltonian system. This system’s phase space is R2 equipped with the non-canonical symplectic form
−dϑ, where

ϑ = (x2 + y2) (y dx − x dy). (74)

The Hamiltonian, which is time-dependent and periodic, is given byHt = H + εht, where

H =
2
9

(x2 + y2)3 (75)

ht = x sin(t) + x2 sin(t). (76)

This Hamiltonian system can be regarded as a model for magnetic field line flow in a nominally axisymmetric ge-
ometry with small resonant perturbations [27]. In this interpretation, the time variable is identified with the toroidal
angle, while x and y are identified with a set of cartesian coordinates in the poloidal plane centered on the unperturbed
magnetic axis. We will demonstrate that the variational integrators for this system given by L0 and L1 have local O(ε)
and O(ε2) accuracy, respectively. Then we will make some qualitative remarks on the ability of the L1 integrator to
resolve second- and higher-order islands. The timestep for the L0 and L1 integrators will be set equal to 2π. Thus,
these integrators function as the zero’th and first order t = 0 Poincaré maps.

In order to find an expression for L1, a connection must be chosen; f (z1, z2) must be calculated; and the unperturbed
flow map must be found. With knowledge of these quantities, Eq.(45) can be evaluated directly to find the desired
expression. As in the previous example, we adopt the natural flat connection on R2. Relative to this connection, the
function f (z1, z2) is given by

f (z1, z2) =
1
3

(x2y1 − x1y2)(x2
1 + x1x2 + x2

2 + y2
1 + y1y2 + y2

2). (77)
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a) b)

Figure 1: (a) The t = 0 Poincaré section forHt caculated using a Runge-Kutta integrator with very fine temporal resolution. (b) The same Poincaré
section computed using the discrete Euler-Lagrange equations associated with L1. In each case, ε = .0075 and the variables R and Θ denote the
standard polar coordinates on R2. The large first-order islands are reproduced well by the L1-integrator, while, as the highlighted portions of the
figures indicate, higher-order islands are not properly reproduced.

Finally, the flow map of the dynamical system defined by the Hamiltonian function H is given by

Ft,s(x, y) =

(
x cos

(
1
3

(x2 + y2)(t − s)
)

+ y sin
(

1
3

(x2 + y2)(t − s)
)
,

−x sin
(

1
3

(x2 + y2)(t − s)
)

+ y cos
(

1
3

(x2 + y2)(t − s)
) )
. (78)

We will not display the result of using these quantities to calculate L1 because the resulting expression has many
terms, but we must emphasize that this tedious calculation is readily performed using a symbolic manipulation tool
such as Mathematica. The laborious task of differentiating such a complicated discrete Lagrangian can be handled
by either computing the needed derivatives symbolically before running a simulation or by employing an automatic
differentiation tool such as ADOLC [28, 29] at runtime. By employing automatic differentiation tools, one reduces
the likelihood of making a mistake while writing the simulation code. On the other hand, precomputing derivatives
may lead to shorter runtimes.

Figure 1 shows the results of using the discrete Euler-Lagrange equations associated with L1 to generate the t = 0
Poincaré section for the dynamical system specified by Ht. Notably, the L1-integrator reproduced the first-order
islands very well. This can be checked upon noting that the unperturbed frequency as a function of the distance R
from the origin in R2 is given by ω(R) = R2/3; first-order perturbation theory predicts an island chain at R1 =

√
3

and another at R2 =
√

3/2. On the other hand, as the highlighted portion of the figure indicates, higher-order island
chains were not captured correctly by L1. This shortcoming is to be expected in light of the fact that the flow map
associated with Ht only satisfies the discrete Euler-Lagrange equations associated with L1 up to terms second-order
in ε. The “incoherent” fine-scale strcture present in the L1 integration came as a result of the onset of parasitic modes
that generally plague multistep integration methods [18]. The same parasitic modes completely destablized the L1
integration run shown in Figure 1 after several tens of thousands of iterations. Smaller values of epsilon can perform
larger numbers of iterations before being overtaken by parasitic modes.

Figure 2 illustrates the O(ε) and O(ε2) errors of the integrators provided by L0 and L1, respectively. The L1
integrator decreases in error quadratically with ε until reaching the error tolerance of the nonlinear Newton-Rhapson
solver of 10−12. Decreasing ε beyond 10−6 therefore shows no further improvement in the error of L1.
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Figure 2: “Error” denotes the distance between the predictions of a well-converged 2π-second Runge-Kutta integration and a single iteration of the
L0 or L1 integrator. Each integration method was initialized with the same initial condition.

7. Discussion

In the preceding sections, we presented and applied the first discretizations of Hamilton’s principle in phase space
that are adapted to perturbed noncanonical Hamiltonian systems. Notably, these discretizations function as variational
integrators with O(1) timesteps and local O(εN) accuracy, where N is any desired nonnegative integer. Moreover, for
each discretization, our expression for the associated discrete Lagrangian is manifestly coordinate independent. This
coordinate independence has been achieved by introducing an arbitrary affine connection on the phase space. Thus,
our discretizations may prove to be useful for constructing variational integrators on manifolds.

We have also shown that if these two-step integrators are initialized using the smooth modified system studied in
backward error analysis, then they function as one-step algorithms that preserve symplectic forms on the phase space
M. We expect that this result will play an important role in the backward error analysis of the variational discretizations
developed here. For instance, using the fact that the smooth modified system preserves a symplectic form on M, it
should be possible to show that the method for choosing the second initial condition for two-step methods championed
in [18, 20] leads to better energy behavior than a more conventional Runge-Kutta-based initialization.

While the integrators identified here formally apply to any perturbed non-canonical Hamiltonian system, they
are much easier to apply to nearly-integrable systems because the unperturbed flow map can often be determined
analytically in these cases. When the unperturbed flow map is analytically unattainable, it would have to be handled
numerically. This would entail devising some numerical scheme for evaluating (at least in an approximate sense) the
various integrations along unperturbed orbits that appear in the discrete Lagrangians presented in Section 4. Whether
or not such a scheme exists that does not involve prohibitively large computational overhead is currently unknown to
us. We leave investigating this issue to future work.

A theoretical application of the integrators developed here that we will pursue in the future is coarse-graining
Hamilton’s principle in phase space. Specifically, we would like to derive the stochastic action mentioned in Ref. [30]
by directly manipulating Hamilton’s principle in phase space. Our hope is that this result will follow by appropriately
rescaling time and then looking at the behavior of S2

(z1,z2) (Eq. (46)) as ε → 0.
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