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Abstract
Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawry-

luk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1, 19 (1980)] are not capturing

important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal

Alfvén Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consis-

tent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms

of a probability distribution function for the particle’s steps in phase space, which is consistent with the

MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response

to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27, 2455 (1984)], but it can be

generalized to higher frequency modes (e.g. Compressional and Global Alfvén Eigenmodes) and to other

numerical codes or theories.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.35.Bj, 52.65.Pp
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I. INTRODUCTION

Simulations of tokamak discharges have made considerable progress in the past few years. Be-

cause of the complexity of the problems that numerical codes aim to solve, two main lines of code

development are emerging. On one hand, first-principles models target a representation of tokamak

physics as close as possible to reality. This is supported by improvements in both experimental

measurements and theory, which enable a deeper insight into plasma physics phenomena than was

possible only a decade ago. Examples of first-principle models applied to the physics of energetic

particles and associated plasma instabilities can be found in Refs. [1][2][3][4][5][6] and references

therein. The generality of this approach comes at a cost. Simulations are expensive, both in terms

of computing time and of required hardware resources. Use of first-principles codes is thus usually

restricted to a limited number of conditions. On the other hand, reduced models are often utilized

in combination with more general-purpose codes to tackle specific problems in a simplified form.

Recent examples include simplified models to compute the relaxed fast ion profile resulting from

a given set of Alfvènic instabilities, see Refs. [7][8][9]. Although the accuracy of the results from

reduced models is expected to degrade with respect to more comprehensive codes, more insight

on the problem under study can be gained by looking at a much larger number of cases. Clearly,

the distinction between first-principle and reduced models is sometimes questionable, depending

on the amount of simplifications introduced in the models and in their practical implementation.

Under several aspects, the two approaches are complementary and their combined use can result

in improved understanding of tokamak and plasma physics.

This paper reports on the development and initial validation of a new reduced model for fast

ion transport by plasma instabilities such as Alfvénic modes. The model will be included in the

tokamak transport code TRANSP [10][11], which is used on several tokamaks to either simulate

existing discharges or to develop and predict new plasma scenarios. The general aspects of the

new model are discussed in Sec. II. Section III describes the practical implementation and the

integration of the new model with the existing TRANSP code and its modules. Initial verification

and validation work is then presented in Sec. IV. Section V concludes the paper.

II. DESCRIPTION OF THE NEW MODEL

The NUBEAM module [12][13] implemented in TRANSP models fast ion dynamic in tokamaks

based on classical physics. In addition, NUBEAM has four possible implementations to model fast

ion transport mechanisms different from classical. The first two models set the fast ion diffusivity to

be proportional to the electron particle diffusivity (with or without corrections for the Ware pinch)

through a user-selected multiplier. These models give a fast ion radial flux, Γfi, that is related

to the electron density gradient. Clearly, such models do not capture the physics of resonant

wave-particle interactions. A third model includes fast ion diffusion and convection coefficients as

a function of radius, Dfi(r) and Vfi(r), so that Γfi = −Dfi∇nfi + nfiVfi. nfi(r) is the radial
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fast ion density profile as a function of the normalized minor radius r. The flux is therefore

regulated by the spatial fast ion gradient, ∇nfi. Energy and space-dependent diffusion coefficients

can be prescribed in a fourth model for (up to) six classes of particles: passing, barely passing,

trapped, deeply trapped, counter-passing and counter barely passing. The actual diffusivity for

each particle during the NUBEAM calculation is obtained as a weighted combination of two of those

six coefficients, depending on the orbit localization in phase space. Although some dependence on

the specific orbit topology is introduced, the resulting transport is still diffusive in real space, i.e.

along the radial direction. In general, all these models do not contain the physics of resonant

interaction - and resulting transport in phase space - between instabilities and fast ions. In fact,

the resonance condition implies that only narrow regions in phase space may be strongly affected

by the modes, whereas adjacent regions are possibly unaffected.

The following features should be included in a new fast ion transport model in TRANSP to

mimic the resonant interaction between fast ions and instabilities:

1. Characterize particles based on their orbit topology [14], i.e. in terms of magnetic moment

µ, energy E and canonical toroidal angular momentum Pζ , instead of real-space coordinates

such as radius, poloidal/toroidal angles.

2. Model transport as steps (or kicks) in phase space, for instance kicks in energy associated

with the resonant interaction. Radial transport will eventually result from the particle

dynamics in phase space, but with no a priori assumptions on its nature, such as diffusive

or convective.

3. Derive transport coefficients from consistent simulations or theory. Whenever possible, ex-

perimental data should be used as further constraints.

4. The model must be suitable for inclusion in the NUBEAM module. In this regard, a Monte

Carlo framework seems to be the best approach.

5. Calculate variations of E and Pζ consistently.

Item no. 5 in the list above is actually the most distinctive feature for transport resulting from

resonant wave-particle interactions. Based on the guiding center Hamiltonian formulation of the

particle’s motion in the presence of a mode with toroidal mode number n and frequency ω = 2πf ,

one obtains the relationship [14]:

ωPζ − nE = const. (1)

For a single mode, variations in E and Pζ for particles satisfying Eq. 1 (given a specific constant

on the right-hand side [15]) are thus related through

∆Pζ/∆E = n/ω (2)
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FIG. 1: (Color online) Illustration of the correlated variation of energy and canonical angular momentum

in the presence of a single mode with zero and finite frequency width, cf. Eq. 3.

which sets a constraint for the allowed trajectories in the (E,Pζ) space. In reality, if a finite mode

frequency width is assumed and if more than one mode are present, ∆E and ∆Pζ can depart from

the ideal (linear) relation of Eq. 2, see Fig. 1 and Sec. II.

One possibility to satisfy the requirements described above would be to develop a module,

interfaced with NUBEAM, that models the resonant wave-particle interaction. For example, the

model could be a reduced version of the ORBIT code [16]. However, this approach is not very

flexible: if one decides to use another code to manage the mode-particle interaction, an entirely

new module has to be developed and included in NUBEAM.

Another possibility, that is the one discussed in this paper, is to split the problem into two

parts: (i) derive a set of transport coefficients in some given form, and (ii) use those coefficients

in NUBEAM for the actual computation of fast ion evolution. By doing so, the NUBEAM part of

the problem can be developed independently of the different models (or theories) used to infer the

transport coefficients.

The main ingredient of the new model discussed herein is the probability that a particle, whose

orbit is characterized by the constants of motion (Pζ , E, µ), experiences a change over a time δt

in energy and canonical angular momentum of magnitude ∆E and ∆Pζ in the presence of a mode

with amplitude Amode. For simplicity, here and in the following it is assumed that µ is conserved.

This is a reasonable assumption for low-frequency modes with ω � ωci (ωci being the ion cyclotron

resonance frequency), such as TAEs [23]. However, the model can be generalized to include µ

variations.

In the next Sections, the general principles inspiring the new model are first discussed for

an ideal case with a single resonance and for a specific class of particles, then generalized to an

arbitrary set of modes for the entire fast ion population.

A. Single-mode, single-resonance case

In the presence of a single resonance, the motion of a specific class of particles satisfying Eqs. 1-2

is subject to simple constraints in the (E,Pζ , µ) space [15][17]. Even for this simple case, the shape

of the distribution of steps in energy and canonical angular momentum can be rather complicated
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and far from a simple bi-maxwellian distribution, from which diffusion coefficients in E and Pζ

could be readily extracted. However, to illustrate the general ideas of the new model, we first

assume that the bi-variate probability density function for ∆E and ∆Pζ changes of the particle’s

energy and canonical toroidal momentum can be approximated by

p(∆E,∆Pζ |Pζ , E, µ,Amode) = p0×

e
− 1

2(1−ρ)

[
(∆E−∆E0)2

σ2
E

+
(∆Pζ−∆Pζ0)2

σ2
Pζ

−2ρ
(∆E−∆E0)(∆Pζ−∆Pζ0)

σE σPζ

]
(3)

with the normalization factor

p0 =
1

2π σE σPζ
√

1− ρ2
(4)

(The dependence of all parameters on Amode, e.g. σE = σE(Amode), has been omitted to simplify

the notation). Here the variances σE and σPζ give the spread of the distribution along the ∆E and

∆Pζ axes. The correlation parameter

ρ =
< (∆E −∆E0)(∆Pζ −∆Pζ0) >

σE σPζ
(5)

takes into account the coupling between ∆E and ∆Pζ expressed in Eqs. 1-2:

∆Pζ(∆E) = ∆Pζ0 + sign(ρ)×
σPζ
σE

(∆E −∆E0) (6)

The offset (or convective) terms ∆E0 and ∆Pζ0 are redundant and ≡ 0 for cases in which there is

no systematic drift in energy or Pζ . They are included in the model for generality, e.g. to account

for slowing down processes or transport mechanisms other than classical processes.

In principle, the set of probability density functions p(∆E,∆Pζ |E,Pζ , µ,Amode) contains all the

information required by NUBEAM to calculate the energy and Pζ steps caused by resonant wave-

particle interaction. In practice, if the analytical formulation from Eqs. 3-6 had to be adopted, a

set of 4-D coefficients has to be given as input to NUBEAM:

σE = σE(E,Pζ , µ,Amode)

σPζ = σPζ (E,Pζ , µ,Amode)

∆E0 = ∆E0(E,Pζ , µ,Amode)

∆Pζ0 = ∆Pζ0(E,Pζ , µ,Amode)

ρ = ρ(E,Pζ , µ,Amode)

(7)

Incidentally, a similar term could be added to include variations of magnetic moment µ in the

model, according to a probability density function σµ = σµ(E,Pζ , µ,Amode).

This set of transport coefficients can be reduced, based on two considerations. Firstly, NUBEAM

already computes the effects of (classical) scattering and slowing-down at each time step. Therefore,

one can set ∆E0 = ∆Pζ0 ≡ 0 and simplify Eq. 3 accordingly. Secondly, ORBIT simulations indicate

that σE and σPζ have a (roughly) linear dependence on the normalized mode amplitude Amode, cf.
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FIG. 2: (a-c) Scan of mode amplitude (normalized to the experimental value, Amode = 1, from reflectometer’s

data). ORBIT runs include a single TAE mode. Initial particle distribution consists of 5000 particles, all

within the same (E,Pζ , µ) bin but different toroidal location and hence different phase with respect to the

mode. The parameters σE and σPζ
are obtained from a fit of ORBIT data with two bi-variate maxwellians,

see Eq. 9. (d) Dependence of σE (diamonds, black) and σPζ
(triangles, red) on mode amplitude, showing a

roughly linear relationship.

Fig. 2. Thus, only the coefficients for a specific value of Amode (for instance Amode = 1) have to

be passed to NUBEAM, along with a separate vector of mode amplitude vs time that is used to

re-scale the coefficients as time evolves. (The validity of this simplification is further discussed in

Sec. IV A and Fig. 14). By doing this, matrices in Eqs. 7 are reduced to three dimensions, i.e. the

three variables (E,Pζ , µ) that identify orbits in phase space.

B. Extension to the general, multi-mode case

The expressions introduced in the previous Section could be generalized to the case more com-

monly encountered in experiments of multiple modes (and multiple resonances, even for a single

mode) inducing fast ion transport. For example, one could specify a set of coefficients for N modes:
σE,i = σE,i(E,Pζ , µ)

σPζ ,i = σPζ ,i(E,Pζ , µ)

ρi = ρi(E,Pζ , µ)

wi = wi(E,Pζ , µ)

(8)

with i = 1 . . . N . wi is the relative weight of the i-th probability distribution, such that ΣN
i=1wi ≡ 1.

The set of probabilities {pi} (see Eq. 3) are used as basis functions to model the total probability

p(∆E,∆Pζ |Pζ , E, µ):

p(∆E,∆Pζ |Pζ , E, µ) = ΣN
i=1wi pi(∆E,∆Pζ |Pζ , E, µ) (9)
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From initial tests based on ORBIT, N . 4 might be enough to model cases with multiple TAE

modes, each characterized by different toroidal mode number, frequency and radial mode structure.

However, the approach of using the analytical representation for the pi’s, complemented by the

corresponding weight matrices wi’s, seems rather unpractical (although feasible) as the number of

input files required by TRANSP would rapidly increase for scenarios that require N > 1 to model

the modes’ impact on fast ions.

A more straightforward way to define the input required by TRANSP is to use the total

p(∆E,∆Pζ |E,Pζ , µ) directly, without any attempt to reconstruct it based on specific expressions

such as Eqs. 3-8. This requires a single file defining p as a set of 2D matrices (with variables

∆E,∆Pζ) as a function of E, Pζ and µ, with the clear advantage that a large number of scenarios

can be effectively modeled (including resonant and stochastic transport) in a relatively simple and

general way.

Furthermore, three observations help to introduce a time dependence in a simplified way:

1. For some practical cases, the scenario of interest is characterized by modes whose amplitude

vary in time, but the relative amplitudes do not (at least on average, when time steps & 1 ms

are considered). Therefore, providing the temporal evolution of the total mode amplitude,

Amode(t), as a 1D vector would be enough to describe the evolution of the entire set of modes.

2. As noted before, σE and σPζ are roughly proportional to the total mode amplitude, e.g. σE ∝
Amode (Fig. 2d). (Note that, if σE , σPζ are interpreted as equivalent diffusion coefficients

such as DE ∝ σ2/δt, the proportionality gives the expected dependence DE ∝ A2
mode for

diffusive transport).

3. Boundaries and shape of the domain (E,Pζ , µ) evolve in time during a discharge, for instance

because of the evolution of the q-profile. For practical purposes, one can assume that the

same domain can be used at different times with appropriate normalizations, e.g. based on

the magnetic flux at the boundary for Pζ , or on the magnetic field on axis for µ.

The proposed formulation is suitable for a straightforward inclusion of magnetic moment varia-

tions, that have been neglected so far. In order to preserve possible correlations between changes of

E,Pζ and µ, the general probability function should then be extended to p(∆E,∆Pζ ,∆µ|E,Pζ , µ),

i.e. as a 6-dimensional matrix.

III. PRACTICAL IMPLEMENTATION OF THE TRANSPORT MODEL

A. Deriving the transport coefficients

The NSTX [18] reference case used to illustrate how the input for TRANSP can be defined is

discussed in Ref. [19] and summarized in Fig. 3. It consists of a NSTX H-mode plasma with bursts

of n = 1 − 6 TAE activity from ∼ 0.2 s to ∼ 0.4 s. The modes have a more stationary character

after 0.4 s, when strong low-frequency MHD activity is also detected.

7



FIG. 3: (Color online) NSTX scenario used to illustrate how input quantities for the new model of fast

ion transport in NUBEAM/TRANSP can be derived from an experiment. (a) Spectrogram from Mirnov

coils located at the plasma edge. (b) Neutron rate showing repetitive drops coincident with bursts of TAE

activity. The arrow indicates the specific event that will be further discussed later in the paper.

FIG. 4: Examples of fast ion orbits in NSTX in the presence of 4 TAE modes. (a) Orbits in real space in a

NSTX poloidal cross-section. (b) Equivalent phase-space representation.

TAE modes are analyzed with the NOVA-K code [20] following the procedure outlined in

Ref. [21]. This provides the mode structure. The perturbation amplitude associated with each

mode is obtained by comparing the simulated density response (in arbitrary units) to the modes

with that measured through the UCLA reflectometer system [22] installed on NSTX.

The plasma equilibrium at a given time and the mode structures are used in the particle-

following code ORBIT to characterize the fast ion population (Fig. 4) and simulate the fast ion

response in terms of transport, including loss, redistribution and energy change. In the following

example, the reference time is chosen at t ≈ 0.27 s, when the mode amplitude is sufficiently large
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to obtain good reflectometer data.

Numerically or analytically obtaining the probability function p(∆E,∆Pζ) using expressions for

the particle orbit and eigenmode structure is extremely difficult. In particular, modes are localized

on flux surfaces, but high energy particle orbits are not, whereby a particle may experience large

variations in mode amplitude in a single toroidal transit. Strength and location of resonances can

only be determined by special numerical methods [15][17].

A single ORBIT run with a sufficiently large number of test particles is used to calculate

p(∆E,∆Pζ |E,Pζ , µ). Particles are initialized uniformly in the (E,Pζ , µ) space. A uniform distri-

bution in phase space is necessary to prevent gradients in the fast ion distribution to affect the

computed p(∆E,∆Pζ). Runs simulating ∼ 1 ms, corresponding to tens or hundreds of toroidal

transit times, are used. The mode amplitude is kept constant (Amode = 1). Mode frequencies

are also constant. During the run, each particle is tracked at fixed intervals δtsim and the main

parameters (including energy, Pζ , µ, orbit type) are recorded.

ORBIT results are then processed to infer p(∆E,∆Pζ). Variations in E and Pζ are calculated

at each step, providing an ensemble of values over the whole phase space:{
∆E(E,Pζ , µ)

∆Pζ(E,Pζ , µ)
(10)

This ensemble is then re-sampled based on a discrete grid in (E,Pζ , µ), and the probability distri-

bution function is computed as a 2D histogram for each bin in the grid. A normalization is applied

to ensure that Σ∆E,∆Pζ p(∆E,∆Pζ) ≡ 1 for each bin. These steps define the probability matrix

that is used as input in NUBEAM/TRANSP.

B. Obtaining the mode amplitude scaling factor

Different approaches can be used to compute the mode amplitude scaling factor, Amode(t).

Ideally, experimental measurements of the actual mode amplitude are used. Diagnostics such as

reflectometers, electron-cyclotron emission radiometers or beam emission spectroscopy are good

examples. In some cases, however, internal measurements of the mode amplitude are limited or

not directly available. Additional modeling is required in these cases to infer Amode(t). In the

following, a simple method based on commonly available neutron rate measurements is described.

It is assumed that mode amplitude is known at (at least) one time during the discharge. By varying

the mode amplitude in ORBIT simulations with respect to the measured one, one can obtain the

relationship between mode amplitude and expected drop in the neutron rate, see Fig. 5. This

graph, along with the measured neutron rate evolution, can be used to derive the time-dependent

Amode(t), which is then used as input for NUBEAM/TRANSP.

In practice, one calculates the instantaneous relative neutron rate variation, ∆Rn(t)/Rn(t),

from the measured neutron time-trace. At each time, ∆Rn(t)/Rn(t) is then used to calculate

the normalized mode amplitude that corresponds to that change from the relationship shown in
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FIG. 5: Scan of fractional neutron rate drop as a function of constant mode amplitude from the ORBIT

code. Arel = 1 corresponds to the nominal experimental values of mode amplitude for which p(∆E,∆Pζ) is

computed.

Fig. 5. These steps are illustrated in Fig. 6. For comparison, the mode amplitude scaling factor

from neutron rate and from Mirnov coils located at the plasma edge is shown in Fig. 6c. Both

methods succeed in identifying times with TAE bursts. The waveform from neutron rate appears

smoother, mainly because of the filtering of the raw data required to compute time derivatives

without large spikes and noise. The consequences of a different input for Amode(t) are briefly

discussed in Sec. IV B.

C. Algorithm implementation in NUBEAM/TRANSP

The fast ion transport model presented in the previous Sections has recently been implemented

in Fortran and interfaced with the NUBEAM code. A flowchart of the model’s implementation is

shown in Fig. 7. The model acts on the fast ion distribution in between two steps of NUBEAM.

Initial conditions are read from the so-called plasma state structure of TRANSP, which contains

information on machine configuration (e.g. machine size, structures, parameters of NB injection

and other auxiliary heating systems) and current plasma and equilibrium parameters (such as

magnetic equilibrium, plasma profiles).

The first step in the model is to convert the fast ion distribution Fnb from real-space vari-

ables (R,Z,E, p) to phase space variables (E,Pζ , µ). Note that the three variables (E,Pζ , µ) (and

sometimes the sign of the parallel velocity) defines a complete orbit in an axisymmetric system,

whereas (R,Z,E, p) define a single point on that orbit. Since the timescale for distribution mod-

ification is long compared to transit times, variables (E,Pζ , µ) are the relevant ones. Within the

NUBEAM/TRANSP framework, this conversion from single-point (instantaneous) to orbit repre-

sentation of the particle distribution is valid because of the statistical approach used in the code,

i.e. the code evolves the distribution as a statistical ensemble rather than keeping track of each

particle separately.

Information on the mode amplitude evolution for the current NUBEAM step is recovered from

the input file. Then, the model evolves each particle according to its location in phase space
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FIG. 6: Calculation of normalized mode amplitude evolution based on the measured neutron rate and using

the relationship between neutron variation and normalized mode amplitude from ORBIT, see Fig. 5. (a)

Measured neutron rate (black) and cumulative neutron deficit (red). Also shown are the reconstructed

neutron rate in the absence of modes (blue) and the deficit that would result from fast ion loss only (yellow),

i.e. without taking into account the energy variation induced by the wave-particle interaction with the TAE

modes. (b) Mode amplitude Amode(t) normalized to the peak mode amplitude at t = 268.7 ms, obtained

from the measured neutron rate evolution and the graph in Fig. 5. (c) Comparison between Amode(t) from

neutrons and from Mirnov coils data over a limited time range.

and to the given mode amplitude. After the full MonteCarlo step for (E,Pζ , µ), all remaining

particle’s parameters are updated and the possibly new position in (R,Z) is re-computed. This

leads to the conversion of Fnb(E,Pζ , µ) back to the initial representation in terms of (R,Z,E, p)

required by NUBEAM/TRANSP. Once the updated Fnb is known, information is passed back to

NUBEAM/TRANSP to update the plasma state and begin a new time step.

The full procedure is summarized here below:

1. A TRANSP input file is defined for the step probability distribution function,

p(∆E,∆Pζ |E,Pζ , µ), that is used as input to TRANSP. This consists of a 5D matrix of

probability values. Two variables define the (∆E,∆Pζ) grid over which the probability for a

given region in phase space (E,Pζ , µ) is provided. The remaining three variables define the

discrete regions (or bins) into which the phase space is divided.

2. The time evolution of the total mode amplitude is specified as a 1D array in a separate input

file.

3. The two input files, along with the appropriate switches in the standard TRANSP parameter

11



FIG. 7: (Color online) Flowchart of the model as implemented in NUBEAM.

list, completely describe the input for a given set of modes with (possibly) time-varying

amplitude.

4. At the beginning of the TRANSP run, the probability matrix is recovered from the input

files. Variables in p(∆E,∆Pζ) are updated during the run to preserve the correct orbit

topology, based on q-profile, magnetic equilibrium [14].

5. The next step is to update the particles’ trajectory at each iteration of NUBEAM. Classical

mechanisms (slowing-down, scattering) are treated in the standard way. Only the effects of

resonant modes are discussed here.

6. For a particle characterized by values (Pζ , E, µ), one can identify the corresponding bin in

the probability matrix and proceed to the random sampling of the kicks in E and Pζ for the

next iteration. The steps for the i-th particle are indicated as ∆Ei and ∆Pζ,i. (More details

on how particle’s energy and Pζ may be advanced in practice are given in the next Section).

7. Now proceed to the calculation of the E and Pζ variations for a time step of duration δtstep.

Based on the time step used to compute p(∆E,∆Pζ), indicated as tsimstep, the step δtstep is

divided into Nsteps smaller time intervals of duration tsimstep and the total variation of E and

Pζ is calculated as the result of a correlated random walk in time. The mode amplitude

during the time step may vary according to the input Amode(t). The ∆E and ∆Pζ steps are

calculated from the randomly extracted ∆Ei and ∆Pζ,i, and E and Pζ are then updated.

8. Loop over particles.

9. Update other variables such as radius, poloidal angle, of the particles.

12



FIG. 8: Example of E, Pζ temporal evolution for particles with different initial values of (E,Pζ). Particles

in red and cyan are lost after a few microseconds.

D. MonteCarlo extraction of steps ∆Ei, ∆Pζ,i

The random extraction of ∆Ei and ∆Pζ,i is arguably the most important step in the procedure

depicted above. An important feature is that the particle motion is characterized by different

time scales, see Fig. 8. Firstly, particles oscillate in the wave field over periods ' 1/fmode, that is

typically much shorter than the time step used in simulations with NUBEAM/TRANSP. For many

particles with similar parameters but different phase with respect to the modes, this fast motion

results in a spreading of energy and Pζ around the initial values. Secondly, the average particle

energy and Pζ drift over time scales of several toroidal transit times. This second time scale is the

relevant one for the process under study. What makes these constraints important for calculating

the particle trajectory in the (Pζ , E, µ) space is that the particle motion is not purely periodic and

it can be skewed toward positive as well as negative values of ∆E and ∆Pζ . In other words, over

time scales of 100’s µs a specific particle can (i) fluctuate around its instantaneous energy value,

but (ii) slowly drift away from the initial energy, cf. Fig. 8. When the concept is extended from

a single particle to a statistically significant ensemble of particles, a net gain or loss of energy can

emerge.

Moreover, each p(∆E,∆Pζ) for a given bin (Pζ , E, µ) may, in general, contain both resonant

and non-resonant particles because of the discrete grid used to cover the (Pζ , E, µ) space. The

algorithm used to evolve Fnb must be able to keep track of the ’class’ to which a particle belongs,

or else, for example, a non-resonant particle will have a finite probability to experience large energy

and Pζ excursions, which would lead to wrong results. To illustrate that, suppose the p(∆E,∆Pζ)

for a specific bin is composed by two distinct components, that are hereafter indicated by their

typical energy step only. The first group has negligible ∆E1 ∼ 0 and is classified as non-resonant

particles. The second group has large ∆E2 ∼ 5 keV and is dubbed as resonant particles. If the

average step ∆E is sampled randomly at each sub-step, particles in the first group may receive

an occasional kick ∆E2 � ∆E1. As a result of the unbiased sampling, the final distribution will
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FIG. 9: Qualitative derivation of the scheme to evolve particles’ energy and Pζ . (a) For a single particle

oscillating in the wave field, the probability function to experience a step ∆E, shown by the line in the right

panel of (a), is approximated by two delta functions at ±∆E. (b) When all particles experiencing a kick

|∆E| and a drift in energy are taken into account, an asymmetric distribution appears.

be much broader than it should be, even if the extra-kick does not happen frequently for particles

in the first group. The main consequence to develop a scheme to evolve Fnb in time is that the

motion has to be described as a correlated random walk, rather than a simple random walk with

every particle’s step totally un-correlated from the previous one. This is implemented in the new

model in a semi-empirical way. The following explanation is carried out for energy variations only,

then extended to the ∆E,∆Pζ case under consideration by implicitly invoking the constraint in

Eq. 2.

To evolve the particles, the energy variation after a time δtstep has to be reconstructed starting

from the available p(∆E), which is computed for tsimstep � δtstep. Begin by associating a step ∆E,

randomly extracted from p(∆E), to a particle (Fig. 9). Assume that ±∆E represents the maximum

energy variation that that particle can experience under the effects of the oscillating wave field.

The particle’s energy will vary in time as

E(t) ∼ E0 + ∆E sin[φ(t) + φ0] + δE(t) (11)

where φ(t) is the phase between particle and wave(s), φ0 a random initial phase and δE(t) accounts

for possible (secular) drifts caused by resonances. For δE sufficiently small over a step of duration

tsimstep , the probability that the particle will have an energy variation x at a certain time is thus

p(x) ≈ 1

π
√

∆E2 − x2
, −∆E ≤ x ≤ ∆E (12)

which is further simplified as

p(∆E) ≈ δ(∆E+) + δ(∆E−)

2
(13)

with ∆E+ .
= +∆E and ∆E− .

= −∆E. This particle is now assumed to be representative of an

ensemble of particles with characteristic step |∆E|, see Fig. 9b. In general, p(∆E) may not be
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symmetric for the ensemble if δE(t) 6= 0. Estimate the average energy change, ∆E, after Nsteps of

duration tsimstep for the ensemble characterized by this |∆E|:

∆E ≈ Σ
N+
steps

j=1 ∆E+ + Σ
N−
steps

k=1 ∆E− (14)

where N+
steps (N−

steps) is the number of steps with positive (negative) energy variation.

Now define the probability for either positive or negative variations, p+
.
= p(+∆E) and p−

.
=

p(−∆E). For Nsteps sufficiently large, the probability that the particle will experience a positive

energy kick at each step is given by p+/(p+ + p−) (and similarly for negative kicks), therefore

Eq. 14 can be rewritten as

[Σ
N+
steps

j=1 (+1)︸ ︷︷ ︸
Nsteps

p+
p++p−

+ Σ
N−
steps

k=1 (−1)]︸ ︷︷ ︸
Nsteps

p−
p++p−

×∆E → Σ
Nsteps
j=1 Sr,k︸ ︷︷ ︸

Nsteps
p+−p−
p++p−

∆E (15)

where Sr,k is the sign of a random number uniformly extracted from [−p−/(p+ +p−), p+/(p+ +p−)]

at each step. Finally, since the step ordering in Eq. 14 is probabilistic, the overall ∆E from Eqs. 14-

15 can be cast as

∆E ≈ Σ
Nsteps
k=1 Sr,k ∆E Amode,k (16)

with the substitution ∆E → ∆E Amode,k at each step k to account for the proportionality σE ∝
Amode, cf. Fig. 2.

On the basis of this semi-empirical derivation, the overall ∆E and ∆Pζ over a time δtstep are

calculated as the result of multiple steps, each of duration tsimstep that is sufficiently shorter than

δtstep. For example, the tests presented hereafter have tsimstep � δtstep/10. The kicks ∆E and ∆Pζ

are calculated for the first step only. The only exception is when a particle moves from one bin to

another in (Pζ , E, µ) before the full step δtstep has been covered, for example because it experiences

a large energy kick. In this case, new values of ∆E and ∆Pζ are sampled based on the new phase

space coordinates.

IV. VERIFICATION OF THE REDUCED MODEL

A. Verification against ORBIT simulations

In this Section, the algorithm that implements the new transport model is verified against full

ORBIT simulations for the scenario introduced in Fig. 3. Because a realistic modeling of fast ion

dynamic in phase space is at the core of the new model, the ability of the code to identify and evolve

fast ion orbits is first tested. For a given fast ion distribution (e.g. from NUBEAM/TRANSP),

orbits are classified and their trajectory reconstructed in both real and phase space [14], see Figs. 10-

11.

Figure 10a shows a co-passing, confined fast ion that is pushed into a trapped confined region

by the interaction with TAE modes. The change in orbit type is clear from its projection in the
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FIG. 10: (Color online) Illustration of orbit topology change induced by TAE modes in (a) real space and

(b) phase space. Particle’s parameters are reported in (a). Dark (light) colors for the orbit indicate co-going

(counter-going) motion. The particle’s trajectory in phase space is shown in (b) as colored line connecting

the initial orbit (red square) to the final orbit (green diamond). Final location of other particles with similar

initial energy are shown by the symbols.

FIG. 11: (Color online) Same as in Fig. 10 for a lost co-passing particle. Note that, in addition to the

particle’s initial (blue) and final (red) orbits, the code correctly identify other orbits for confined counter-

passing particles (yellow and green orbits) in the same phase space region.

(R,Z) poloidal cross section of NSTX. The evolution of the orbit in the corresponding (Pζ , µ) plane

(Fig. 10b) shows that, as the particle loses energy and reaches a more negative Ψ (i.e., larger minor

radius), it first moves on a potato orbit and finally it becomes a trapped particle.

Similarly, Fig. 11 shows the loss process for a co-passing, confined particle at larger pitch that

crosses the loss boundary and hits the wall. It is interesting to note that the final orbit resides
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FIG. 12: (Color online) Test of the Fortran algorithm to evolve Fnb over 5 ms according to a given

p(∆E,∆Pζ |Pζ , E, µ) and Amode(t). Results from the Fortran code (red triangles) are compared to full

simulations performed with ORBIT (black diamonds). Through ORBIT, p(∆E,∆Pζ) is calculated using

steps tsimstep = 25 µs. Scatter plots of energy and Pζ variations are shown in (a-d). The corresponding distri-

butions from the model and from ORBIT are compared in (e-j).Test particles are selected with values of E,

Pζ and µ corresponding to (e,f) co-passing, (g,h) trapped and (i,j) all particles with E ≥ 10 keV.

in a region of phase space where both co-passing lost and counter-passing confined orbits coexist

(Fig. 11b). By classifying the particles’ orbit at each MonteCarlo time-step, the code can still

resolve the correct orbit evolution.

A comparison of the evolution of the entire distribution from ORBIT and from the reduced

model is shown in Fig. 12. Histograms for E and Pζ variations are shown for co-passing, trapped

and all particles in the original distribution. Considering the simplicity of the model, the agreement

between the two codes is satisfactory over at least three orders of magnitude. Possibly, the only

exception is in the energy and Pζ variations for trapped particles. This is attributed to the relatively

poorer statistics for this phase space region, although uncertainties in the reconstructed probability

p(∆E,∆Pζ |E,Pζ , µ) can not be completely ruled out.

Larger discrepancies between the Fortran algorithm and full ORBIT runs are observed when the

overall mode amplitude evolution is scaled to smaller or larger values than those used to compute

p(∆E,∆Pζ), see Fig. 13. The cause for the increased discrepancy is illustrated in Fig. 14, where the

second, third and fourth moments of the distributions of ∆E and ∆Pζ are shown as a function of

amplitude scaling factor (nominal mode amplitude is = 1) in the presence of 3 TAE modes. As seen

in the figure, the standard deviation does indeed increase linearly with mode amplitude, similarly

to what already shown for a single mode (cf. Fig. 2d). However, both skewness and kurtosis

vary with mode amplitude, indicating that the shape of the probability distribution from ORBIT

does vary with Amode. In this case, the assumption of simple linear scaling of ∆E and ∆Pζ with

Amode is not adequate to accurately reproduce the actual dependence p = p(Amode). Improvements
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FIG. 13: (Color online) Probability distributions for the final energy step ∆E from full ORBIT simulations

(black diamonds) and from the model (red triangles). The mode amplitude Amode(t) is scaled by a factor

0.25 up to 1.5. Error bars are simply estimated as proportional to the square root of the number of counts

in each energy bin.

FIG. 14: (Color online) Variations of the shape of the p(∆E) and p(∆Pζ) probability distributions as a

function of the mode amplitude scaling factor are not directly observed in the standard deviation (a), but

do appear in both skewness (b) and kurtosis (c) as they change with the scaling factor.

to the model to include more accurate scaling of the probability shape are under considerations.

Nonetheless, this exercise provides an indication of the uncertainties in reconstructed fast ion

evolution associated with computing p(∆E,∆Pζ) at a single time for the reduced model, and then

applying the same probability distribution to a broader time window.

The computed fast ion evolution in real space for this NSTX scenario is shown in Fig. 15. TAEs

cause a redistribution to outer minor radii, with a drop in the number of fast ions near the plasma

center (
√

Ψ . 0.2) of O(10%). The corresponding increase in fast ion population at outer radii

appears small, but it should be considered that particles are diluted into regions with much larger
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FIG. 15: (Color online) Computed redistribution of Fnb over a 5 ms step with a burst of TAE activity.

Shown are (a) profiles variation and (b) relative profile variation as a function of normalized minor radius.

Solid (dashed) lines in (a) refer to the Fortran algorithm (ORBIT) simulation. Statistical uncertainties are

assumed to be equal to the square root of the counts. Panel (c) show the estimated variation in NB driven

current profile.

volume. The relative variation shown in Fig. 15b is more suitable to quantify the fast ion density

increase at
√

Ψ & 0.4. For this case, losses remain limited to � 1%, or O(10) lost particles from

the initial population of 34000 particles from NUBEAM.

The redistribution of fast ions is expected to affect other quantities, such as the amount of

NB-driven current, here simply approximated by INB ∝ Σk pk
√
Ek, where the sum runs over

all particles with E ≥ 10 keV at each minor radius
√

Ψ. The results are shown in Fig. 15c.

Redistribution of core fast ions causes a drop of INB near the magnetic axis, and a slight increase

for
√

Ψ & 0.6.

B. Initial tests within the NUBEAM/TRANSP framework

Before its final implementation in the NUBEAM module of TRANSP, the reduced model is

tested with a stand-alone version of NUBEAM. Iterations between the two codes are used to test

all the steps illustrated in the conceptual flowchart of Fig. 7. Plasma profiles such as density and

temperature are assumed to be constant in time. Magnetic configuration is also considered as

fixed. Without modifying this background scenario, the code evolves the fast ion population and

19



FIG. 16: (Color online) (a) Mode amplitude scaling factor derived from the measured neutron rate, cf.

Fig. 6. (b) Measured (hatched region) and simulated neutron rate. Rates are normalized to their value at

t = 266 − 267 ms (grey shaded region). Symbols refer to different time steps δtstep for the macroscopic

NUBEAM iterations. (c) Same as in (b), but forcing the reduced model to resample ∆E and ∆Pζ after a

different number of time steps (parameter N in the figure), each of which has duration tsimstep = 25 µs.

other quantities related to it, for instance neutron rate and NB-driven current profile.

The goal of these initial tests is to verify that the new model is capable to evolve fast ions

over time periods of the order of (or longer then) typical collisional and slowing down times, i.e.

& 10− 20 ms for NSTX plasmas. Considering the scheme in Fig. 7, adjustable parameters for this

simulation are the total duration of the simulation and the length of each NUBEAM step k → k+1

required to cover that time range. The latter also defines how frequently the fast ion population

is updated by the new model.

The results of simulations with varying step size are shown in Fig. 16, where measured and

reconstructed neutron rate, Rn, are compared for a specific NSTX discharge. The mode amplitude

scaling factor is derived from the neutron rate as discussed in Fig. 6. The measured neutron rate is

divided by the central deuterium density at each time to account for the fact that plasma profiles

are kept constant in time in the simulation. Neutron rates are then normalized to their value before

TAE bursts begin, t = 266− 267 ms.

Figure 16b demonstrates that the new model is indeed reproducing the correct neutron rate (or,
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FIG. 17: (Color online) Dependence of simulated neutron rate on mode amplitude. (a) Mode amplitude

scaling factor rescaled by kscale = 0.75, 1 and 1.25 times its nominal value. (b) Measured and simulated

neutron rate, including the case with no modes for reference. Simulations have δtstep = 2 ms, N = 80. Solid

lines represent linear fits of the simulated neutron rate, showing the same rate of increase in regions where

mode activity is negligibly small.

rather, its correct temporal evolution). Exceptions to this are the runs in which iterations between

the model and NUBEAM happen every 0.5 ms and 4 ms. The reason for this discrepancy is twofold,

as shown in Fig. 16c. When δtsteps between two NUBEAM iterations is� 1 ms, the steps ∆E and

∆Pζ are resampled too frequently in the model. The requirement of correlated random walk for

the fast ion evolution is violated, resulting in a net increase in the total transport (see Sec. III C).

This is confirmed by a test run with the standard δtstep = 2 ms but forcing the resampling of ∆E

and ∆Pζ every N = 20 steps, instead of the default N = 80. Transport is artificially enhanced

in this case. The second reason for discrepancy appears when δtsteps approaches the reciprocal of

the NB injection rate. Since the new model is applied here at the beginning of each step, this

means that newly injected particles are not redistributed, resulting in smaller transport. The three

cases with δtsteps = 4 ms in Fig. 16c confirm this interpretation. Transport is under-predicted (i.e.,

neutron rate is overestimated) with respect to the measured one for δtsteps = 1 − 2 ms, unless N

is reduced to < 50, thus causing a fictitious increase in transport as explained above. These two

examples indicate that the value of δtsteps must be chosen in the NUBEAM run to be much larger

than the duration of the micro-steps in the model, tsimstep, but sufficiently shorter than collisional

and NB injection time scales.

Once the correct step size is adopted, it is useful to assess the sensitivity of the simulation results

on the input parameters, and especially on the mode amplitude scaling factor, Amode. Figure 17

illustrates the computed neutron rate for mode amplitudes varying by ±25% from the nominal

21



FIG. 18: (Color online) Simulated effects of bursting TAE modes on fast ion and NB-driven current profiles.

The radial variable ρ corresponds to the normalized toroidal flux. Simulations have δtstep = 2 ms, N = 80.

(a) Radial fast ion profile before, just after and 10 ms after the first TAE burst occurs. (b) Same as in (a)

for the NB-driven current profile. Solid (dashed) lines in (a-b) refer to simulations without (with) enhanced

transport from TAEs. Bottom panels show the temporal evolution of (c) NB-driven current Jnb(ρ), (d)

relative variation of Jnb(ρ) normalized to the no-modes reference case and (e) relative variation of fast ion

profile Fnb(ρ) normalized to the no-modes case. The solid line in (c) shows Amode(t).

value. The case with Amode = 0 is also shown for reference. It can be seen that the time evolution

of neutron rate is quite sensitive to Amode. This is because Rn at a given time depends in part

on the previous history of the fast ion population. Inaccurate reconstructions of fast ion transport

at earlier times cumulate, at least on time scales comparable to the slowing down time, leading to

increased discrepancy for the wrong choice of Amode. In practice, the neutron rate also evolves at

a rate set by the NB injection rate at times with negligible mode activity. Any deviation between

runs with different Amode is attributed to previous drops in Rn, which scales with Amode.

The sensitivity of the reconstructed Rn on the input Amode has two additional implications.

Firstly, it is a confirmation (although indirect) that the implementation of the new model within

NUBEAM/TRANSP does reflect the fast ion dynamics as obtained from the original full simula-

tions with the ORBIT code. Secondly, it may be used to infer with some confidence transport levels

associated with other modes that are not included in the computation of p(∆E,∆Pζ), but may be

present in the original experiment. Another implication of the tight dependence Rn = Rn(Amode)

is that it may enable simulations in which the measured neutron rate is supplied as input, and

Amode is determined during the run to match it. The possible implementation of this Rn-feedback

scheme directly inside the model is left as future work.

Time evolution of the fast ion and NB-driven current profiles are finally considered as the last

example in this Section, see Fig. 18. Similarly to the neutron rate, significant drops are observed
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in both Fnb and Jnb when bursts of TAEs occur. It is important to note that, as for the neutron

rate, the effects of each burst are not limited in time to the duration of the burst, but propagate

over a much longer time span, of the order of the slowing down time.

V. CONCLUSIONS

A new fast ion transport model has been developed for the tokamak transport code TRANSP.

The model is based on a MonteCarlo approach to mimic the effects of instabilities on the fast

ion population. A probability distribution matrix, along with a mode amplitude scaling factor,

is used to define the fast ion response to the modes as a function of time and fast ion phase

space coordinates. Verification of the new model against the guiding center code ORBIT has been

performed. Initial tests with a stand-alone version of the NUBEAM module, which evolves the fast

ion distribution in TRANSP, are successful. The implementation of the model in the NUBEAM

module of TRANSP is under way.
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