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Abstract—The National Spherical Torus Experiment (NSTX) 
currently uses a collection of analog signal processing solutions 
for coil protection. Part of the NSTX Upgrade (NSTX-U) entails 
replacing these analog systems with a software solution running 
on a conventional computing platform. The new Digital Coil 
Protection System (DCPS) will replace the old systems entirely, 
while also providing an extensible framework that allows adding 
new functionality as desired. 

The development of the DCPS was a multi-discipline 
engineering effort. The fact that long-trusted yet presently-
inadequate protection mechanisms were being replaced with a 
first-of-a-kind system at NSTX-U has led to a carefully crafted, 
full-featured software design.  Real-time Concurrent RedHawk 
Linux provides the deterministic environment in which the 
software runs, and the software architecture follows a UML 
design with industry standard patterns.   

Keywords—NSTX-U; DCPS; Linux; RedHawk; RTOS; real-
time; UML 

I. INTRODUCTION 
The National Spherical Torus Experiment (NSTX) [1] is 

currently undergoing a multi-year upgrade [2,3,4] that will 
expand the realm of possible scientific goals [5,6].  An 
increased pulse length, new divertor coils, and doubling the 
field capacity (which quadruples the magnetic loads) all 
contribute to an increased need for protection of the hardware 
[7].  These protection systems serve as the last line of defense 
to shut down the power supplies before they cause damage.  
The existing hardware-based systems, while highly reliable, are 
costly to reconfigure and upgrade. 

As a result, NSTX-U will replace the older coil protection 
system with a new digital computer based solution that enables 
a flexible and extensible protection system at a lower cost.  
Historically, however, general purpose operating systems, 
commercial computers, and high level programming languages 
have been ill-suited for protecting equipment.  Determinism, 
latency, throughput, and failure rate are only a few of the 
factors that tend to preclude choosing a fast GNU/Linux 
system in favor of an embedded device [8].  To overcome this 
ambiguity, the DCPS computing system uniquely combines 
new technologies and modern design techniques to provide the 
flexibility of software without compromising the inherent 
safety of embedded hardware.  The chosen technologies have 
matured to the point that they are more effective in the 
embedded world today than in years past. 

Among other things, DCPS will include: 

• AMD Opteron based x86_64 architecture 

• Concurrent RedHawk Linux based on RedHat 
Enterprise Linux 6 [9] 

• Super Micro H8DG6-F motherboard with a dual 16-
core CPU setup and 64 GB Registered ECC RAM 

• C++11 programming language with strict adherence to 
the standard [10] 

• Object Oriented design techniques following the UML 
2.4.1 standard [11] 

• Industry standard design patterns 

• Commonly available analog input cards from General 
Standards (16AI64SSC) and a digital input/output card 
from Adlink (7296) 

• 200 microsecond cycle time on input data 

II. NSTX-U DCPS SYSTEM REQUIREMENTS 

A. Fault Logic 
DCPS has two concurrent outputs: a fault signal, and a 

heartbeat.  It will continually send a heartbeat signal to an 
external device to validate its own health, but will not normally 
output a fault signal.  The loss of said heartbeat or the existence 
of said fault signal signifies a degraded ability to prevent 
damage to the system, and thus triggers an immediate NSTX-U 
shutdown.  This two factor approach ensures the ability of 
DCPS to operate in a failsafe manner.  

B. Coil Protection 
DCPS will protect NSTX-U during a plasma attempt, or 

“pulse”, by running a collection of algorithms [12,13] against 
the plasma current and the 16 magnetic coil currents every 200 
microseconds.  A fault occurs if the result of any algorithm 
exceeds a preprogrammed minimum and maximum limit.  A 
fault also occurs if the system determines that a fault could 
occur before the next time cycle given a worst case projection.  
Finally, a fault occurs if a disruption before the next time cycle 
would cause any algorithm to exceed its limit value. 

*This work supported by U.S. DOE Contract No. DE-AC02-09CH11466 



Between plasma attempts, the DCPS must monitor all of 
the currents in the system and ensure that they remain at zero.  
Any current in the system prior to the start of the next plasma 
attempt will similarly result in a fault that prevents the pulse 
from occuring [14]. 

C. Finite State Machine 
Central to the DCPS framework is the finite state machine 

shown in Fig. 1 that contains ten possible states reflecting the 
system being in one of four modes: Plasma Operations, Auto 
Test, Simulate, and Maintenance.  Plasma Operations, as the 
name implies, is the real operating mode for actually protecting 
NSTX-U.  Auto Test is for attaching an external simulator, 
whereas Simulate is for running internal simulations.  While 
the first three modes represent different ways to run the system, 
the last mode, Maintenance, is for modifying the runtime 
characteristics of DCPS [15]. 

III. DCPS SYSTEM 

A. Operating System Choices 
Embedded systems historically utilized hardware dedicated 

to a specific task, as opposed to a more general purpose 
platform.  While GNU/Linux is growing in popularity outside 
of its traditional server/workstation role, it remains ill-equipped 
for a sub-millisecond hard real-time device.  The ability of the 
kernel to meet a deadline is predominenately a measure of 
Process Dispatch Latency (PDL).  The Linux kernel by itself 
has no latency guarantees at all, and PDL delays due to 
interrupt handling easily exceed 100 milliseconds.  Created as 
a workstation operating environment, the Linux scheduler 
tends to favor servicing many simulatneous processes in a 
fashion that delivers quick response time to a physical user.  
An embedded device by comparison would rather preempt I/O 
tasks like disk activity in favor of servicing the real-time 
application and meeting the timing deadline at stake. 

There are two mainstream real-time versions of Linux that 
overcome the PDL deficiencies: RedHat MRG and Concurrent 
RedHawk.  DCPS uses the latter, as it includes unlimited 
support, real-time I/O drivers, and a NightStar toolset that 
enables the DCPS development team to monitor, tune, and 
debug the system with orders of magnitude less effort 
compared to conventional tools.  Without NightStar, system 
tuning becomes a much more arduous task requiring many 
iterative “test and check” cycles with invasive recompiling and 
reconfiguring.  Using the provided tools, however, it is 
possible to dry run hundreds of scenarios in several hours.  
Applying this approach to a prototype version of DCPS on 
NSTX-U, for example, reduced timing analysis efforts for a 
two man-week task to a matter of minutes.  DCPS will 
therefore take advantage of these experiences and the benefits 
that RedHat MRG cannot provide. 

Both systems provide deterministic capability using 
different techniques, described in the following section. 

B. Kernel Modification Methods 
There are two main approaches to solving the determinism 

problem investigated for DCPS: a kernel modification 

developed by Ingo Molnar called PREEMPT_RT [16], and a 
technique to aid scheduling concerns called CPU shielding 
[17,18].  The kernel modification approach tends to be system 
wide, while the CPU shielding approach focuses on just the 
real time processes.  It is therefore a less intrusive and more 
forward compatible choice, which is a large driving factor in 
the DCPS design. 

In kernel preemption, the technique used in RedHat MRG, 
the user application has the ability to preempt a kernel thread 
scheduled for the same CPU on which it is currently trying to 
run.  Without this patch, the kernel is strictly not preemptible.  
The user application is at the mercy of any possible kernel 
event, such as an asynchronous interrupt request (IRQ) that 
needs to run for 50 milliseconds during the real-time event’s 50 
microsecond inner loop.  Obviously, the real-time process will 
completely miss its deadline (effectively, it will miss it 1,000 
times in a row).  For a protection system, this is catastrophic.  
The PREEMPT_RT patch modifies the kernel and allows the 
user application to stop the IRQ from running so that it can 
service its own event instead.  Unfortunately, an IRQ has to run 
eventually, and no amount of preemption will alleviate the 
unending kernel tasks that keep a stable system operational.  
The patch is system-wide, greatly changing the entire scope of 
the kernel runtime metrics.  Because of the intrusive nature of 
the change, the patch, by the author’s own admission, will 
reduce overall system throughput and kernel response times.  It 
trades total performance for the ability to preempt kernel tasks. 

 
Fig. 1. DCPS Finite State Machine 



Conversely, with a simplistic CPU Shielding approach, the 
user application and the kernel share the available CPU cores, 
dedicating certain tasks to specific cores.  The user application 
receives one or more reserved cores on which the kernel cannot 
schedule interrupts or other kernel threads.  Instead, the kernel 
stays on non-real-time-application cores where it is free to tie 
up CPU time without affecting the real time determinism.  The 
user application on its dedicated cores can effectively latch the 
CPU in a spinwait or sleep in a blocking idle state without fear 
of another thread taking control.  This effectively reduces 
dispatch latency to near zero, as there is never any resource 
contention in terms of processor allocation.  The benefit to this 
approach is that the core allocation for kernel and user space 
remains fixed, defined at the beginning.  The kernel always has 
a place to run its own interrupt routines, and the user always 
has a place to run its real time loop.  There is never any 
preemption one way or the other, and therefore there is no 
performance sacrifice.  This creates a far more copasetic 
relationship between the kernel and the user. 

Since the DCPS computer has a large core count, it is easy 
to organize the various tasks such that each main thread 
receives a dedicated core shielded from all other system 
activity.    Operations such as I/O card interaction, watchdog 
monitoring, and algorithm processing can all operate on an 
isolated core with no overhead.  Doing so still leaves spare 
cores to conduct normal system operations, such as handling 
IRQs, running user shells, and managing background services. 

Of course, neither of the two options, shielding or 
preemption, removes the need for appropriate real time 
programming techniques that manage resources outside of 
CPU cycles.  Memory allocation, bus contention, I/O, and 
system calls all still pose a threat to determinism.  However, 
CPU shielding greatly reduces the difficulty associated with 
these tasks. 

C. Deployment Model 
DCPS consists of two processes, a Core and a Client, that 

communicate over a standard SSL encrypted TCP/IP socket.  
The Core is a multithreaded process written in C++11 that 
actually runs the coil protection mechanisms.  The Client is a 
separate process written primarily in Qt 5 / C++ and possibly 
running on a different machine that connects to and controls 
aspects of the Core.  Communication between the Client and 
Core uses Google’s open source project, Protocol Buffers, for 
object serialization and ZeroMQ for the socket transport 
library.  These two complimentary technologies are efficient, 
well maintained, and compatible with current object oriented 
programming languages (C++, Python, and Java).  Since the 
Core and Client languages are predominantly C++, this 
presents an easy way to communicate between two distinct 
applications. 

DCPS incorporates three physical computers to operate.  
The main computer that runs the Core is a fast 32-core 
Commercial Off The Shelf (COTS) solution running the tuned 
RedHawk operating system.  The Client connects to the Core 
from a terminal that will typically be in the main NSTX-U 
control room, but can theoretically reside anywhere the virtual 
network rules allow.  The third computer is the database 

storage machine, a highly protected, highly restricted machine 
hidden behind multiple security layers.  This machine houses 
all of the protection data required to operate NSTX-U and 
DCPS.  While read access to this data will be readily available, 
write access will instead require multiple levels of 
authentication combined with physical access restrictions. 

D. System Inputs 
DCPS receives three kinds of input from external sources.  

There is a 5 kHz clock signal and several discreet clock events 
driving individual interrupt lines on the Realtime Clock and 
Interrupt Module (RCIM).  There are several digital inputs on a 
digital I/O card to handle reseting and overriding faults.  
Finally, there are 64 differential analog input channels spread 
across two cards.  The signals consist of statuses, triggers, and 
most importantly the instantaneous currents in each coil as well 
as the plasma current.  There are two channels for each current, 
duplicated for redundancy and sent to different cards. 

E. System Outputs 
There are far fewer outputs from the system compared to 

the vast and varied array of inputs.  Primarily, outputs consist 
of two types of failure signals: a Level 1 Fault, and a Watchdog 
Timer.  In practice, the level 1 fault line is actually four 
independent fault lines, one for each coil system employed in 
NSTX-U.  These only trigger high when a protection algorithm 
trips a limit value.  Otherwise, they stay low.  The watchdog 
output is on the other hand a regularly oscillating signal, 
alternating high and low with every successful real-time cycle 
completetion.  Missing this heartbeat signifies the unreliability 
of DCPS to protect NSTX-U, and thus an immediate shutdown 
occurs. 

Aside from the primary outputs, there are also a few status 
outputs to signify various modes in which the DCPS might 
operate.  For instance, with the external AutoTester attached, a 
corresponding output alerts other external devices that the 
DCPS software thinks it is in a Test mode.  This is useful as a 
sanity check to prevent crossover between real operations and 
testing. 

IV. SOFTWARE DESIGN 

A. Design Methodology 
Any moderately complex software application requires 

accurate documentation and developer coordination.  The 
Object Modeling Group (OMG) created the Unified Modeling 
Language (UML) [11] as an effective way to communicate 
software designs between various stakeholders: customers, end 
users, designers, engineers, developers, et al.  DCPS 
documentation fully exploits UML version 2.4 to both identify 
the users and describe the software requirements, code design, 
and eventual deployment. 

Use of modeling such as UML encourages the subsequent 
application of reusable design patterns that are standard in the 
industry.  These patterns provide building blocks to form more 
complicated structures without reinventing commonly used 
foundations.  They are typically language agnostic, preventing 
the overall design from dictating the eventual implementation. 



There are six discrete components that make up the DCPS 
software (See Fig. 2): System Management, Data Management, 
Algorithm Management, Monitor, Security, and the User 
Interface.  Each component is an individual entity with a 
separate implementation, usually exposing itself to the 
remaining components via the Façade design pattern. 

B. System Manager 
Orchestrating the effective interaction of independent 

components requires that something guarantees each 
component is working correctly.  The System Manager 
Component (SMC) starts, stops, and monitors each of the other 
components.  It manages the state transitions of each 
component in accordance with the overall DCPS finite state 
machine model, and brokers the communication infrastructure 
between components.  Finally, it monitors the activity of each 
component for purposes of accurately reporting the heartbeat 
that reflects the internal integrity of the system. 

The SMC implements the Façade design pattern to provide 
a single Application Programming Interface (API) to the other 
components in the system.  Through this façade, each 
componet can report its state or communicate system changes.  
The SMC itself controls its own state through the same API in 
a self-reflective manner. 

C. Data Manager 
The Data Manager Component (DMC) component is the 

largest of the six, both in scope and complexity.  It handles two 
forms of data: the three types of hardware I/O, and the software 
database backend. 

1) Hardware I/O 
At the lowest level, it receives and sends all of the input 

and output across the PCIe I/O cards that connect DCPS to the 
outside world.  This includes initializing and configuring each 
card and running several threads to continually move data on 
and off the various cards.  The input side is a combination of 
analog signals, digital signals, and interrupts from the Realtime 
Clock and Interrupt Module (RCIM). 

The link that synchronizes reads between all inputs across 
two card types and three cards total is the RCIM.  The NSTX-
U Facility Clock (NFC) strobes the RCIM in synchronization 

with the rest of the NSTX-U system.  The RCIM has software 
hooks to trigger user space code without requiring kernel space 
interrupt handling routines, translating into dispatch latencies 
on the order of 2 microseconds in heavily loaded testing 
scenarios.  The user code then polls each input card 
simultaneously, and eventually makes the data available to the 
rest of the system. 

All analog channels require post processing at multiple 
levels.  First, the DMC must perform baseline subtraction and 
calibration for each channel.  This removes integration error 
and magnetic co-interference.  Then, there is an auctioneering 
process that compares each set of duplicated currents and 
chooses the larger of the two.  The design model errs on the 
side of caution, assuming that a larger current is a more 
stressful condition for the machine.  This final set of 
auctioneered, calibrated, and subtracted set of currents is the 
main data set that the DMC provides to the rest of DCPS. 

The digital signals are much simpler in both scope (fewer 
used channels) and complexity (no post processing), however 
one card shares both input and output.  The card supports 96 
total channels divided in half for 48 input and 48 output 
channels.  While the total count is a lot, DCPS currently only 
uses a small number of both inputs and outputs.  The rest 
remain for future expansion.  Nevertheless, the simple nature 
of digital input is such that once read, they require no post 
processing. 

2) Software Database 
The software side of the DMC consists of a database 

backend, MDSPlus, and a service oriented front end for the rest 
of the system to abstract out the inner workings of MDSPlus.  
The database stores pre-shot data to configure the pulse and 
post-shot data to record events during the pulse.  Pre-shot data 
mostly consists of the configuration information for the 
algorithms, such as limit values, coefficients, and algorithm 
scheduling.  Post-shot data encompasses everything required to 
recreate the pulse in a simulated environment, as well as any 
debugging or logging information and intermediate calculated 
algorithm values required to diagnose issues that may arise 
during a pulse. 

a) MDSPlus Security Concerns: Concurrency 
MDSPlus is inherently insecure in its handling of precious 

data.   Even when exploits are accidental and not malicious in 
nature, MDSPlus makes it easy to affect the integrity of shot 
data.  For instance, a user creating a new shot for testing 
purposes can easily overwrite data belonging to someone else 
by merely typing the wrong number in.  No checks exist, for 
instance, to ensure that a user is within his own “sandbox”. 

DCPS employs several mechanisms to bolster the security 
situation.  First is the forced atomicity of shot tree creation.  
Historically, during testing, a user would create a new test shot 
manually using a numerical series outside normal operations.  
This has undefined behavior, however, when two users try to 
use the same number.  Different projects have developed 
different methods to address the issue, including assigning 
number ranges to specific people.  However, no scheme stops 
an accidental typographical error from destroying someone 
else’s data.  So, NSTX-U instead has a scheme by which a user 

 
Fig. 2. DCPS Component Layout 



can atomically request a new test shot, and have that number 
automically transferred to the test program without user 
interaction.  The atomic nature of the request prevents any two 
users from receiving the same number. 

b) MDSPlus Security Concerns: Data Access 
Another MDSPlus concern is the data store itself.  It proved 

challenging to maintain usability under the current permission 
system that MDSPlus employs.  Instead, DCPS will use a 
secondary data server hidden behind the main MDSPlus host 
that serves data for all of NSTX-U.  This secondary server 
provides two functions: extra security due to restricted 
permissions and data hiding, and contingency against network 
failures, as the main DCPS program has a direct patch cable 
link on a secondary ethernet interface to the data server itself.  
This dual path access ensures that during an actual test shot, 
any transient network issues will not affect the real-time 
operation of DCPS and thus NSTX-U. 

Because the operational DCPS has direct access to the 
secret data server, and knowing that it is possible to run 
simulation versions of DCPS elsewhere in the networking 
infrastructure, the DMC abstracts out the identification of and 
connection to this server.  This abstracted nature reduces the 
complexity of the code and of the user interaction, since neither 
requires knowledge of the actual route taken to access the 
secret server.   

c) Database Contents 
There are two main components to the data that DCPS 

stores in MDSPlus.  The first is the pre-shot data known as 
Parameter Data.  The second is post-shot data, consisting of 
every conceivable piece of interesting data from a test shot. 

The Parameter Data is highly controlled data representing 
all of the settings required to protect the NSTX-U coils.  This 
includes algorithm limits, coefficients, threading priorities, and 
which algorithms to run, among many other settings.  
Changing this data in an adverse way could prevent the ability 
of DCPS to protect the coils and possibly damage the system.  
Therefore, it is vital that the data be under close scrutiny and 
tight controls.  Alongside software restrictions and physical 
separation, NSTX-U will also employ strict operating 
procedures as another layer of protection.  Finally, the DMC 
will contain hard-coded values on a per-algorithm basis to 
prevent truly outlandish limits and coefficients. 

The post-shot data contains mostly time-based data 
collected for every 200us cycle.  This includes the result of 
every algorithm calculation, intermediate calculated values, 
faults, all of the raw input data, the calibrated version of the 
input data, and more.  All of this resides in the MDSPlus tree 
following a strict organization that allows easy retrieval for 
numerous different offline analysis programs. 

D. Algorithm Manager 
The Algorithm Manager Component (AMC) controls the 

core of the DCPS protection mechanism.  For every 200-
microsecond time step, the AMC processes a complete set of 
algorithms.  Each algorithm checks against two predetermined 
limit values, a minimum and a maximum, and potentially 

generates a fault.  At the conclusion of each time step, the 
AMC sends all faults to the DMC for output to the Hardwire 
Control System, which ultimately will terminate the pulse.  
There is built in monitoring to ensure that algorithms do not 
exceed an allotted run time, and a method to adjust the runtime 
characteristics of the algorithm processing allocation before the 
pulse. 

1) Algorithm Manager Design 
An Algorithm Factory (using the Factory pattern) hides the 

algorithm instantiation, and thus the algorithm type, from the 
rest of the AMC.  It employs a Strategy pattern to bind the 
calling API of a given algorithm instance to a standard 
signature shared by all algorithm types.  This hides any 
differences in the underlying algorithms, and allows the 
dispatcher to remain algorithm-agnostic. 

Each “strategized” algorithm instance created by the 
factory runs in a pipeline, possibly shared with other 
algorithms.  The pipelines employed here are Object Pools, 
another design pattern, locked to a thread running on a 
dedicated core.  Based on pre-shot data (parameter data) from 
the DMC, the AMC assigns each algorithm to a specific 
pipeline created from the Object Pool as shown in Fig. 3. 

This unique combination of four standard design patterns, 
Factory, Strategy, Façade, and Object Pool, results in a system 
that can allocate and dispatch arbitrary tasks to processing 
queues without any internal knowledge of the task itself.  This 
is a powerful generic tool with application outside of DCPS. 

2) Pipeline Synchronization 
Each pipeline of discreet tasks must execute in parallel, yet 

also synchronize between each time step.  Traditional 
multithreading involves keeping the work queue of each thread 
full to maximize work output, and waiting on a mutex lock 
when there is no more work to allocate.  This method is not 
ideal for a cyclical real-time mechanism that requires both 
determinism and synchonization.  The pipelines must be 
deterministic in that they must all start without delay at the 
beginning of each time step.  They must synchronize with each 
other so that they all start at exactly the same time.  To 
accomplish this, the AMC has one manager thread, multiple 
worker threads each containing a single pipeline, and a bi-
directional synchronization mechanism to create a concurrency 
barrier both at the beginning and at the end of every time step. 

 
Fig. 3. Algorithm Pipelining Scheme 



At the start of every time step, the manager thread sends a 
notification to each worker thread to start processing their work 
queues and waits for a response.  The workers then send 
notifications back to the manager to indicate completion of the 
cycle, and wait for another notification to start.  Waiting in this 
context implies a spin-wait that prevents releasing a CPU when 
no work remains.  Since each worker thread and the manager 
thread has exclusive access to a single CPU, this allows 
instantaneous start up once the new cycle begins.  The 
RedHawk tools discussed earlier ensure that absolutely nothing 
else runs on these CPUs, including operating system interrupt 
handlers and the system timer. 

The manager thread does not actually distribute work to 
each worker thread using this design.  The workers assemble 
their task queues before the test shot in a fixed fashion such 
that the work processed by each pipeline does not change 
throughout the entire shot. 

3) Algorithm Types 
There are currently 5 types of algorithms that the AMC can 

handle, however the design is such that adding new algorithm 
types is easy and expected for future growth.  Each algorithm 
type can have any number of algorithm instances, each with its 
own set of coefficients and limit values.  Some algorithms 
require the outputs of other algorithms as additional input, 
resulting in a dependency tree that prevents running  

a) Current Predictor 
The first algorithm that always runs in a cycle is the current 

predictor.  There is no limit value for this algorithm.  Instead, it 
provides two sets of currents for all future algorithms: the 
“now” currents, and the predicted currents.  First, it auctioneers 
between the redundant input currents and takes the highest of 
the two.  This is the current in each coil for the currently 
executing time step that the remaining algorithms will use.   

 IPD = I + L-1 M IPL (1) 

Then, it applies an influence matrix to those currents to 
determine two possible predicted currents.  In this phase of the 
algorithm, the objective is to predict what the current would be 
should a disruption occur before the next opportunity to 
execute a time step.  The two possibilities depend on the shape 
of the plasma cross section, which is initially limited to either a 
circular plasma or an elongated plasma. 

b) Action Integral 

 Ak = Ak-1 + Ik
2Δt (2) 

 AF = Ak + Ik
2τ / 2 (3) 

Action Integrals estimate the conductor temperature rise in 
the coils, commonly referred to as ∫I2(t)dt.  There are two 
action integrals: the total action for the current time step k 
based on the action from the previous time step k-1 (2), and an 
estimate of the addional action that would accumulate if a fault 
were to occur and the current were to decay exponentially from 

the present state (3).  In this context, Δt is the time between 
each time step, and τ is the L/R time constant of the circuit 
under consideration. 

Since it does not make sense to compute Action for post-
disruption currents, this algorithm only uses the currents for the 
currently executing time step as its input current vector. 

c) Forces and Moments (Torques) 

 X = wI Σj (CjIj) (4) 

This is the first of the more general algorithms that the 
DCPS will execute.  This same formula will calculate radial 
force (Fr), vertical force (Fz), and torque (T) for both the 
currents in currently executing time step as well as the 
predicted post-disruption currents.  X represents each of those 
results.  For each X, there is a separate set of coefficients C and 
an overall weighting factor w.  I is the current in the coil for 
which we are calculating X, and Ij is the vector of all of the 
currents in the system. 

d) Derived Type I 

 YA = K + Σ(CII + CAA + CFrFr + CFzFz + CTT) (5) 

The first of the derived type algorithms is a weighted sum 
of all previously calculated values.  There is a separate set of 
coefficients (Cx) for each value type, and each corresponding X 
in the CxX products ranges over all of the coils in the system. 

e) Derived Type II 

 Z = √(YA
2 + YB

2 + … + YJ
2) (5) 

The second of the derived type algorithms is a square root 
of the sum of squares of all previously calculated derived type I 
algorithms.  This is not currently used, but is available for 
future growth. 

E. Security 
The Security Component (SC) provides a service to the rest 

of the system, in contrast to the several manager components 
that operate independently processed tasks.  It defines and 
enforces a set of permissions that restrict user actions given a 
combination of user type, system state, and other key factors.  
Other DCPS components use the SC to check if a requested 
user action is permissible at a given time.  For instance, it 
might harm the system if a user switched to test mode during a 
pulse.  Likewise, it would be counter intuitive to allow every 
user to modify the algorithm run list. 

Also unlike other components, the implementation of the 
SC spreads across disciplines.  Parts of the security model 
incorporate tools outside of the source code.  For instance, to 
group users into eight user types with inheritable hierarchies, 
standard UNIX groups fit well inside the existing security 
infrastructure of the laboratory.  Processes already exist to 
control user group mappings, requiring authorization, sign off, 
and auditing.  Therefore, the SC provides a gateway to access 
the standard UNIX group permissions via PAM (pluggable 



authentication module) instead of providing its own custom set.  
Similarly with network access, the model integrates existing 
network security infrastructure in terms of virtual networks and 
firewalls to reduce the number of devices that can try to access 
the operational DCPS software. 

F. Monitoring 
The Monitoring Component (MC) provides an interface for 

the rest of DCPS to report status to the outside world via 
several means.  It can log debugging information to a file, 
populate EPICS displays, or send feedback to the User 
Interface Component. 

Typically, “logging” implies writing out successive lines of 
text to a file to aid in tracing the order in which events occur.  
There are different levels of log details such as error, warning, 
informational, and one or more levels of debug with increasing 
verbosity.  RFC5424 from the Internet Engineering Task Force 
defines eight logging levels which the MC will implement.  
The various levels allow filtering based on the characteristics 
of a given test.  For example, an error indicates an identified 
problem causing a failure, whereas a warning is something that 
might be a concern but is not catastrophic.  Informational 
messages help tagging events in a timeline (Initialization 
Complete, Shot Started, etc.), and debug messages only serve a 
transient purpose while a developer traces down a problem.  
Debug messages tend to be more intrusive to real time 
operations, either because of a high frequency or because of 
overhead associated with crafting the specific line of text. 

Logging on a real time system presents a challenge due to 
the non-deterministic nature of writing out files.  Whether the 
application stores files on a local disk, a network mount, or 
some other medium, writing to the files still requires kernel 
system calls that disrupt deterministic real time processing.  
There are two approaches that, when combined, alleviate this 
challenge. 

For the first approach, the MC will do any output in a low 
priority thread on a dedicated CPU.  Conversely, the input will 
arrive in a high priority thread that queues the writes to the low 
priority thread.  This separation between priorities provides a 
mechanism that keeps short tasking at a high priority and long 
tasking at a low priority to optimally allocate the system 
resources. 

The second approach involves short circuiting disabled log 
entry function calls to avoid unneccesary processing.  For 
instance, consider a highly system intensive code path 
containing a call to the logging API with a logging level of 
“Debug”.  If creation of the logging string is intrusive, the 
logging API should not only prevent recording the eventual log 
string, but it should also prevent creating the string in the first 
place, thus saving the overhead of building a string that it will 
never use. 

G. User Interface 
The User Interface Component (UIC) is the primary means 

by which a DCPS user performs all possible actions.  It is 
likewise the primary component of the DCPS Client.  User 
actions include starting and stopping the system, adding and 

modifying algorithms, changing the runtime mode, and 
building simulation scenarios using a waveform editor.  The 
UIC is unique in DCPS from a deployment standpoint, as it can 
run on a physically separate computer.  It communicates to the 
rest of the core system via a secured socket administered by the 
SC. 

Since the UIC is the bridge connecting a physical user to 
the rest of DCPS, it naturally is the largest customer for the SC. 
The UIC continually asks the SC for permission to allow 
actions, and modifies the display accordingly.  For instance, 
during a pulse, buttons to change the DCPS Core mode turn 
gray and stop accepting input.  Though it doesn’t preclude 
additional security checks further downstream, this extra layer 
of security does inhibit many potential errors that might 
otherwise aris oscilating. 

The UIC implementation uses the Qt widget framework to 
streamline GUI design and refocus efforts from coding details 
to graphical window content and purpose.  Editing Qt windows 
and their contents is minimally invasive, and enables a 
dynamic communication between developer and customer.  
Communication between physical nodes combines a transport 
package called ZeroMQ with object serialization software 
called ProtoBufs.  These two technologies handle serializing 
arbitrary obejcts into a string of bytes, moving those bytes 
through sockets between computers, and deserializing them 
back into the same objects on the other side. 

V. CONCLUSION AND FUTURE WORK 
NSTX-U will replace the existing coil protection solution 

with a software-based Digital Coil Protection System.  It will 
make use of Concurrent RedHawk to achieve real-time 
performance on a GNU/Linux system, as it outperforms 
RedHat MRG in determinism, throughput, and overall 
development cost.  The software design is flexible enough to 
allow dynamic changes to runtime characteristics, and 
extensible enough to provide an avenue for future growth in 
the form of new algorithms and algorithm types. 

DCPS will naturally expand in the future to accommodate 
plasma goals.  Future work further includes adding a regression 
tester that will automatically validate new changes against a 
database of previously-fixed bugs to reduce the probability of 
reintroducing the same bug again.  Additionally, DCPS can 
possibly expand its reach from Coil Protection to Machine 
Protection.  Finally, in the short term, parts of DCPS will run 
on the plasma control side with stricter limits to enable 
controlled shutdowns instead of the current method of simply 
turning the power supplies off. 
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