
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-

gczechow
Typewritten Text

phampton

phampton
Text Box
NSTX-U Digital Coil Protection System
Software Detailed Design

phampton
Typewritten Text
5044

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Text Box
Keith G. Erickson, Gregory J. Tchilinguirian, Ronald E. Hatcher, William M. Davis

phampton
Typewritten Text
PPPL-5044

phampton
Typewritten Text
JUNE 2014

phampton
Typewritten Text

phampton
Typewritten Text

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

 http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/bridge

Related Links:

U.S. Department of Energy

Office of Scientific and Technical Information

Fusion Links

NSTX-U Digital Coil Protection System
Software Detailed Design*

Keith G. Erickson, Gregory J. Tchilinguirian, Ronald E. Hatcher, William M. Davis
Princeton University Plasma Physics Lab, Princeton, NJ USA 08543-0451

Corresponding author e-mail: kerickso@pppl.gov.

Abstract—The National Spherical Torus Experiment (NSTX)
currently uses a collection of analog signal processing solutions
for coil protection. Part of the NSTX Upgrade (NSTX-U) entails
replacing these analog systems with a software solution running
on a conventional computing platform. The new Digital Coil
Protection System (DCPS) will replace the old systems entirely,
while also providing an extensible framework that allows adding
new functionality as desired.

The development of the DCPS was a multi-discipline
engineering effort. The fact that long-trusted yet presently-
inadequate protection mechanisms were being replaced with a
first-of-a-kind system at NSTX-U has led to a carefully crafted,
full-featured software design. Real-time Concurrent RedHawk
Linux provides the deterministic environment in which the
software runs, and the software architecture follows a UML
design with industry standard patterns.

Keywords—NSTX-U; DCPS; Linux; RedHawk; RTOS; real-
time; UML

I. INTRODUCTION
The National Spherical Torus Experiment (NSTX) [1] is

currently undergoing a multi-year upgrade [2,3,4] that will
expand the realm of possible scientific goals [5,6]. An
increased pulse length, new divertor coils, and doubling the
field capacity (which quadruples the magnetic loads) all
contribute to an increased need for protection of the hardware
[7]. These protection systems serve as the last line of defense
to shut down the power supplies before they cause damage.
The existing hardware-based systems, while highly reliable, are
costly to reconfigure and upgrade.

As a result, NSTX-U will replace the older coil protection
system with a new digital computer based solution that enables
a flexible and extensible protection system at a lower cost.
Historically, however, general purpose operating systems,
commercial computers, and high level programming languages
have been ill-suited for protecting equipment. Determinism,
latency, throughput, and failure rate are only a few of the
factors that tend to preclude choosing a fast GNU/Linux
system in favor of an embedded device [8]. To overcome this
ambiguity, the DCPS computing system uniquely combines
new technologies and modern design techniques to provide the
flexibility of software without compromising the inherent
safety of embedded hardware. The chosen technologies have
matured to the point that they are more effective in the
embedded world today than in years past.

Among other things, DCPS will include:

• AMD Opteron based x86_64 architecture

• Concurrent RedHawk Linux based on RedHat
Enterprise Linux 6 [9]

• Super Micro H8DG6-F motherboard with a dual 16-
core CPU setup and 64 GB Registered ECC RAM

• C++11 programming language with strict adherence to
the standard [10]

• Object Oriented design techniques following the UML
2.4.1 standard [11]

• Industry standard design patterns

• Commonly available analog input cards from General
Standards (16AI64SSC) and a digital input/output card
from Adlink (7296)

• 200 microsecond cycle time on input data

II. NSTX-U DCPS SYSTEM REQUIREMENTS

A. Fault Logic
DCPS has two concurrent outputs: a fault signal, and a

heartbeat. It will continually send a heartbeat signal to an
external device to validate its own health, but will not normally
output a fault signal. The loss of said heartbeat or the existence
of said fault signal signifies a degraded ability to prevent
damage to the system, and thus triggers an immediate NSTX-U
shutdown. This two factor approach ensures the ability of
DCPS to operate in a failsafe manner.

B. Coil Protection
DCPS will protect NSTX-U during a plasma attempt, or

“pulse”, by running a collection of algorithms [12,13] against
the plasma current and the 16 magnetic coil currents every 200
microseconds. A fault occurs if the result of any algorithm
exceeds a preprogrammed minimum and maximum limit. A
fault also occurs if the system determines that a fault could
occur before the next time cycle given a worst case projection.
Finally, a fault occurs if a disruption before the next time cycle
would cause any algorithm to exceed its limit value.

*This work supported by U.S. DOE Contract No. DE-AC02-09CH11466

Between plasma attempts, the DCPS must monitor all of
the currents in the system and ensure that they remain at zero.
Any current in the system prior to the start of the next plasma
attempt will similarly result in a fault that prevents the pulse
from occuring [14].

C. Finite State Machine
Central to the DCPS framework is the finite state machine

shown in Fig. 1 that contains ten possible states reflecting the
system being in one of four modes: Plasma Operations, Auto
Test, Simulate, and Maintenance. Plasma Operations, as the
name implies, is the real operating mode for actually protecting
NSTX-U. Auto Test is for attaching an external simulator,
whereas Simulate is for running internal simulations. While
the first three modes represent different ways to run the system,
the last mode, Maintenance, is for modifying the runtime
characteristics of DCPS [15].

III. DCPS SYSTEM

A. Operating System Choices
Embedded systems historically utilized hardware dedicated

to a specific task, as opposed to a more general purpose
platform. While GNU/Linux is growing in popularity outside
of its traditional server/workstation role, it remains ill-equipped
for a sub-millisecond hard real-time device. The ability of the
kernel to meet a deadline is predominenately a measure of
Process Dispatch Latency (PDL). The Linux kernel by itself
has no latency guarantees at all, and PDL delays due to
interrupt handling easily exceed 100 milliseconds. Created as
a workstation operating environment, the Linux scheduler
tends to favor servicing many simulatneous processes in a
fashion that delivers quick response time to a physical user.
An embedded device by comparison would rather preempt I/O
tasks like disk activity in favor of servicing the real-time
application and meeting the timing deadline at stake.

There are two mainstream real-time versions of Linux that
overcome the PDL deficiencies: RedHat MRG and Concurrent
RedHawk. DCPS uses the latter, as it includes unlimited
support, real-time I/O drivers, and a NightStar toolset that
enables the DCPS development team to monitor, tune, and
debug the system with orders of magnitude less effort
compared to conventional tools. Without NightStar, system
tuning becomes a much more arduous task requiring many
iterative “test and check” cycles with invasive recompiling and
reconfiguring. Using the provided tools, however, it is
possible to dry run hundreds of scenarios in several hours.
Applying this approach to a prototype version of DCPS on
NSTX-U, for example, reduced timing analysis efforts for a
two man-week task to a matter of minutes. DCPS will
therefore take advantage of these experiences and the benefits
that RedHat MRG cannot provide.

Both systems provide deterministic capability using
different techniques, described in the following section.

B. Kernel Modification Methods
There are two main approaches to solving the determinism

problem investigated for DCPS: a kernel modification

developed by Ingo Molnar called PREEMPT_RT [16], and a
technique to aid scheduling concerns called CPU shielding
[17,18]. The kernel modification approach tends to be system
wide, while the CPU shielding approach focuses on just the
real time processes. It is therefore a less intrusive and more
forward compatible choice, which is a large driving factor in
the DCPS design.

In kernel preemption, the technique used in RedHat MRG,
the user application has the ability to preempt a kernel thread
scheduled for the same CPU on which it is currently trying to
run. Without this patch, the kernel is strictly not preemptible.
The user application is at the mercy of any possible kernel
event, such as an asynchronous interrupt request (IRQ) that
needs to run for 50 milliseconds during the real-time event’s 50
microsecond inner loop. Obviously, the real-time process will
completely miss its deadline (effectively, it will miss it 1,000
times in a row). For a protection system, this is catastrophic.
The PREEMPT_RT patch modifies the kernel and allows the
user application to stop the IRQ from running so that it can
service its own event instead. Unfortunately, an IRQ has to run
eventually, and no amount of preemption will alleviate the
unending kernel tasks that keep a stable system operational.
The patch is system-wide, greatly changing the entire scope of
the kernel runtime metrics. Because of the intrusive nature of
the change, the patch, by the author’s own admission, will
reduce overall system throughput and kernel response times. It
trades total performance for the ability to preempt kernel tasks.

Fig. 1. DCPS Finite State Machine

Conversely, with a simplistic CPU Shielding approach, the
user application and the kernel share the available CPU cores,
dedicating certain tasks to specific cores. The user application
receives one or more reserved cores on which the kernel cannot
schedule interrupts or other kernel threads. Instead, the kernel
stays on non-real-time-application cores where it is free to tie
up CPU time without affecting the real time determinism. The
user application on its dedicated cores can effectively latch the
CPU in a spinwait or sleep in a blocking idle state without fear
of another thread taking control. This effectively reduces
dispatch latency to near zero, as there is never any resource
contention in terms of processor allocation. The benefit to this
approach is that the core allocation for kernel and user space
remains fixed, defined at the beginning. The kernel always has
a place to run its own interrupt routines, and the user always
has a place to run its real time loop. There is never any
preemption one way or the other, and therefore there is no
performance sacrifice. This creates a far more copasetic
relationship between the kernel and the user.

Since the DCPS computer has a large core count, it is easy
to organize the various tasks such that each main thread
receives a dedicated core shielded from all other system
activity. Operations such as I/O card interaction, watchdog
monitoring, and algorithm processing can all operate on an
isolated core with no overhead. Doing so still leaves spare
cores to conduct normal system operations, such as handling
IRQs, running user shells, and managing background services.

Of course, neither of the two options, shielding or
preemption, removes the need for appropriate real time
programming techniques that manage resources outside of
CPU cycles. Memory allocation, bus contention, I/O, and
system calls all still pose a threat to determinism. However,
CPU shielding greatly reduces the difficulty associated with
these tasks.

C. Deployment Model
DCPS consists of two processes, a Core and a Client, that

communicate over a standard SSL encrypted TCP/IP socket.
The Core is a multithreaded process written in C++11 that
actually runs the coil protection mechanisms. The Client is a
separate process written primarily in Qt 5 / C++ and possibly
running on a different machine that connects to and controls
aspects of the Core. Communication between the Client and
Core uses Google’s open source project, Protocol Buffers, for
object serialization and ZeroMQ for the socket transport
library. These two complimentary technologies are efficient,
well maintained, and compatible with current object oriented
programming languages (C++, Python, and Java). Since the
Core and Client languages are predominantly C++, this
presents an easy way to communicate between two distinct
applications.

DCPS incorporates three physical computers to operate.
The main computer that runs the Core is a fast 32-core
Commercial Off The Shelf (COTS) solution running the tuned
RedHawk operating system. The Client connects to the Core
from a terminal that will typically be in the main NSTX-U
control room, but can theoretically reside anywhere the virtual
network rules allow. The third computer is the database

storage machine, a highly protected, highly restricted machine
hidden behind multiple security layers. This machine houses
all of the protection data required to operate NSTX-U and
DCPS. While read access to this data will be readily available,
write access will instead require multiple levels of
authentication combined with physical access restrictions.

D. System Inputs
DCPS receives three kinds of input from external sources.

There is a 5 kHz clock signal and several discreet clock events
driving individual interrupt lines on the Realtime Clock and
Interrupt Module (RCIM). There are several digital inputs on a
digital I/O card to handle reseting and overriding faults.
Finally, there are 64 differential analog input channels spread
across two cards. The signals consist of statuses, triggers, and
most importantly the instantaneous currents in each coil as well
as the plasma current. There are two channels for each current,
duplicated for redundancy and sent to different cards.

E. System Outputs
There are far fewer outputs from the system compared to

the vast and varied array of inputs. Primarily, outputs consist
of two types of failure signals: a Level 1 Fault, and a Watchdog
Timer. In practice, the level 1 fault line is actually four
independent fault lines, one for each coil system employed in
NSTX-U. These only trigger high when a protection algorithm
trips a limit value. Otherwise, they stay low. The watchdog
output is on the other hand a regularly oscillating signal,
alternating high and low with every successful real-time cycle
completetion. Missing this heartbeat signifies the unreliability
of DCPS to protect NSTX-U, and thus an immediate shutdown
occurs.

Aside from the primary outputs, there are also a few status
outputs to signify various modes in which the DCPS might
operate. For instance, with the external AutoTester attached, a
corresponding output alerts other external devices that the
DCPS software thinks it is in a Test mode. This is useful as a
sanity check to prevent crossover between real operations and
testing.

IV. SOFTWARE DESIGN

A. Design Methodology
Any moderately complex software application requires

accurate documentation and developer coordination. The
Object Modeling Group (OMG) created the Unified Modeling
Language (UML) [11] as an effective way to communicate
software designs between various stakeholders: customers, end
users, designers, engineers, developers, et al. DCPS
documentation fully exploits UML version 2.4 to both identify
the users and describe the software requirements, code design,
and eventual deployment.

Use of modeling such as UML encourages the subsequent
application of reusable design patterns that are standard in the
industry. These patterns provide building blocks to form more
complicated structures without reinventing commonly used
foundations. They are typically language agnostic, preventing
the overall design from dictating the eventual implementation.

There are six discrete components that make up the DCPS
software (See Fig. 2): System Management, Data Management,
Algorithm Management, Monitor, Security, and the User
Interface. Each component is an individual entity with a
separate implementation, usually exposing itself to the
remaining components via the Façade design pattern.

B. System Manager
Orchestrating the effective interaction of independent

components requires that something guarantees each
component is working correctly. The System Manager
Component (SMC) starts, stops, and monitors each of the other
components. It manages the state transitions of each
component in accordance with the overall DCPS finite state
machine model, and brokers the communication infrastructure
between components. Finally, it monitors the activity of each
component for purposes of accurately reporting the heartbeat
that reflects the internal integrity of the system.

The SMC implements the Façade design pattern to provide
a single Application Programming Interface (API) to the other
components in the system. Through this façade, each
componet can report its state or communicate system changes.
The SMC itself controls its own state through the same API in
a self-reflective manner.

C. Data Manager
The Data Manager Component (DMC) component is the

largest of the six, both in scope and complexity. It handles two
forms of data: the three types of hardware I/O, and the software
database backend.

1) Hardware I/O
At the lowest level, it receives and sends all of the input

and output across the PCIe I/O cards that connect DCPS to the
outside world. This includes initializing and configuring each
card and running several threads to continually move data on
and off the various cards. The input side is a combination of
analog signals, digital signals, and interrupts from the Realtime
Clock and Interrupt Module (RCIM).

The link that synchronizes reads between all inputs across
two card types and three cards total is the RCIM. The NSTX-
U Facility Clock (NFC) strobes the RCIM in synchronization

with the rest of the NSTX-U system. The RCIM has software
hooks to trigger user space code without requiring kernel space
interrupt handling routines, translating into dispatch latencies
on the order of 2 microseconds in heavily loaded testing
scenarios. The user code then polls each input card
simultaneously, and eventually makes the data available to the
rest of the system.

All analog channels require post processing at multiple
levels. First, the DMC must perform baseline subtraction and
calibration for each channel. This removes integration error
and magnetic co-interference. Then, there is an auctioneering
process that compares each set of duplicated currents and
chooses the larger of the two. The design model errs on the
side of caution, assuming that a larger current is a more
stressful condition for the machine. This final set of
auctioneered, calibrated, and subtracted set of currents is the
main data set that the DMC provides to the rest of DCPS.

The digital signals are much simpler in both scope (fewer
used channels) and complexity (no post processing), however
one card shares both input and output. The card supports 96
total channels divided in half for 48 input and 48 output
channels. While the total count is a lot, DCPS currently only
uses a small number of both inputs and outputs. The rest
remain for future expansion. Nevertheless, the simple nature
of digital input is such that once read, they require no post
processing.

2) Software Database
The software side of the DMC consists of a database

backend, MDSPlus, and a service oriented front end for the rest
of the system to abstract out the inner workings of MDSPlus.
The database stores pre-shot data to configure the pulse and
post-shot data to record events during the pulse. Pre-shot data
mostly consists of the configuration information for the
algorithms, such as limit values, coefficients, and algorithm
scheduling. Post-shot data encompasses everything required to
recreate the pulse in a simulated environment, as well as any
debugging or logging information and intermediate calculated
algorithm values required to diagnose issues that may arise
during a pulse.

a) MDSPlus Security Concerns: Concurrency
MDSPlus is inherently insecure in its handling of precious

data. Even when exploits are accidental and not malicious in
nature, MDSPlus makes it easy to affect the integrity of shot
data. For instance, a user creating a new shot for testing
purposes can easily overwrite data belonging to someone else
by merely typing the wrong number in. No checks exist, for
instance, to ensure that a user is within his own “sandbox”.

DCPS employs several mechanisms to bolster the security
situation. First is the forced atomicity of shot tree creation.
Historically, during testing, a user would create a new test shot
manually using a numerical series outside normal operations.
This has undefined behavior, however, when two users try to
use the same number. Different projects have developed
different methods to address the issue, including assigning
number ranges to specific people. However, no scheme stops
an accidental typographical error from destroying someone
else’s data. So, NSTX-U instead has a scheme by which a user

Fig. 2. DCPS Component Layout

can atomically request a new test shot, and have that number
automically transferred to the test program without user
interaction. The atomic nature of the request prevents any two
users from receiving the same number.

b) MDSPlus Security Concerns: Data Access
Another MDSPlus concern is the data store itself. It proved

challenging to maintain usability under the current permission
system that MDSPlus employs. Instead, DCPS will use a
secondary data server hidden behind the main MDSPlus host
that serves data for all of NSTX-U. This secondary server
provides two functions: extra security due to restricted
permissions and data hiding, and contingency against network
failures, as the main DCPS program has a direct patch cable
link on a secondary ethernet interface to the data server itself.
This dual path access ensures that during an actual test shot,
any transient network issues will not affect the real-time
operation of DCPS and thus NSTX-U.

Because the operational DCPS has direct access to the
secret data server, and knowing that it is possible to run
simulation versions of DCPS elsewhere in the networking
infrastructure, the DMC abstracts out the identification of and
connection to this server. This abstracted nature reduces the
complexity of the code and of the user interaction, since neither
requires knowledge of the actual route taken to access the
secret server.

c) Database Contents
There are two main components to the data that DCPS

stores in MDSPlus. The first is the pre-shot data known as
Parameter Data. The second is post-shot data, consisting of
every conceivable piece of interesting data from a test shot.

The Parameter Data is highly controlled data representing
all of the settings required to protect the NSTX-U coils. This
includes algorithm limits, coefficients, threading priorities, and
which algorithms to run, among many other settings.
Changing this data in an adverse way could prevent the ability
of DCPS to protect the coils and possibly damage the system.
Therefore, it is vital that the data be under close scrutiny and
tight controls. Alongside software restrictions and physical
separation, NSTX-U will also employ strict operating
procedures as another layer of protection. Finally, the DMC
will contain hard-coded values on a per-algorithm basis to
prevent truly outlandish limits and coefficients.

The post-shot data contains mostly time-based data
collected for every 200us cycle. This includes the result of
every algorithm calculation, intermediate calculated values,
faults, all of the raw input data, the calibrated version of the
input data, and more. All of this resides in the MDSPlus tree
following a strict organization that allows easy retrieval for
numerous different offline analysis programs.

D. Algorithm Manager
The Algorithm Manager Component (AMC) controls the

core of the DCPS protection mechanism. For every 200-
microsecond time step, the AMC processes a complete set of
algorithms. Each algorithm checks against two predetermined
limit values, a minimum and a maximum, and potentially

generates a fault. At the conclusion of each time step, the
AMC sends all faults to the DMC for output to the Hardwire
Control System, which ultimately will terminate the pulse.
There is built in monitoring to ensure that algorithms do not
exceed an allotted run time, and a method to adjust the runtime
characteristics of the algorithm processing allocation before the
pulse.

1) Algorithm Manager Design
An Algorithm Factory (using the Factory pattern) hides the

algorithm instantiation, and thus the algorithm type, from the
rest of the AMC. It employs a Strategy pattern to bind the
calling API of a given algorithm instance to a standard
signature shared by all algorithm types. This hides any
differences in the underlying algorithms, and allows the
dispatcher to remain algorithm-agnostic.

Each “strategized” algorithm instance created by the
factory runs in a pipeline, possibly shared with other
algorithms. The pipelines employed here are Object Pools,
another design pattern, locked to a thread running on a
dedicated core. Based on pre-shot data (parameter data) from
the DMC, the AMC assigns each algorithm to a specific
pipeline created from the Object Pool as shown in Fig. 3.

This unique combination of four standard design patterns,
Factory, Strategy, Façade, and Object Pool, results in a system
that can allocate and dispatch arbitrary tasks to processing
queues without any internal knowledge of the task itself. This
is a powerful generic tool with application outside of DCPS.

2) Pipeline Synchronization
Each pipeline of discreet tasks must execute in parallel, yet

also synchronize between each time step. Traditional
multithreading involves keeping the work queue of each thread
full to maximize work output, and waiting on a mutex lock
when there is no more work to allocate. This method is not
ideal for a cyclical real-time mechanism that requires both
determinism and synchonization. The pipelines must be
deterministic in that they must all start without delay at the
beginning of each time step. They must synchronize with each
other so that they all start at exactly the same time. To
accomplish this, the AMC has one manager thread, multiple
worker threads each containing a single pipeline, and a bi-
directional synchronization mechanism to create a concurrency
barrier both at the beginning and at the end of every time step.

Fig. 3. Algorithm Pipelining Scheme

At the start of every time step, the manager thread sends a
notification to each worker thread to start processing their work
queues and waits for a response. The workers then send
notifications back to the manager to indicate completion of the
cycle, and wait for another notification to start. Waiting in this
context implies a spin-wait that prevents releasing a CPU when
no work remains. Since each worker thread and the manager
thread has exclusive access to a single CPU, this allows
instantaneous start up once the new cycle begins. The
RedHawk tools discussed earlier ensure that absolutely nothing
else runs on these CPUs, including operating system interrupt
handlers and the system timer.

The manager thread does not actually distribute work to
each worker thread using this design. The workers assemble
their task queues before the test shot in a fixed fashion such
that the work processed by each pipeline does not change
throughout the entire shot.

3) Algorithm Types
There are currently 5 types of algorithms that the AMC can

handle, however the design is such that adding new algorithm
types is easy and expected for future growth. Each algorithm
type can have any number of algorithm instances, each with its
own set of coefficients and limit values. Some algorithms
require the outputs of other algorithms as additional input,
resulting in a dependency tree that prevents running

a) Current Predictor
The first algorithm that always runs in a cycle is the current

predictor. There is no limit value for this algorithm. Instead, it
provides two sets of currents for all future algorithms: the
“now” currents, and the predicted currents. First, it auctioneers
between the redundant input currents and takes the highest of
the two. This is the current in each coil for the currently
executing time step that the remaining algorithms will use.

 IPD = I + L-1 M IPL (1)

Then, it applies an influence matrix to those currents to
determine two possible predicted currents. In this phase of the
algorithm, the objective is to predict what the current would be
should a disruption occur before the next opportunity to
execute a time step. The two possibilities depend on the shape
of the plasma cross section, which is initially limited to either a
circular plasma or an elongated plasma.

b) Action Integral

 Ak = Ak-1 + Ik
2Δt (2)

 AF = Ak + Ik
2τ / 2 (3)

Action Integrals estimate the conductor temperature rise in
the coils, commonly referred to as ∫I2(t)dt. There are two
action integrals: the total action for the current time step k
based on the action from the previous time step k-1 (2), and an
estimate of the addional action that would accumulate if a fault
were to occur and the current were to decay exponentially from

the present state (3). In this context, Δt is the time between
each time step, and τ is the L/R time constant of the circuit
under consideration.

Since it does not make sense to compute Action for post-
disruption currents, this algorithm only uses the currents for the
currently executing time step as its input current vector.

c) Forces and Moments (Torques)

 X = wI Σj (CjIj) (4)

This is the first of the more general algorithms that the
DCPS will execute. This same formula will calculate radial
force (Fr), vertical force (Fz), and torque (T) for both the
currents in currently executing time step as well as the
predicted post-disruption currents. X represents each of those
results. For each X, there is a separate set of coefficients C and
an overall weighting factor w. I is the current in the coil for
which we are calculating X, and Ij is the vector of all of the
currents in the system.

d) Derived Type I

 YA = K + Σ(CII + CAA + CFrFr + CFzFz + CTT) (5)

The first of the derived type algorithms is a weighted sum
of all previously calculated values. There is a separate set of
coefficients (Cx) for each value type, and each corresponding X
in the CxX products ranges over all of the coils in the system.

e) Derived Type II

 Z = √(YA
2 + YB

2 + … + YJ
2) (5)

The second of the derived type algorithms is a square root
of the sum of squares of all previously calculated derived type I
algorithms. This is not currently used, but is available for
future growth.

E. Security
The Security Component (SC) provides a service to the rest

of the system, in contrast to the several manager components
that operate independently processed tasks. It defines and
enforces a set of permissions that restrict user actions given a
combination of user type, system state, and other key factors.
Other DCPS components use the SC to check if a requested
user action is permissible at a given time. For instance, it
might harm the system if a user switched to test mode during a
pulse. Likewise, it would be counter intuitive to allow every
user to modify the algorithm run list.

Also unlike other components, the implementation of the
SC spreads across disciplines. Parts of the security model
incorporate tools outside of the source code. For instance, to
group users into eight user types with inheritable hierarchies,
standard UNIX groups fit well inside the existing security
infrastructure of the laboratory. Processes already exist to
control user group mappings, requiring authorization, sign off,
and auditing. Therefore, the SC provides a gateway to access
the standard UNIX group permissions via PAM (pluggable

authentication module) instead of providing its own custom set.
Similarly with network access, the model integrates existing
network security infrastructure in terms of virtual networks and
firewalls to reduce the number of devices that can try to access
the operational DCPS software.

F. Monitoring
The Monitoring Component (MC) provides an interface for

the rest of DCPS to report status to the outside world via
several means. It can log debugging information to a file,
populate EPICS displays, or send feedback to the User
Interface Component.

Typically, “logging” implies writing out successive lines of
text to a file to aid in tracing the order in which events occur.
There are different levels of log details such as error, warning,
informational, and one or more levels of debug with increasing
verbosity. RFC5424 from the Internet Engineering Task Force
defines eight logging levels which the MC will implement.
The various levels allow filtering based on the characteristics
of a given test. For example, an error indicates an identified
problem causing a failure, whereas a warning is something that
might be a concern but is not catastrophic. Informational
messages help tagging events in a timeline (Initialization
Complete, Shot Started, etc.), and debug messages only serve a
transient purpose while a developer traces down a problem.
Debug messages tend to be more intrusive to real time
operations, either because of a high frequency or because of
overhead associated with crafting the specific line of text.

Logging on a real time system presents a challenge due to
the non-deterministic nature of writing out files. Whether the
application stores files on a local disk, a network mount, or
some other medium, writing to the files still requires kernel
system calls that disrupt deterministic real time processing.
There are two approaches that, when combined, alleviate this
challenge.

For the first approach, the MC will do any output in a low
priority thread on a dedicated CPU. Conversely, the input will
arrive in a high priority thread that queues the writes to the low
priority thread. This separation between priorities provides a
mechanism that keeps short tasking at a high priority and long
tasking at a low priority to optimally allocate the system
resources.

The second approach involves short circuiting disabled log
entry function calls to avoid unneccesary processing. For
instance, consider a highly system intensive code path
containing a call to the logging API with a logging level of
“Debug”. If creation of the logging string is intrusive, the
logging API should not only prevent recording the eventual log
string, but it should also prevent creating the string in the first
place, thus saving the overhead of building a string that it will
never use.

G. User Interface
The User Interface Component (UIC) is the primary means

by which a DCPS user performs all possible actions. It is
likewise the primary component of the DCPS Client. User
actions include starting and stopping the system, adding and

modifying algorithms, changing the runtime mode, and
building simulation scenarios using a waveform editor. The
UIC is unique in DCPS from a deployment standpoint, as it can
run on a physically separate computer. It communicates to the
rest of the core system via a secured socket administered by the
SC.

Since the UIC is the bridge connecting a physical user to
the rest of DCPS, it naturally is the largest customer for the SC.
The UIC continually asks the SC for permission to allow
actions, and modifies the display accordingly. For instance,
during a pulse, buttons to change the DCPS Core mode turn
gray and stop accepting input. Though it doesn’t preclude
additional security checks further downstream, this extra layer
of security does inhibit many potential errors that might
otherwise aris oscilating.

The UIC implementation uses the Qt widget framework to
streamline GUI design and refocus efforts from coding details
to graphical window content and purpose. Editing Qt windows
and their contents is minimally invasive, and enables a
dynamic communication between developer and customer.
Communication between physical nodes combines a transport
package called ZeroMQ with object serialization software
called ProtoBufs. These two technologies handle serializing
arbitrary obejcts into a string of bytes, moving those bytes
through sockets between computers, and deserializing them
back into the same objects on the other side.

V. CONCLUSION AND FUTURE WORK
NSTX-U will replace the existing coil protection solution

with a software-based Digital Coil Protection System. It will
make use of Concurrent RedHawk to achieve real-time
performance on a GNU/Linux system, as it outperforms
RedHat MRG in determinism, throughput, and overall
development cost. The software design is flexible enough to
allow dynamic changes to runtime characteristics, and
extensible enough to provide an avenue for future growth in
the form of new algorithms and algorithm types.

DCPS will naturally expand in the future to accommodate
plasma goals. Future work further includes adding a regression
tester that will automatically validate new changes against a
database of previously-fixed bugs to reduce the probability of
reintroducing the same bug again. Additionally, DCPS can
possibly expand its reach from Coil Protection to Machine
Protection. Finally, in the short term, parts of DCPS will run
on the plasma control side with stricter limits to enable
controlled shutdowns instead of the current method of simply
turning the power supplies off.

ACKNOWLEDGMENTS
Charles Neumeyer created the top level system

requirements document for the overall NSTX-U Digital Coil
Protection System [14]. Ronald Hatcher created the software
requirements document [15] from which this design derives.
Paul Sichta and Steve DeLuca created a new external timing
unit to drive DCPS in synchronization with the rest of the
NSTX-U operation [19].

REFERENCES
[1] Ono, M., Kaye, S., Peng, Y., Barnes, G., Blanchard, W., Carter, M., et

al. (2000). Exploration of spherical torus physics in the NSTX device.
Nuclear Fusion, 40(3Y), 557.

[2] Neumeyer, C., Avasarala, S., Chrzanowski, J., Dudek, L., Fan, H.,
Hatcher, R., ... & Zhan, H. (2009, June). National Spherical Torus
Experiment (NSTX) Center Stack Upgrade. In Fusion Engineering,
2009. SOFE 2009. 23rd IEEE/NPSS Symposium on (pp. 1-4). IEEE.

[3] Menard, J. E., Gerhardt, S., Bell, M., Bialek, J., Brooks, A., Canik, J., ...
& Zolfaghari, A. (2012). Overview of the physics and engineering
design of NSTX upgrade. Nuclear Fusion, 52(8), 083015.

[4] Menard, J., Menard, J., Canik, J., Covele, B., Kaye, S., Kessel, C., et al.
(2010). Physics design of the NSTX-U. 27th EPS Conf. on Plasma
Physics P.

[5] Menard, J., & Neumeyer, C. (2009). NSTX Upgrade Scientific
Motivation and Project Requirements. 318, 15-16.

[6] Gerhardt, S. P., Andre, R., & Menard, J. E. (2012). Exploration of the
equilibrium operating space for NSTX-Upgrade. Nuclear Fusion, 52(8),
083020.

[7] Dudek, L., Chrzanowski, J., Heitzenroeder, P., Mangra, D., Neumeyer,
C., Smith, M., et al. (2012). Progress on NSTX center stack upgrade.
Fusion Engineering and Design.

[8] Barbalace, A., Luchetta, A., Manduchi, G., Moro, M., Soppelsa, A., &
Taliercio, C. (2007, April). Performance comparison of VxWorks,
Linux, RTAI and Xenomai in a hard real-time application. In Real-Time
Conference, 2007 15th IEEE-NPSS (pp. 1-5). IEEE.

[9] Baietto, J., Korty, J., Blackwood, J., & Houston, J. (2008). Real-Time
linux: The RedHawk Approach. Concurrent Computer Corporation
White Paper (Sep).

[10] ISO/IEC, ISO/IEC 14882:2011: Information Technology—
Programming Languages—C++ (International Organization for
Standardization, Geneva, 2011)

[11] UML, O. (2011). 2.4. 1 superstructure specification. document
formal/2011-08-06. Technical report, OMG.

[12] Woolley, R., Titus, P., Neumeyer, C., & Hatcher, R. (2011). Digital Coil
Protection System (DCPS) algorithms for the NSTX centerstack
upgrade. Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th
Symposium on. IEEE.

[13] Titus, P. H., Woolley, R., & Hatcher, R. (2011). Stress multipliers for
the NSTX upgrade digital coil protection system. Fusion Engineering
(SOFE), 2011 IEEE/NPSS 24th Symposium on. IEEE.

[14] C. Neumeyer, “Coil Protection System Requirements Document,”
NSTX_CSU-RQMT-CPS-159, unpublished.

[15] R.E. Hatcher, “Digital Coil Protection System Software Requirements
Document,” NSTX-SRD-13-163-0, unpublished.

[16] Gonçalves, L. C. R., & de Melo, A. C. (2008, July). Application Testing
under Realtime Linux. In Linux Symposium (p. 143).

[17] Brosky, S. (2004). Shielded CPUs: real-time performance in standard
Linux.Linux Journal, 121(9), 21.

[18] Brosky, S., & Rotolo, S. (2003, April). Shielded processors:
Guaranteeing sub-millisecond response in standard Linux. In Parallel
and Distributed Processing Symposium, 2003. Proceedings.
International (pp. 9-pp). IEEE.

[19] S. DeLuca, P. Sichta, & G. Tchilinguirian. (2013, June).
Reconfigurable Timing Unit for NSTX-U. In 25th Symposium on
Fusion Engineering, 2013. Proceedings, unpublished.

The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract
with the U.S. Department of Energy.

Information Services

Princeton Plasma Physics Laboratory
P.O. Box 451

Princeton, NJ 08543

Phone: 609-243-2245
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov

