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CHAPTER 1

INTRODUCTION

Meaning of Turbulence in a Plasma

In recent years considerable effort has been devoted to the study of weakly
turbulent plasmas. The term ""turbulent' when used to describe the state of a
plasma usually refers to situations where a large number of collective modes
are excited, for example, through an instability. The label "weak'' or '"strong'
turbulence in general needs clarification in the context of the problem one is
considering.

For example, we propose to study the evolution of a spatially homogeneous
ensemble of unstable plasmas via the B-B-G-K-Y hierarchy of equations.
Three energy densities characterize the problem: the mean particle kinetic

energy per unit volume (denote 8 ), the energy density of electric field

kinetic
fluctuations associated with the unstable modes (denote £ W), and the energy
density of the electric field fluctuationq'that would exist in thermal equilibrium

in thé absence of instability (denote 8 ). By weak turbulence

eq. fluctuations

we mean the case where

€ eq. fluctuations - Ew << gkinetic o I-1
That is, the energy in the field fluctuations is large compared to that which
would exist in thermal equilibrium because of the instability (in this sense we
have a turbulent situation) but small compared to the mean particle kinetic
energy (in this sense the turbulence is ''weak'). Strong turbulence would

correspond to E w > Ekinetic . The assumption that g w << Ekinetic



b)

essentially limits the growth rate of the instability allowed in the problem.
The smallness of the quantity € w/gkinetic makes the problem far more
tractable than in the case of strong turbulence since a quasi-linear analysis

is possible.

Classification of Interactions

We wish at this point to establish some nomenclatufe. The interactions in
a plasma can be more or less classified as wave-particle, particle-particle,
and wave-wave. A c;omplete plasma kinetic theory presumably would include
all of these effects. However, depending on the particular physical situation,
all three type's of interactions need not be competing in the sense that they are
all dominant effects. For example, one can imagine a spatially homogeneous,
stable, plasma (stable in the sense that the zeros of the Landau dielectric
function € (k, s), lie in the left-hand s plane) in which the wave-particle and
particle-particle interactions play the dominant role. The wave-particle
interactions determine the plasma dielectric constant but since the plasma is
stable the wave phenomena damp and the system may go to thermal equilibrium
through particle= particle interactions before wave-wave interactions are of
any significance. On the other hand, if one has an instability present which
is driving the electric field fluctuations, as for example in a weakly turbulent
plasma, all three processes could be important. However if we visualize the
situation where the instability is present but the number of particles in a Debye
sphere becomes extremely large (e.g., when the plasma temperature is suf-

ficiently high), then for sufficiently short times the dominant behavior of the



plasma may be given by wave-particle and wave-wave interactions since in
this case the effective time between collisions (which may be roughly estimated
as L (n)L3) ) b lo

— m r .

wp D ecomes very long

We illustrate by a table how the different types of interactions enter the
quasi-linear theory of a weakly turbulent plasma with a small electrostatic
instability. Keep in mind, we are describing a situation where the Landau
dielectric function € (k, 8) allows zeros in the right-half s plane for a band

of k,say, as would be the case (in one dimension} for a distribution of the

form:
£(v)
—_— U
Behavior Type of Interaction
a) Resonant behavior for wave-wave
W(k) - WD) -Wk-2~ 0.
b) Resonant behavior for wave-particle
W) - k- v~ 0.
c) Resonant behavior for wave-particle
wk) - 0@ - (k- L) v~ 0.
d) Modification of Balescu-Lenard particle-particle

collision term! for a slightly unstable
plasma.



Resonant behavior of type (a) will appear in the lowest-order, nonlinear
terms in the kinetic eciuation for the waves. It describes 3-wave processes
in which one wave Ww(k) decouples into two waves w(l) and w(k - g_) or the
inverse process of 2 waves coupling into one. We term such wave-wave

processes as ''mode coupling'. If the dispersion relation is such that there

is no mode coupling, then wave-particle scattering of the form (c) is the
dominant nonlinear process.

In reference to (b) one can visualize two physical processes of importance
for w(k) - k+ v~ 0, namely, resonant diffusion and particle trapping. For
simplicity we speak in terms of a one dimensional situation. Existing quasi-
linear theories do not include the effect of trapping nor attempt to justify
omitting it. Clearly it could be a competing process under certain circumstances.
We do not plan to present a quasi-linear theory in which it is an important
process butrather attempt to find conditions under which its neglect is justified.
At this point we present a simple physical argument to determine such condi-
tions. A more detailed mathematical analysis will be given later in Sec. IV-(g).
It is well known2 that for a charged particle moving approximately at the phase
velocity w(ko)/ko, of an electrostatic wave (of amplitude E , wave number ko),

trapping becomes important after a time

- m
T eEk_ ' ‘ I-2

trap
The situation we have,however, is that of a packet of waves, say of width
Ak_, excited in the presence of a weak electrostatic instability. The transit
time across the packet of a particle travelling at the phase velocity vp ~ (.c)(ko)/k0

typical of the waves constituting the packet is given approximately by



1
‘\Ctransit Ak (v -v) I-3
P g
where v“g is the group velocity of the packet. If this transit time is short

compared to the time “C' trap characteristic of the time required by a typical

wave of the packet to trap the particle,

T : 1-4

transit << trap
one would expect trapping to be a relatively unimportant process. The particle
diffuses through the packet before it has a chance to be trapped.
The effect of resonant diffusion for wk - kv~ 0 still remains. This
can be roughly understood as follows: A particle which travels nearly at the
phase velocity of a wave typical of the packet has a long effective interaction
period with the wave. This exposure t;) an almost constant electric field results
in an efficient acceleration which carries the particle rapidly away from
resonance and results in a large diffusion coefficient in-the resonance regime.
Resonance behavior for wk - W -(k -L)Urv0 appears for example, in the

nonlinear terms in the kinetic equation for the waves. It is of import to note

that the resonant behavior of this form can be associated with nonlinear Landau

W - w
L
damping, for although wk/k may fall in the region of instability, - L

may fall in a region of stability.

In reference to (d), Frieman and Rutherford1 have included, by an
appropriate ordering, the effect of particle-particle encounters on the evolution
of a weakly turbulent plasma. The usual Lenard-Balescu collision term for
the first distribution undergoes some modification through the appearance of
certain principle-value integrals. In addition, the kinetic equation for the

waves acquires an inhomogeneous source term corresponding to the
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spontaneous emission of wave energy through particle-particle encounters.
However, we reiterat‘e that for sufficiently small plasma parameter, EP .
these effects of single-particle encounters can be pushed to longer and 1.onger
times; in this case the weakly turbulent plasma evolves for a considerable

length of time through wave-wave and wave-particle interactions of the type

(a) - (c) .

?

There is a wide variety of literature 3-11 dealing with the problem of weak
turbulence in a fully ionized plasma. Vedenov and Velik.hov3’ 4 and Vedenov,
Velikhov, and Sagdeev > consider only the effects of resonant diffusion of
type (b). Drummond and Pines6 include, in addition to (b), the nonlinear effects
of wave-particle scattering on the electric field energy density, thus giving
resonant behavior of the form (c). Al'tshul and Karpman, 7 Karpman, 8 Galeev
and Ka.rpma.n9 and Ka.domtsev10 include in their analyses (b), (c), and the
nonlinear effects of wave-wave interactions of type (a), thus gi\-ring an additional
mechanism for the transfer of energy between modes of different wave number.
In all of these treatments, 3-10 the starting point is the magnetic field-free
Vlasov equation with self-cc;nsistent electric field. In each case the authors
solve for the electric field amplitude order by order and then perform an
appropriate average over a spatially homogeneous ensemble to obtain a kinetic
equation for the electric field energy density.

Iordanskii and Kulikovskii 1 and Frieman and Rutherford, 1 however, have
offered an alternate approach. In lieu of working with the Vlasov equation and
then performing an average, they operate directly with the B-B~-G-K-Y equations

for a spatially homogeneous ensemble of slightly unstable plasmas.



Reference 1l includes the effects of wave-particlg scattering of the form (b)
and (c). Reference 1 deals with (b), (c), and particle-particle effects (d). It is
_imp'ortant to note that both in the B-B-G~K-Y hierarchy a.pproa.chl’ 1 and the
Vlasov approach, 3-10 the instability index, , Yk/Re wk ] , (where Y‘k = Im wk ,
and -i wk is a zero of € (k, s) corresponding to instability) is assumed of
the order of some dim‘ensionless small parameter. For large instability indices
Iordanskii and Kulikovskii12 have demonstrated that in the B-B-G-K-Y frame-
work, the large exponential growth makes it necessary to consider the entire
chain of equations for the correlatio.n fu.nctions,thu-s rendering the problem
ma:thematicafly untractable. In fact, the appropriate ordering of the instability
11,13 _ |

index for weak turbulence is , Tk/Re wk[ ~ Eq ~ ew/Ekinetic .

In this thesis we consider in detail the problem of weak turbulence within
the framework of the B-B-G-K-Y hierarchy. We deal with a fully ionized,
magnetic field-free, spatially homogeneous ensemble of slightly unstable,
multispecies plasmas and derive a coupled pair of equations for the one;-particle
distribution function £(1), and the spectrumenergy density, IPk . The effects
o£ wave-wave interactions (a) , wave-particle interactions (b) and (c), are
included in the evolution of £(1) and lllk . Particle-particle encounters (which,
as discussed earlier, can be ordered out of the problem for a considerable
length of time if the plasma parameter € p is sufficiently small) are considered
in Chap. IV in relation to the examination of the sign of the spectrum I,Uk .

In Chap. II we consider the hierarchy equations and the weak-turbulence

ordering to be employed. With this ordering and utilizing the Bogoliubov and

14
Krylov multiple time scale technique,  the equations for the various



correlations are established. The solution of these equations resulting in a
coupled pair of equations for £f(1) and I,Uk is given in Chap. III. In Chap. IV,
various aspects of the final equations of Chap. III are examined. These include
associated conservation .1a.ws, comparison of the kinetic equation for the
spectrum ![/k with that of Ka.domtsev10 based on a Vlasov model, a considera-
tion of the rapidity of decay of the e_il(-' vt free-streaming terms, comments
on the mode coupling (wave-wave) effects, estimating the condition for the
neglect of particle trapping effects, and an introduction of the concept of
plasmons (quasi-particles).

In Chap. V we consider a model problem exhibiting solely wave-wave
interactions. 15,16 The determining equation is of such a form that lowest-
order, linearized version,waves of different wave numbers propagate inde-
pendently. To next order the nonlinear interactions act as perturbations which
slowly transfer energy between modes of different wave number. We use a
technique of solution different from references 15 and 16. Whereas they solve
the coherent problem order by order and then perform suitable averages over
a spatially homogéﬁeous ensemble, we construct at the outset from the original
dynamical equation, equations for wave correlations in the ensemble, and
obtain from these a kinetic equation describing the evolution of the wave energy
density dﬁe to wave-wave interactions. This is a very direct way to approach
the problem and results in major algebraic simplifications compared to the

methods in references 15 and 16, and offers a minimization of conceptual

problems.
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Using the basic philosophy of Chap. V, in Chap. VI we consider as the
dynamical equation, the Vlasov equation with self-consistent electric field.
Performing averages over a spatially homogeneous ensemble at the outset (as
opposed to references 3-10, where the ensemble averaging is performed after
the Vlasov equation is solved) equations for correlations are constructed which
are identical to the original B-B-G-K-Y hierarchy equations for g, h,... of
Chap. II if the particle-particle terms associated with the discreteness of
matter are omitted from the analysis. This result, although not surprising,
is significant in at least two aspecté. It accounts, for example, for the similarity
in the Vlasov (e.g., reference 10) and B-B-G-K-Y hierarchy (Chap. III) weak
turbulence results. It also gives strong motivation for employing the B-B-G-K-Y
hierarchy in the study of homogeneous turbulence in lieu of the Vlasov a.pproa.c:h,3-10

since, by delaying ensemble averaging, the latter entails much more informa-

tion (and hence algebra) than necessary.
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CHAPTER II

HIERARCHY EQUATIONS AND WEAK TURBULENCE EXPANSION

Hierarchy Equations

We consider an ensemble of spatially uniform plasmas described by the
B-B-G-K-Y hierarchy of equations. 17 These equations describe the evolution

of the s-particle distribution function fa a (1,2,...,s). in terms of the
12
s + 1 particle distribution f 2 a (1,.. . ,s+1) and are obtained from the
""" “s s+l
Liouville equation by integrating out the phase-space co-ordinates of the remain-

ing N-g particles. The function fa a (1,2,...,s8) describing a multi-
13
component plasma with particles of « kinds, gives the probability density of

the joint distribution of s-particles of the types T IRRER L in the phase
.space 1,2,....,s . The notation, 1,2,...,s labels the phase space points
(_151,11) s (_J_{_Z,XZ) 4+« « We consider these equations in the limit

N‘.—> o , V/rd = e ; Nrl/v , finite, 1I-5

where N is the-total number of particles in the system, V the volume of the
system, and R o the typical range of interaction of the particles. This allows
us to consider a system of infinite volume and employ a continuous k representa-
. 18 . . . . .

tion. Moreover, we consider in place of the ordinary chain of equations for

fa a (l,2,...,s), the chain of equations for the irreducible correlation
AERL
functions obtained from the distribution function fa a (1,2,...,s) by
EERL
subtracting from it all possible products of the irreducible correlation function

of lower order. We thus have for the second, third, and fourth correlation
functions, respectively,

g 1,2) = f 1,2) - f £ -
alaz( ) a’laZ( ) 2,0 'a,@) I1-6
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29 = (1,2,3) - £ (1) £ (2) £ (3)
3?3 %% %2 %3
- fal(l) ga2a3(2.3) - . 1.7
{n2,3]
. (1 2,3,4) = § (1,2,3,4) - £ ()£ ()£ (3)f (4) 11-8
22,3, aa,a.a, 2, e, ay 2,
Z‘Fq, ')&u(’-) qq Q4 (3:4) Z_gena..(‘al) QQ.,Q‘(S 4) '—Z 'Fq.(l) hqxn, &‘(2 314) .
Coas,4% Lu2,3,43 : tha 5,41
where z_ denotes the sum over cyclic permutations of {_1, cens s}
,L‘r?np""l's‘}

The. first thtee members of this hierarchy for a spatially homogeneous

ensemble of « species may be written in the absence of a magnetic field

. [+
‘ - aL D a ‘. WA .
%{‘g.h) =) n g Baan 16 -2a1) 3{4 Gaa () 4@ 11 o

Qzz 1 Mq, J 9%
qu.a, =  _8a.€a;, 11-10
PR = Xa

(ag:-tﬁ'i_;s-%("f’ \_{_1.?- ) gq.-q,_(hi)

gl 2%
-1 2% ,m, e, .‘ |
R, 3‘(;: : Z. g 5—% °s Ja,ay (2,3) d(3)
- L 0& ‘2) Z’_nﬂ S?_qa‘h-()s gq as (1,3)d (3)
mq-l, DV,, 3)(1_

II-11

= ?’Qﬂ;q‘ . VIFQI (.1) D_fi,“) — -FQ' (l) 2 .Fcn_ (1.) )

ax\ mﬂ| DV) qu 3 \_/-z

+ ‘ 2..' X\ °¢Q|G1 q.qxas(l,2,3>d(3)
{ \_’ m, Z;:‘ IX,y
+ (1 &2) J

+ Q 4 Q . —‘—‘ 2- - -‘—-' 1" 1_(‘)1)
_'@ i ( Maq, AV, Mg, IV Fare
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+ Vs - ) hq\alas (,2,3)

_ Z Z Na, 9+, u)(i&@mh hqq_qsqq (2,3,4) d(4)

%=1 $1,2,3% ’hqt- 3\/, 9 X\

Z_ Z D__q'f D_gq\q-,_(hl).jig_@maq 9q3°+ (3'4)d(4)

Ma, v dX
=1 {1,2,3] = =
t (2 & 3)}

II-12
"I" Z .’D__C__ba‘ql.(__l__ 2_— L__ ’.)_ ) hq‘q.‘_ 03(.')2}3) ‘

Jd X, m
(113} - Vi Maxd%
E:_ 2*” Naq, a9 j)ggbp.04 Kq.qu ay (42,3 4) d(4)
Ma, 9V DX,

=t {42,3} -

' 2 - 1 2

+ Z {:)_izqzqs.(n}\q :..3—\/ m 3~\/>’Fq1(2)g°\q3(')?)

{"2,3} _~7_ 2, —1_ Q= _3

+ (1(——)3)}

We do not include any equations for higher correlations since we will
achieve closure by ordering out the 4-particle correlation function.
Keep in mind the physical situation we wish to describe,namely, that of

a weakly turbulent plasma with

E eq. fluctuations << g-w << E\kinetic

where

& w O energy density of the fluctuating electric field in the unstable modes

3

eq. fluctuations™” €neray density of the fluctuating fields in equilibrium

) . YN ener density of kinetic motion of the particles.
kinetic gy Y p
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. is th
Since Eeq. fluctuations/gkineticm Ep where € p is the usual plasma
parameter
€p » 1
3 I-13
(N X3) :

the above inequality may be written as

Ep <« Ew/ Ekinetic << L. . 1I-14
We introduce the small parameter

€7 €/ Exmenc " T /Wi | II-15

where the instability index *yk/wk is typical of the electric fields in the unstable
‘modes.
It is clear that since we wish to describe by the correlation function g

the fluctuating fields in the unstable modes with Sww € EK wene’ We have to

q
allow a g which is first order in Eq . This follows from noting (Appendix A)
that the energy density of coulomb interaction is a linear, integral functional

of g. We are describing a situation in which the correlations are strong
compared to the correlations that would exist in equilibrium ( geqm Ep << €q) .

In order to take full advantage of the smallness of the parameter Ep we estimate

the order of magnitude of the terms appearing in Eqs. II-9 - II-12 by introducing

< Cﬁ) ~~characteristic strength of the potential,
Mo -~ effective range of potential,

Uay. ~v average particle speed,

T ~ typical time scale.

For simplicity we make the estimates for a single species of interacting particles.



-14-

The terms in II-9 then stand in the ratio

Ve T ( (P> )(nnz)qv—qi

ey II-16
Similarly II-11 gives
q vw‘r) cj v‘w“r‘ ( <& 1)(rmf‘) il
. (vw‘t<<d>> )H ;( )( (DD )(nn?)hmi
Mo UL Mav I-17
( <¢) )('U'QVT‘) (:"1
MU Mo
A similar analysis of 1I-12 gives .
h h('U'wT) h( vwr)( (b )(nns)Fv:.(i
r'-e mv&\r
'U'q-\rT. <¢> (nrl ) au Vawr. \_) <¢> )h
( ( mm) 33 v ( Me (mu‘“’ 11-18

(1_;_[1‘ (Q},)(nnf)kml :(Uwf)(“é> )“CCJ

Mo N Uarr Mo ™M Vel

For our estimate we take ;zo , the effective range of the potential, to be of

of
order the Debye length )\D and pick as our typical time scale

T v Re/Un, v L/, > 11-19

then
3
rhfua,, NnXo I1-20

In addition, we estimate f from the normalization condition gf dv =1, and

thus obtain fvxl/-u;i . Estimates II-16, II-17, and II-18 then become

f i g U II-21
and
g :g: g
TR R Ve 1I-22
tEe_8 s
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and also
"h : h : h

3
g€ B Vi © eph I1-23

kVew : €_f g
p

It is clear we have some liberty in the choice of ¢ p in relation to ¢
(aside from €p << G_q). We propose to construct a theory giving a coupled set
of equations for f(l) and the electric field fluctuations which involve g to order
6(21 . If we push ep to smaller and smaller values relative to eq ,for example,
by taking thé plasma temperature to sufficiently high values we are essentially
stretching out‘.the effective collision time between particles wé._‘:) )and would
not expect to see the effect of particle-particle interactions in oupr :heory.

However, if we take

c? ¢ 1I-24

q P

it is evident from II-22 that in calculating g to order qu, the first term in

the right of 1I-11, ;;hich gives the usual Lenard-Balescu collision term in the
case of a stable plasma, is retained in order eqz . The obvious advantage of
this ordering would be to achieve in order eqz , competition between wave-
particle, particle-particle, and wave-wave interactions. We proceed with the
ordering in II-24, keeping in mind that the assumption may be relaxed (so that
ep << E_qz). .As it turns out,the first term on the right-hand side of II-11 will
be an exceedingly useful effect to retain when examining the sign of the spectrum
of wave energy-density. With Eq - € pl/Z and the .estimates in II-22 and

2
I1-23, it is clear that in order to calculate g to order Eq , we may drop the

last term of II-11 and the last three members of II-12.
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This follows from examining estimates II-23 and II-24. To lowest order

we are assuming g w ’eq . The gg driving term for h in II-24 thus gives an
2 .

h of order C—:q in lowest order. The equation for k (not displayed) has gh

driving terms, thus giving a k of order (—53 . Hence, the last three members

of II-23 are of order eq4 , € 3 , €q3 , respectively. However, from II-22, in

q .
order to calculate g to order éqz we only need h to order éqz . We thus

omit the last three members of II-12 . The last term of II-11 is omitted since
it is estimated as order ¢ q3 from II-22. We emphasize that the above esti-
mates have been made by assuming p o )&D . For shorter range collisions

terms such as Dd) Dq in II-11 and Q_C_I) . 2h in II-12 become important. We do
‘Dx oV Ix Vv

not consider these effects.
With our assumption of spatial homogeneity, we Fourier analyse g(l,2)
in the variables 51 - EZ and h(l, 2, 3) in the variables 51 - §_3 and x2 - §3 .

Equations II-10, II-ll, and II-12 become,respectively,

Qlcq,(() = — Z 4T N, €a,Ca, Lgd\s K .2 golv2 906,00 Ve t)
It Gp= | Ma ° IT -25

)

<:—;%: + Lq.“ﬁl\_/_') t Lq,_(‘}ﬁ{v_})) quqt(‘s’\é’y—i ’t)

4T Ca,Can [ Fa,(2) k.2 ““’2
T Cq 0, (1) k.2 £0) + ))II Y

K% "'""r-_n_qT_ DV| l<—-7 K

(¢
-\-{ N 4T Nay €45 Cq, g(il_%‘_

IN

L(k-2) .2 des Pavand 217,00 V2 U5 1)
(am)3 l IV

- ::.:.1)}

|7<
|)<>
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where

LalkvE) = teyy — 4meq, vk 7Cq ane gy T2
Ma, K= ‘ = =2
Also
(32‘—]: + LQ.(K_\)\Lyt) 1 LQ:.('f}:\La,t) + LCig(\_‘_!;\!_t;—t)) a,G Q(ku,K_-..,\{.,\{;'..\._l_,{t)g(g_,'»,.\i‘ﬁ,‘f‘_.)

Py
N AT Na, B, Ba, L K
= — Z_ L { \’:\: aq —a, ‘- K-s D qq q(.K-:.;Vz V..‘l:)S\dVQ gq of us,\/,‘\lq,-t) 1I-28
ay=1 §42,3} ‘ s Y

+ (2 C"?B) } S(lg.+l_<_1_+E_3>
b) The ExpaBsion

We now expand II-25, II-26, and II-28 in the context of the discussion and

estimates presented in the previous section in the small parameter

1/2
Eq © ep -~ € /gm:myk/ui( ,
where ‘yk/ui( is an instability index typical of the fluctuating fields in the unstable
modes.
It is clear that at least two time scales, T o - l/w , Where  is the
oscillation frequency of the wave, and T 1" l/y enter the problem. A method
for dealing with such asymptotic problems has been given previously by

4
Bogoliubov and Krylov. ! ‘We expand the distribution and correlation functions

in perturbation series

() (1) |
fa. “ fa (Y—l it gty - ) + e’ifa. (Xl, t €ty n )t 11-29
1 1 1
g(l) (k,v,,v.,,t t,..) +
Baa 2 eq aa, =YYt &b
12 12 2 (2)
eq galaz _15 Ve Y, » &, éq_t, .. ‘e 11-30

h v 2 _(2)
a1a2a3 Eq h aa a'(1_<_ kZ’ y_3,t, Elt, A IR 11-31

41%2%
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The time variables t, €t are treated as independent. The variation of a
solution on the € t tirhe scale will be determined by removing secular behavior
appearing on the t scale, thus rendering the solution uniformly valid. Equa-

tions II-25, II-26, and 1I-28 then become

(o
2 fa ) -0 II-32
ot |
Q'F“) ‘ (o) f 47N e‘qe (d LK Q d II-.33
a = —_ 92q,3%q, =2 V (K \/' \/ t
._.__t. Det c‘z"" mM e, j 2 !‘( zqaa ) )
) v) (o) (1)
D-F‘h + D'FC\ + :)_P 4r’nq1ﬂaeﬂ d _‘.S_ 2— S\dy_l 9“?0‘1-(\5!\[.')\.’.1:*:;6.&")11-34
Jt QGt De‘t a Mg, kK IV,
z:l.
(o) (o) . W II-35
(g'—t + Lq,(k, V) + LQ1(—‘£)\L1')> C]‘hc-z (yv Vb et ) = 0
(3%5 + La v + Lo (".‘S:V_z.)) Jao, (¥ v,V £ €L )
. () Ga)
= — 2_+L<q)(\<v.)+Lc.(\<v)> a
(:)et LT V) Ao -3
(2)
+- Sqlaz (IC V\)Vi)-t E't ) + Hc\l q‘)-(' \b'\-"-" )-t)Et“) ’
(o) (o) (o) ) II-37
S(l.‘.'*‘f}'f'fs) (Q%: + LQ.('fn\L') + LG‘L“&“'\L"‘) + L‘\s “‘-3’V——’)>hq\o>.a-;(‘$n1§_1,\_'n‘{_h\_{} 1":)

>3
= - _~z 47 Na Ca, & \ LK __ (1)
- S('i‘ +.K:L+E 3) Z {: r:\q‘ =2 k-;_ QV qqzq (K'I'\-l“\b) d!‘l c,‘43Q£E3)\./_31\,{4 )

Gqs1 01)2,3]

+ (1<~—>3)}>

(o) (o) __
wheve La (e,w) = kv, —4Tea, tk, I Fg, Zr\qeq de. I-38
mq‘ kv, ] '

o)

Lo ev) = — 47ea 1 |, 2 an,eq‘gdg

I1-39

mq. K?2 ‘.')V 2
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and where

() _
. G,Qq = 4ﬁ‘eq,eq.,_ LK . ( *F(:: (Q)Q_-Fc:)u) - (| (_)2) N 11-40
I(" mQ, 9\_/_|

and

H (2)
O,G (\f.!\_‘} |V__‘L,t) “')

ol
- 47 N, a5 L (k-4 e
{ Z Qg -az3Ca, d____.__ - ’5'—) C 2L gdy_'s hq\q-,_q3(-g,"‘f,\!_l,\b,\_/,

@Qm)?® 1k-2]* v
(=) T
4 -k )

We reiterate that our basic aim in the analysis of these equations is to

obtain a coupled pair of equations for the first distribution f(1}) and the energy
density of the fluctuating fields. We proceed under the assumption that the time
scales relevant to the problem are T‘ 0" tl’ 1 = éqt. .+ « In the analysis which
follows,poles associated with free-streaming behavior of the form e"ﬂ—(-'-‘-’-t

are consistently omitted under the assumption that these effects phase-mix out

as far as velocity integrals are concerned. The rapidity of decay of typical

free streaming effects is briefly considered in Chap. IV and also the condition

I-4 for neglecting the effects of particle trapping is obtained.
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CHAPTER III

SOLUTION

We now turn to solving Eqs. II-32 - II-37 starting with the lowest-order
equations. Since fa(:;h) does not vary on the t scale by virtue of Eq. II-32,
the linear operators La(:ac_',y_) are independent of t and Eq. II-35 may be most

easily solved by means of Laplace transforming in t to give (see Appendix B)

«)
Ga,a, (€0t et, )

S‘.‘t s.t
= — 1| ds,dsa 'y (kWi Ve 0.6 1) TII-42
(ami)* § (s.+ Lo wv))(s“« e c-\s,&))g""’""’"' <t
where €1 €2
L ! Ames w00 e [d
= — |\t G LK n.e. ' ) 1.
+ Lo (k) 9-“5-!'( mocles) K ov L e 1.3

a < .
" etk,s) = 1~ y ATnees, Lj & - 3fa, /9v.dy,.
Ma, St LK.V,

Q=i
In reference to 111-42, Cl and CZ are the usual Laplace contours, parallel to

the Im 5 {Im s,) axis and to the right of singularities of the integrand. We

2)
assume as in Ref. 1 that ¢(k,8) = 0 admits marginally stable solutions for a

band of k. In the interesting case of an electron gas in a smeared-out, neu-

tralizing background of fixed ions, fio) is represented séhematically in

Diag. 1. The function f()

represents the small bump in the distribution
which yields the instability of order € . The situation in a multicomponent
plasma is clearly more complex; however, for completeness we allow for such a
possibility. We assume that for a given k (in the region of k-space cor-

responding to marginally stable solutions of € (k,s) = 0) there is a single

;cnarginally stable mode 8y = -iu)k . For k outside of this region as well as
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inside there will be solutions of €(K,s) = 0 corresponding to Landau damping.
As phenomena associated with these solutions damp, we do not include them

in the present analysis. We assume their contribution is negligible in times
of order 1/€qai( . Relation III-42 is a purely formal solution to the problem.
However, by virtue of our knowledge of the solution to the Landau problem we

know the form of the operator , namely, that given in expression

s + La
III-43. When operator III-43 acts on tome initial value fk(lr_l, 0) which is
analytic in a sufficiently broad strip containing vi real, and its Laplace in-
: -iwt

_ik. vit “

version taken, it gives rise to e k- , and e terms as t-—>00 . Similarly

a(a.l)a (y_l Voo 0, €t) analytic in sufficiently broad strips containing i+ Y,
12 '

-ik. vyt
real,the solution III-42 will involve products of terms involving e kv ,

for g

. -ik-v,t it
e"l“kt and e B¥2P | oMk
The philosophy we adopt is that of treating g as a distribution in velocities

v1 and v2 in the sense of Schwartz, i.e., treat it as a distribution for cal-

culating moments with respect to v. and v For instance, as discussed in

1 =2

Appendix A , the quantity

! i
L Z (4m r‘aqleq,)(“HT’rn,,L(J_Q,_)j‘Ed\[.Cf\!_,Cjc,h(,h(‘g,\/_.,v_t.'\:)m_44

4,,Q5
which involves the simple moment jjdxl dzz 8,a is a meaningful
12
physical entity to consider since it represents the energy density of coulomb

interaction. Similarly Eq. II-25 which advances fa (y_l, t) involves the integral
1
Sdzz g, a (k, VYot ). If we use this equation for determining the time

evolution of the moment of a function. @(_\_r_l) over f , then integrating by parts

and assuming that ® (Xl) g, . (vl,v t) vanishes sufficiently rapidly for

12 2

]‘a‘rge \Yli_l 4
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g(:)\\h)-?q (v,B)dy, = Z 477 r\,‘e a, L(Ch( K .jdv.dvu')@ Qaran (& Vi, Va ),
i I11-45

where we have interchanged the order of the k and v

1 integrations. We see

that Eq. III-45 involves the moment

jjdv dvz:)@(v.)g (k, 'Yy zz,t) .
AV, 1%2

With the assumption that () (vl) and g, (k,v,,v,,t) are analytic in sufficiently

! %2 =2 -ik. v t
broad strips containing v and Y, real, the terms involving e and
R CIA
e in g, . decay as t —> o by a phase-mixing process. The lowest-
12

order correlation function g( )
—I(JJkt wk 1 2 (
involving e and e . For large t, ) asa distribution in
%1%2

is then effectively given by the product

A7) and v, can be written as (see Appendix Cl)

G to}) (o)
Q)Q = Eq, L . gg‘h/av\ Ca, -L\_f-')gcu/b\_/i ‘LP
U M., & K I11-46
1Y Lll.)|_<‘|‘\-\_<_~\_,_| rA mq-‘_ Lw\ﬁ—LK_.V}‘FA

where l,li( is 8—; times the lowest order energy density of coulomb inter-
k
actions associated with g( )
122
Y, - ’_:_4 Z (477 Na.84 N4TNa Cq, ) Sg dvi dva gla. 0 0,0, et )

s
Q,Q, %gsls Gl ¥ 3p ) (LW ~LK Vs +A)

(see Eq. III-44) and is given by

- I111-47

S t-':.k)ls

The rapidity of decay of the free-streaming terms, the question as to
whether the k integrals (as in Eq. III-45) ) over the decaying terms associated
. e s . -ik.vt
with the velocity integral of the streaming terms e — —  themselves decay
rapidly enough, the neglect of particle trapping, are questions important to the
validity of the theory. We consider these issues in some detail in the next

chapter. There, conditions on the width of the k spectrum excited, group

velocity restrictions in relation to the wave-wave terms, etc., are obtained.
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We do not pursue them further at this point.
When expression III-46 is substituted into Eq. II-33, one readily finds

for large t

Ma

«)
Ha' ¢ Ha - -1 (%)‘YA;S -2 -x. fa/ov
ot Jek ' . IV, We ~K. Vs +CA

xU~ €Ce,twera)) Y, . I11-48

Since t[/_k = l,li( , this simply reduces to

a2+, QFqM ca, \*(d (o)
& ' = (= k.2 (o K.V, C2fL
Jt Det (ma.)i 555'\5 TS me )k Drfx_/_\}lps

and 'lpk are independent of t, in order that fg)
1 - 1

we ask that

As f(o)
a

need not be secular,

()
i
7t

Jf

=0 |, 1II-49

and

I

Q.._F‘\'(to) = eq‘ S‘dK

- L ' . Q_Fq('o)
det mg. { TEe -u) i } e

II1-50

Q.)’.\_)
<

In reference to Eq. III-50, we assume that the dependence of ui< on £t

is given by € (k, -L.ak + A ) =0, an integral equation relating wk and f( )
(o)

The time evolution of f on the €t scale given by Eq. III-50 is in no sense

trivial in the general three-dimensional problem. However, in the case of a
one-dimensional gas of electrons embedded in a fixed neutralizing background

of positive ions, then III-50, in conjunction with €&€(k, - ka + A ) =0,tells

(o)
us that DF . As discussed in Chap: IV, III-50 does have the desirable
Qe.t

property that it conserv&sprobability ( X f;o) dv) , total particle momentum
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o)
Z-_ MNa §+ qo Ma V dy 3 and total particle kinetic energy
G

Z—nag{::’mq\’/qdv , onthe e t scale. Inorder to solve Eq. II-36 for g(z) ,
o A B

a,a
1 2:
L.Z)a. and hence h;z)a a
12 12 3

an expression for H is needed. In reference to the
solution of Eq. II-37, we introduce the notation (see expression III-46)

o
g = g (kv) g (kv,) ¢ , 1II-51
a,a, a 1 a, 2 k
where
(o)
g (k,v) = Es L - 9Fa, /I
a3~ -1 ™Ma, =-lWg+LE U +A
Substituting the t - » expression for g(l)a given by III-51 into the right-
12

hand side of Eq. II-37 readily gives

©) (o) ¢o) 2)
S(K-w_uga)(agt t+ La, (KW} + La, (ka Wa) # Lq,uis,\b)) hq‘mqs Qs a, v a3, et )

I11-52

3

=7 5(‘5,‘+K_1+_K_3) ?_ {'e—q' Llf}’ :;;)- qq:.(‘ﬁ"l\!})qQ.("ﬁln\L')qQ,(bg;,\/-,) WK-LIVK
Al - - -

Ma
£1,2,3 !
123 + (2e>3) }
where we have used the fact that

— o)
) AT e [- s 3Fa /o0 dys - g,
aq4 m04 k; le.:, ~LKs -Vy + A III-53
i.e.,
(o) (o) a) {2)
ST +1G 1 13) (53} + Lag, Gav) + Lgy (KaiVa) + L‘q-; (k3 .xp)) h«:.q-.qs
111-54
= - g(lﬁ-ﬁ—!fz'l'_lf;) Z gq,_(lf_z)\iz)c‘{qz(_\sg ,\13) /q)ﬁ,_ 1‘PK3 X
(12,33
{@_q_l L\’-(-3"2‘ (ﬂa,(-k1;V\) + B4, LK. .2
Ma, IV, =T m'q‘ = :')"\‘ilq“(("i'i)\_/l) :

The formal solution to this may be written as

)
hq‘qmq:’ (K, 2, ¥, Va2, Vs, T,et, ) Sl ke +1<3)

~(la, + LaatLaz )t @)

= Slki+katika) 0 | h (K, Vi Va, V3 0, €t o)

III-55

QiarQ g

t
-(L Laa 1
~ 80Kty +ks) [T_ oottt baa v bag)t gdtlL(Lq'+ +lasg)t )

11,2,3% o

X 301(E‘IV_}) qQ-‘;(K,‘)\L'!)’LPE'A‘LPE-s ?_El LK3 -?. ‘:j '&‘<'K_7.,\_/_l) 1 (16)3)})
l’hq‘ :)\!.‘
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where La is short form for Lio}g_;_ »vi) . In Laplace variables (see
i i
Appendix Cz) apart from the initial value term, the right-hand side of Eq. II-4l

is simply

e s(Kt '\'Ka. +\<3) Z gQ-L(K'I-nV’l) CJQS(K-; ,Vg) wl(-)_ ’q)K-; X
202,37 S(S+ 1t Wa+iwk, + L“) (& ,Vi) )

{er_%la‘LlSB. 2 qq,(_‘fl)\_/.i) + (1@)3)} . II11-56
( )

The only effect of the initial value h aa.a
3182%3

2) (through the evaluation of H( )a in Eq. II-36) of the form
122 “1%2

(2) _ A
aa, gal(lj,zl) gaz('E’Xz) tP_ , 111-57
(1)

%172
absorbed into the result. This is briefly discussed in Appendix C3 .

(o, €ty..) 1is to give a con-

tribution to g,

which is identical in structure to g, given in Eq. III-46 and can be trivially

In reference to III-56 we introduce the notation

G ,3) = S Cen i g, e
(S+1Wka +iwdes + LaP ) Lma, — 2V 15
+ (1e>3)} .
In order to calculate g(zl for large t we need to evaluate the driving term
12
Hg; where
12

“)
‘_‘la‘a-; (EI\J_‘ )\_/_2 IS)

= e‘“ 4irne.e d8 ok -2) 9 d (2)
= Ay “-az — ==l s \1_3 h (4 -K !1 Vi,V s E.t.
q3‘lmq‘ (2\_\')3 K _:g‘l g!‘ G0, Q5 ! ) ) V3 , 3, )

N k .>__) B 11-59

\ & 9
Utilizing the notation in III-58, and that

Z 4ﬁ‘nc.3eq3 gd\_{-, qq-s(‘é"g-’\b) = 1

G “ﬁ":‘?’_‘l

I1II-59 readily becomes
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)
Ha e (&,ViiVa,s)

= | T
5 %A‘{%al("s\’s)gdj Lx-4). 57- \. a, (x,L-K,V,s)

(aw)?

+ Wy Wi qa,(4,0) Z LI de_g quc-,g,»g,gs,s)]

.SL)"-

192 W ve0)2 6 000 ,8) Ga (v ]

+ ( K© —>—ls) , 1160
The last term in Eq. III-60 involving w,Q t[/k 4 bears special significance in
that it will lead to mode coupling terms (involving resonant behavior for

a.i( - W, - a.i( \j\ 0) in the kinetic equation for the waves. The first two terms

lead to particle-wave resonant behavior (for W - w -(k-2)-v v~ 0) as well

~

as mode coupling phenomena in the kinetic equation for the waves. The con-

(2) (2)

tribution of H to g(z) (denote g, (H) ) can be written formally from
a.a aa a
172 12 “1%2
Eq. II-36 as
(2)

{
= quq,('s;\b»‘l_z;s)

o)

S + Lq‘ (K’Vu) +Lq -k U-r.)

= E dStdSL /(QIT'L)Z ] 1 H (2}

s a,a, ¢ III-61
S -5 T3 Sy + L‘;? (&,Vy) Sa+ L;:("SN_}) &

Ci Ca
Since (Appendix CZ)

{
(o) qal(—gl!}) = ga-‘. ("'S;\_{_z)
Sat L&) (-120v2) SO
the integration in the first two terms of III-60 may be done trivially first by

closing G, to the left and then by closing C1 to the right; the result is readily
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30?2)1 (H) R .
= 801("'5)\/_’-) _e_‘l_t { CI_'Q- .(E g)'g- [1')& IP-K--F-_ G‘q‘(K,.Q-K|V-nS)

S (S—' I.U.)E ‘i’- L::) (-Kp\h)) Ma, (31T‘)3 9\_/_.

+ WLWK 361,(1 v) Z 4Fn°‘2e“‘ XCIY_:I. G‘q3 (‘%)E;‘L‘s.s)]}

Ik - x| %

+ Y&‘ ds.ds, /aami)® \ \

- ~ s)
. C_LSLS $1-S.) Sy 4+ )_éf’ck v.) Sz"'l-q‘-,_ (-k,v.)

X E‘_“ dS) ’lp ’LP Ll -2 9 L- j ) | K >-e)
n_}q‘ (a\—“)3 2 -2 ) av' 6( k 1|S)qq,(-zj\.}_l) % ( ‘>'2 III 62

(2)

3122
right-hand side of KEq. 1I-36 can be written, upon inserting expression III-51
1)

Similarly the contribution to g from the first three driving terms on the

for g, and using Eq. III-44,as
222
@)
Sq'q"‘ = gq"(-lf’\il)) [lP'S 2- qau ('f'l\f.') + J"%Q.(‘fl".‘) 2- T'P\c
S(S-LWk+ Lf:. ug,v_')) Jet 1 Jet

)
= _(E‘_‘ LiK. l"Fq,a 1l)k

K ==K Ma, IV -
T ( | e 1) ? ) - I11-63

where we have expressed the result in the form (E, 1,2) plus the( ,li - -k )
16~ 2

version of the same to concur with the symmetry in that portion of gg;
2 12
driven by H; )a given in Eq. III-62.
12
We do not include the effects of the source term S;Z)a at this point. As
12

mentioned earlier this can be ordered out of the problem for sufficiently small
é’P' i. e., for sufficiently long effective time between collisions. The

phenomena we examine then effectively evolve in times shorter than the collision

time. The source term will prove a useful effect to include when examining

the sign of the spectrum l,bk . We postpone its discussion until a later time,



-28-

(2)
a.a
(2) - be oo 1)
g (k,v.,v,,0, €t ), 'will lead to a solution identical in form to that of g
a.la.2 — =] -2 a.la2

given in Eq. III-5] and can be trivially absorbed into the same. As it leads to

It is clear that the initial value of g on the t scale, namely,

no new information we omit it from the present calculation. In order to deter-

mine the time evolution of the one-particle distribution from Eq. II-34 we need

the inversion of the net expression for giz)a (s) given by. III-62 and III-63 for
12

large t. There will be a secular portion varying as t as well as a steady

asymptotic part. The secularity arises from the double pole at s = 0 in the

1 ' 1

factor Py m) occurring in the operator 55 - i“‘i( T La) (as well
. - -
as its (5 1—<» ) version). The removal of the secular behavior will then
1 & 2

yield an equation giving the time evolution of the spectrum z,bk on the €t scale.
(2)

*1%2
determine the evolution of the first distribution function. The analysis of the

The nonsecular part of g which remains is to be used in Eq. II-34 to

third and sixth terms in III-62 will demand special attention. In fact in situa-

tions where
wk) -of) = wk-2) 1I1-64

(2)

can occur it yields a secular contribution to 8, a
12

and hence a driving term
in the kinetic equation for gti(

;2)3, is tedious but straightforward and is given in
172
Appendix D and E. In Appendix D we consider the contribution to gf)a by
12
the third and sixth terms of Eq. III-62, whereas in Appendix E the remaining

The evaluation of g

terms in III-62 and III-63 are examined. It is of considerable import to note

that there is a direct way of obtaining the kinetic equation for the spectrum \Li( .
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(2)
%1%2
(which yields the kinetic equations for zpk), we examine the energy density of
(2)
12

(
’W( a = K4 Z (4“ Nea, em)(.4ll nqzeQz) ch‘\]l d v"' 30 Q,_ Y I-64

al,Qz_

If,in lieu of solving for g and removing the resulting secular behavior

coulomb interaction associated with g (see Appendix A), viz.

it can easily be demonstrated (see Appendix D and E) that the resulting expression
is secular as t for large t. Demanding that the expression for this energy
density be uniformly valid, we set the coefficient of t equal to zero and the
kinetic equation for lpk on the € t' scale results. We have for the kinetic

equation for the waves (see Eq. 9, Appendix E)

:_)__’w‘f = aTi_c_ ’q)lg -~ Q‘LPIS PQ( 4ﬁ'na.e<:: d\_/ 2 U_‘.'Q{‘:/Q\_I
€L a; Ma, k2 ?"E"SI A-1OutLic.VIEL A-tWk +Lkv

Js SE-td K

+ AV, Re( —lék Ed._ﬂ/um’ Y, [F“‘

Wy ;-4,-Je ; k-4, Wk -wa)
K
3

"‘.Q_) —L(.(-A)\s—lu)-.&)'f’A)

(>

5=—£..t.)e
X J(k-2,We-we ;L Waik, W)

PR '*‘q'
+ €a, _‘_‘_i__:;;_‘_J\d\bA___'“__ tf.2 Ho (lg,w.i;-.g,-ngg-_g,@._‘My))

rhql K —Lu.)ls +Lls.\_/“ 0\_/_| -

Ay

+_I_L——‘L cL-Q_ 1«}),&’1{)‘_,__ 'IG(E--Q)COL(_-QJ,_Q,&)-D_.JR ‘*'J"” S (Wi e ~Wi e),
) € (am)3
S S':—'u.d“

II1-65

where 0
Tk = (Z4II nq‘ec\. /Ma, C\\-l- L‘i'D-Fq‘|/ V- \ .

K* DEk/DS\S--Lu)‘.. (A—.Lwlﬁ L. \./-‘) ]
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and

— ' -__-G’ .
KW % W ks ,y) = Z Sd\L Py U, we Ka s Ka oWs)
(=W

— 3 ) ’
= Z 4__1%_ nqe:. . cly_ {"-'5."?- Lica . O'Fto/‘.')y +“€—>2)}.
o Xz Mo J(p-wdg tikz. V) IV A-LW, kLKe :

Using the net g( ; (t>a) from Eq. 12, Appendix E,and the first term of
%2
Eq. 21, Appendix D, in Eq. II-34 gives

and

(1) Y] =
ZH: r 9 o - Z (47 Na,@q,) L €a, Yd\( K .2

K% 3V|

A d 9_ a, Qq =% -t

N 4 @3 w*qp'-"&?. + ( - )} III-66
where the notation is that of Appendices D and E. Equations III-65, III-66, and
III-50 represent the final equations of the theory, excluding the effects of the

collisional source term which, as previously discussed, may be ordered out

of the problem for sufficiently small e"p .
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CHAPTER 1V

PROPERTIES OF THE FINAL EQUATIONS

Equations III-50, III1-65 and III-66 represent the generalization
of the usual quasi-linear results to the case of a multicomponent plasma
including the possibility of mode coupling effects encountered through
terms involving S(k-Wa -Wx-2). These equations have the desirable
property that certain conservation laws are upheld.

a) Total Probability Conservation

Equations III-50 and III-66 conserve probability for each species

since j £ () dv. =

Qét

and J‘ '.FG‘. dVl + X'chtc)ol = O
Oet ae’t

trivially upon integration by parts.

b) Momentum Conservation

From Eq. III-50 we note that

— 3 ok

2 P9 F a2 fdu o £
J€t o Jet
= Z E"__‘_'lﬂ_'_e_?_-lgjdmd\h Y, K \E.Qf‘:.) S(Wk -K. Vi)
Ma, - - =T 2V,

il

- \Yd ‘S. K 1“)1_4‘ (Z —\I_r_\#;%lfd\[_l K - gim S((Ju K. \/n))

= 0O 5 since (for range of ¥ we consider)

o)
2‘_‘ w nq.em j\dv‘ K. ;_}_-}3;. 5(03,_‘_—\_4.\1_.) =0
— mm JVy

is a consequence of € (K,-LWDe+A) =
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Similarly from Eq. III-66

2 PY i+ 2 P =0 v
Jet Jert
This follows directly from noting that

i \'\q,mq‘Jd\_l_- Wi X (the right-hand side of Ect' NITH -55)

=1

reduces to an integral of the form

S‘d\_g K x ( symmefric function ofi) = 0.

‘Energy Conservation
2 T(o)= Z Mo Ma, 2 ydv—‘ v 2 _th‘o) -0
Jet o Jet £y
follows trivially from Eq. III-50 upon integrating by parts and using
W.x = ~Wyx . Energy conservation in the case of Eq. III-66 is
somewhat more tedious, but operating upon Eq. 66 with }: Na, Ma, gd\ﬂ l/_: ’

(Y] l’
integrating by parts with respect to Vi , using Eq.III-65 and the

explicit form of the responses /L—,(._ gives -
) o)
LT + 2 T - - 1 2 S‘dlf k* We . Iv-1
Jet Jert T et

Use is also made of writing L.V = L1V, -l Fwk in the integrals to
be considered. IV-1is just a statement of the conservation of particle
kinetic energy + coulomb interaction energy, % . This brings

]
us to an important point which we have not commented upon, that is,
the sign of the spectrum 1‘P|_<_

Sign of the Spectrum of Coulomb Interaction Density

Close examination of expression 1II-47 for ‘LPI_( in terms of the ]

)
initial value C] ' (1¢, Vi, Vs, 0,6t) shows that
*_

W = Wu = W
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(1)
a2,
is all we can say concerning the spectrum tpk from the explicit expression for

This follows changing k to -k and using the reality condition on g This

it, i.e., that it is real and symmetric in k .— We can not say it is positive
definite. Specific use of the assumption that it is positive definite has l:;een used
in stabilization arguments in the literature, 1'however, it is clear that an auxiliary
argument must be given tc; justify this. Since Eq. III-65 is a kinetic equation

for the evolution of l,bk we can hope to make the following statement. If the
spectrum v.ljk is initia—lly positive it remains so. Let us assume that the spectrum

is initially positive and that it first turns negative for k = B—o . Equation III-65

then yields for this k |,
——o

Q__ ’q)Ko = d%_Q_ 'U)-P-_’LPEo--_@ S(&)E,-u}._q_. —UJ\__<°-g) 1}I(lgo—-1,w5,._g;._@,w.5; Eo.w,&)[l

Ke 25 *
et am) Fo€x /s 15 1o, v

i. e., if the condition

a.i(-w_zzwk_l IV-3

—o — —.0 —
can be satisfied, then at the instant lljk is .passing through zero,
-0

P__ wk,,)O.
Jet

That is to say,the spectrum does not turn negative if it is initially positive. The

Iv-4

reason for this has been the positive-definite nature of the mode-coupling
driving term in the kinetic equation for the waves. In situations where the mode

coupling terms are absent (when IV-3 cannot be satisfied) and thus :)__w_. =0,
Jdet
one could proceed by examining the signs of higher-order time derivatives of

ll/k » loe., 3_1 wl_go , and so on. However, in lieu of following this procedure,
(o) detr?
it is convenient to determine the effect of the collisional source term Sa a in
| 1 2

Eq. II-36 on the kinetic equation for the waves, III-65.
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We anticipate that this will add a' positive definite inhomogeneous source
term on the right-hand-side of III-65 which will ensure that the spectrum
w‘.‘.’ remains positi;re if initially so,whether or not IV-3 can be satisfied.
The approach we take is similar to that in Appendix D and E, namely,.
we calculate the contribution of the source term S‘& which drives q(:.)q-._
2
in Eq. II-36, to the second-order energy density of coulomb interaction
} rneeaamnaes) ({dudic qaa, -
G,,Qa
This will be secular as t for large t and hence add a driving term
to the kinetic equation for ’l{)._‘ (Eq. III-65 ) when we ask that the total
second - order energy density be given by a uniformly valid expression.
’ (2)

From Eq. II-36, the contribution to ijn:. from the driving term Sq‘q,

in terms of Laplace variables is

- o) pto)
Cj:lo)x ) \ : 417 €q.Can L‘_‘-s_fuc: fa IV-6
. S U S + Lot + L Civa))  KE Ma, Vi

+ ( 4 —->—\_<_)
Then IV-5 becomes | & 2

v — * Nl (D)
4_‘_'- SY ds‘dst/CQH L) ‘ \ 4r‘z‘\nﬂ;e:’: gLK D'FG'IQVth“-[nQLeQ 'Fo-;_d\fa.
Ka C‘CLS(.S “Si-5a2) €(¥,s.) €(-1,S,) a K Sy v 51_“(‘\“’
Tl —>-Kk), v-7

where we have used the identity

ZMW”“G“)de : = ‘L—_(queq)ydg Vs

S + Lm(.\tlg) €E(k,;s) T S'+Ll_<_.\l.

Effectively the zero of & (I,5.) at §= -'Lo).sand E(-¥,5.) at S.= LW,
lead to a \/S;_ behavior in IV-7 which thus gives a secularity proportional
to t. We examine this in Appendix F. The result for large t for

the inversion of Eq.IV-7 is

_t /gli 3 IV-9
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/f« = L 4y Z4n"nq1eq't ‘f:l(y)d\i

— 1 —
|3_§_s “ o (A-tWy +Lic.V) IV»10
Sls. |
S =Wy + (g = -K)
: (am)am ) n.ed f‘“w)sw -w.v)dv .
A€ * r K4 T o
as S:-;du

Asgking that the net second-order energy density be uniformly valid
with the inclusion of Eq. IW%9 just adds to the right-hand side of Eq. III-65
the inhomogeneous source term X,s given in Eq. IV-10. This term is
positive definite and ensures together with the mode coupling term in
Eq. IV-2 that the spectrum ’l{)‘ﬁ does not turn negative if initially positive.
Moreover if the spectrum \?‘_is initially zero everywhere, the source
term ‘X‘i allows the spectrum to be driven irto the system, and in fact
1'P|_¢_ will be positive definite since X.i)o . Sq. a. Will also lead to a
nonsecular ,t = % | contribution to cjc\f’:; and thus give a collisional
driving term in Eq. II1I-66 for the first distribution function. This has
been calculated in Reference 1 for a gas of electrons in a fixed background
of neutralizing ions, and we do not pursue it further . However for the
verification of any conservation laws it is‘flnecessary inclusion when JE
is included in the kinetic equation for the waves, Eq. III-65.

{0

Comments on Eq. III-65 and Kadomtsev's Kinetic Equation for the Waves

Eq.III-65 and III-66 represent a generalization of the usual
quasi-linear results to a multicomponent plasma including the effect of
w ave-wave interactions through the appearance of terms containing
§(Wi-We-Wk-2). We note that the driving terms in the equation for the waves,
Eq. III-65 are identical to those given in Kadomstev's ""Plasma Turbulence',

with the exception of the second term on the right hand side , which is
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absent in his treatment. We can best understand this discrepancy by familiarizing

ourselves with the significance of this term. It represents a driving term in
the kinetic equation for the spectrum ,’Dk resulting from the variation of W

on the €t time scale. The dispersion relation
E(K,-LWe¥D) =0

is adiabatic. It is-an integral equation interrelating f(o) and W - Although f(o)

does not vary on the t scale, a variation in €t is allowed through Eq. III-50,

%

hence o.)k may vary on the €t scale. We also observe that the second term

in Eq. III-65 is manifestly nonlinear in y/. This follows since the variation of

f(o) on the €t scale in Eq. III-50 depends linearly on Y. In the interesting

case of a one-dimensional electron plasma in a fixed background of positive ions
this term is absent in the kinetic equation for the waves. In this case the dis-

persion relation implies

25 (4
0
, v o)
for k in the marginally stable region. Equation III-50 then gives ;D__'E-_-o .. Thus,
VEL
(o)

nor ai( vary on the €t scale, the above statement follows.

since neither f
It is not apparent from Kadomtsev's treatment that one should expect to see

the effect included in the second term of Eq. III-65 using his analysis. We

feel that the presence of such a term is in fact quite plausible. The important

feature is that both theories lead to similar kinetic equations for the waves

although the starting points are quite dissimilar. We have been looking at

turbulence in a spatially homogeneous ensemble through the B-B-G-K-Y

hierarchy of equations. Kadomtsev's approach has been one
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of studying homogeneous turbulence in a Vlasov plasma, as in the approach
in Ref. 7 . In Chapter VI we demonstrate that theseitwo approaches are in
fact describing the same phenomena and should lead to similarraesults.

One -Dimensional Plasma

We turn to the problem of a one-dimensional electron gas in a fixed
background of neutralizing ions. As previously stated, in this case a_‘l_:_o « O
) IV

in the region of marginally stable phase velocities and 'Fmdoes not

—

vary on the et scale. In the various responses /M , the contribution

from the ${Ww-Kv) portion of the linear resonance terms,

|
(W= +LA) ?

is absent as' 2% .0 for those U =Wk . Since U= Wk-Ws may well
TV K K~ R

be outside the region of marginal stability, the $(Wx-wa-(w- )u) terms must

be included in the nonlinear resonances,

1
(Wi-wa-te-)U ¥ i)

Frieman and Rutherford 1 have calculated in detail the various coupling

coeﬁfi'é'i"enfs ‘assoCiated with the equations for £ u and the energy spectrum

under the assumption .
W ~Wa —Wk-o 0.

In reference to the equation for the first distribution they obtain for U

in the range of marginally stable phase velocities

1)
;leié = (%)zrr'gd«\{ K%’_(scwg-ufv)K;-_)_g”)- IV-11

The inclusion of the wave-wave terms involving § (tk-wa-Wx-2) does not
alter Eq. IV-1l for U in the marginally stable region. This is a trivial
observation following an examination of the explicit form of Eq.III-66

{0}

and utilizing 2 f /21U = O in this region. Keeping in mind our conclusions

n
drawn concerning the sign of the spectrum PK , namely,that if initially
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positive it never turns negative, a quasi- H theorem may be proven in

()
reference to Eq. IV-I1 . With 'F of the form to yield an instability, i.e.,

to)
zero at the end points of plateau in 'F and a region of positive slope in

between , \\'(f@ _f‘m
!

\A
\

\
\

]
we multiply Eq.1IV -11 by ‘F )and integrate over U, between end points

yielding

k2
3 (£ - ow
Jet J A

2

)zjﬁdl( ,LPK S.Ol’U' S(We-ku) (K%_.f;n)

3I®

Iv-12

However by hypothesis wu>0 initially and hence remains so; Eq. IV-12
. R 3{:(”
thus implies as et >~ , «T -0 forthase A =Wk [ , and the
U
stabilization argument goes through as in Reference 1.
We turn to an examination of the kinetic equation for the waves,
El:l I11-66. As is prevalent in the literature we introduce the concept of
quasi-particles.7 In problems where the amplitude of the electric field.

A
Ec is subject to slow variations in time the significant energy density

to consider is

g K = l El( \ LOK R G(\(, ‘-4)) \ . 1v-13
TN 2 W W=wWie

A kS
This represents the | Exl energy of the electrostatic field plus the
gmr

polarization energy due to the interaction of the particles with the field.

In Appendix G, we give a simple argument based on a linearized Vlasov

@

model which indicates that Eq. IV-13 is the pertinent energy density. The

number of quasi-particles in the k-th mode is defined to be

Nk = &« ) IV-14
W
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9 f

i. e.,the effective wave energy (field plus Polarization energies) in the
mode divided by {Jx . This is an especi;Llly useful concept to use in
reference to the mode coupling terms in Eq.III-65 (those involving
SlW-we "Q.)n-e)) since these terms take on a relatively simple form.’
Although the relation Wk ~-We-Ws-2+~0is impossible to satisfy in the
long-wave length limit (W~ Wp), we do notpreclude the possibility that
it could be satisfied in situations where the instability region is closer to
the central portion of the main distribution. In any case,it is of consid=
erable interest to determine whether or not these mode coupling terms
conserve quasi-energy Nk W« and quasi-momentum N« KX . It should

perhaps be surprising if they did not -since the microscopic phenomenoem

is manifestly conservative in energy and momentum , i.e.,

(-OK""' (A)K-a_ = (“)KS
\(. +Ka = Kga

2

In reference to Eq.III-66, we introduce the number of quasi-particles ,

Ne W = X" W, we E4w) IV-15

AT Jw ,Q)K

It is also convenient to rescale the responses -}] (now defined for a single

species of electrons) as
— a -

where }7 is defined in Eq. 6,Appendix E. We observe that

M (Ke) Wy KiyWij K3, Wa),  IV-17

M (K.,L\)A:,l(a.,h)t.s K;,Qs)

— ¥ —

d - .
an M (Kn,wlj Kt)(&):. 3 K’s;b)&) - M(‘\(ll—(.),; —K,_rwt_, ’k},"wl), IV-18

A very useful result following upon integration by parts is that
IV-19

MOqwe;-2,-We; k-2 ,wn'-w—t)
= M (-2, W ~Waj Ly Wa ) K, W) .
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We also introduce the notation

6:( = ~—_(«_)£2S K o 2 odu .

With Eqs. IV-15, -16 , and -20, Eq. III-65 can be rewritten as
9 Ve o 2%cnNnk + Rin) \/\/(\"L)) IV-21

Jet

where R(n) describes the nonlinear wave-particle resonance phenomena

stemming from those v = (ai( - w_Q)/(k -2) and is given by

Hin) = (4L nene Rea,
(2m) 1v-22

‘ where QK-L = 2Q0m P M (K Wk, —Q e k-2, LJ.("‘LJ.A.)M(K-Q QK-L,-Q)WA_, ‘)wk)
€ (k-2 - Lk - UJ.n.)) K? €« ﬂ‘é.q_ (x -2y

- & : C dur L2 ﬁu—“‘lw"Q“-ﬂl"w*iK""‘Llw“-w") -
m k*eg 27¢, J We-KU U

The expression W(n) describes the wave-wave interaction phenomena for

W - w‘q = W, and is given by

W(n) = gd.a '8 (W - Wa = Wie-a )
Qm) (k*e X L*Eo (k-2)C )

Iv-23
X {n:n. Ne-o | ™ (k- ,Wk-2 ; L,wWa; KWOx) "z.
- n—L n\( 1 Re (M(‘<)wl; "'-Q )"(A.)p_" '<‘—Q,w‘.L)M(K‘Q,(A)K.L)'Q-’w-‘-; K,(Ju))}.

Using Eq. IV-15, Eq. IV-17, Eq. IV-18 and -19 together with « h W -w

Eq. IV-23 can be rewritten as

\A/(n) = T d.Q SWr-Wa - Wek- -k) ® !F’]_(K-—Q,bdg—.g', J;OL:.;K,LQK) ll
(lr) (K eu_g_ G._n_ (%~ -Q) C.K .4)

x §(Wk- Wa =W o)X (NeNu-2 ~NikNe —Nk Ni-2 ) >

= I\(d:“'{ S(QK —Wa-WOk-2) \/\/ka_(t‘h.r‘v.(-_q_—n,( Nae ~ Mk \,WK-A.)'

Eq. IV-24 conserves quasi-energy, n, ai( , since

Iv-24
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de (OK( @ﬂk)
Je+ /w
- WJ dddk Swe-we-We-2) | Mk-2, w2 s Liwa; k) |
(1)

.x(m_(m-a“?u-x_—m W) + Micme (N e —Nie w"))' v-25

Upon letting L = k - L before doing the k integration, and using Eq. IV-17,

this can be rewritten as’

= 1ﬂ1§\[\d£dk S(CA)K-Q).L“R)K—A)‘ H_(|<~—t)wk—-‘-3 £y 5 Ky W) IL
(2m) '

% Nic-a (n*w...—ﬂuwu) >
which is antisymmetric under interchange of k and £ upon using E;q. Iv-17
-18, and-}Cc,qndthus gives zero. Similarly quasi-momentum nkk is conserved
by W(n).

In reference to the effects of mode-coupling, the reader should consult
Chap. V where we consider a simple model equation exhibiting solely wave-~
wave interactions. This example results in a kinetic equation for the wave
energy density with driving terms identical in form to the mode coupling terms
in III-65, and is discussed in considerable detail in Chap. V. For example,
the observation that n o= T/Cv.Ik (V-44) is a stationary solution for the number
of quasi-particles, is also true in relation to the equation g_n_lt = W(n),

JEL

discussed above.

(1)

As discussed earlier, { flattens for large € t and the growth rate Yk
tends to zeroas €t —> e . The asymptotic form of the spectrum l,bk (or

number of quasi-particles n in Eq. IV-21), however, depends upon the details
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of wave-particle coupling coefficent, Rk.o_ s and the mode-coupling coefficient,

Wk.o. . These must be evaluated in the context of the particular physical
(o)

situation being studied as they depend on W and the details of f This
could involve subsidiary, long-(A > XD) or short-(A ¢ XD) wavelength
expansions. It is of interest to note that the various terms in Eq. IV-21 have
simple physical interpretations in terms of the emission-or absorption of
pla.smons19 (quasi-particles). The driving term 2 Vi "k (for Yk 2 0)
corresponds to stimulated plasmon emission arising from wave-particle inter-
aqtions giving resonant behavior fo:;' ai( -kv v 0. The quantity R(n)
corresponds to plasmon emission, or absorption due to wave -particie resonant
behavior for Y - @, -(k -2 )v v 0. The emission or absorption of
plasmons caused by wave-wave interactions is described by W(n) . If the
effect of the source term ,X K (given in Eq. IV-10) had been included in

Eq. IV-21, this would correspond to the spontaneous emission of plasmons

—

resulting from single particle encounters.
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GENERAL COMMENTS

In this section we wish to indicate at least some of the conditions
for the validity of Chapter IV. This also has a direct bearing upon much
of the quasilinear theory of weak turbulence prevalent in the literature.
We divide the discussion into three parts: the first dealing with the

-tk.vt
streaming terms o , the second with conditions on the validity
of the inclusion of the mode coupling terms encountered through

Slwk-Wa - Wk-2) , and thirdly some comments on continuous and

discrete representations.

Free-Streaming Terms

[, 3~11

Here, as elsewhere in the literature, we have consistently

neglected poles associated with free-streaming motion, i.e., poles at

«.vt

- -

S =-LK.V leading to 2 behavior. The general philosophy
has been that such terms tend to mix to zero in velocity integrals. Let

us examine a typical term we have not included in reference to

Lwe | die ©

. XS :l@"' 8 % (Y_'c\_{:,'t) cl\_l_l dy_t . IvV-26
K2

IV
Without loss of generality we work with a single species of electrons.

It is ¢lear (see also Appendix C, ) that such a term is of the form
przj‘dl_{ K jg@“.’.‘) 'F(‘Sl\_’_')JL ) d.v, ) 1v-27
T oV -

)
where we have assumed that ® ana (‘3'.5 (vi,Va ,o,et--) are analytic
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it
in sufficiently broad strips containing i Y, real. The e — arises from
. -ik.
5’d v, g-l((—l) , and the e 1k.v t factor comes from the YR pole.

We estimate the rate of decay of Eq. IV-27 in the one-dimensional problem
(this usually leads to a pessimistic estimate since in the three-dimensional
problem there are two extra degrees of freedom for mixing to occur). For

simplicity it is convenient to assume that pIC f(k1 V) is factorable,
Jun
20 flk,v) = f(u) 9 ().
9V

Defining G(k)=-ik g(k) and also noting that
. N
G(-k) = Gf(k) , 1v-28

from the reality condition on g(l)(i s Vo _\_7_2) , we have from Eq. IV-27

: it -ikv t
2 i
I- o gde(k) ok ( de fvye 1)
P 1 1
We now illustrate how rapidly I decays for two particular choices of f(vl) .
1. If f(vl) were Maxwellian about some v

N wrE -kt *'ﬁ:ﬁl
then T = W fc‘k Gla (LM% T AR ) IV-29

(=) 2
as f(vl) A e /24

2. If f(vl) were a resonant function about Vo> 1.e.,

f= A ’
- 2 2
v-v) +D
then
iwt -Lkv t
L = of de(k)ui((e ° e“'klAtAE). IV-30

In both cases the integrand of the resulting k-integral damps
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rapidly as has been assumed throughout the analysis. We may

rewrite,using Eq.1V-28,

-—|<"A7't1
L(LJK—KU'o)t o —_—5_’ A J ‘T'A-L

L 2
-, Re fo\KG(k).o_ " IV-31
-1kl At
Ta AT™/a
K> O
We preface estimates of the rate at whichI, andI, damp by a

discussion of the limits of K-integration. Throughout this theory

we have consistently neglected phenomena associated with K outside

thg region of slight instability under the philosophy that this

corresponds to the region of Landau damping and after sufficiently

long time leads to negligible contribution. Since in a long-wavelength expansion
the Landau damping increment itself is exponentially small, it is preferable

to the validity of the theory to avoid situations where the small ¥ modes

are strongly excited. This would be the case if the region of small

instability is not . fayr out in the distribution tail,as in the following

diagram !

In the long-wave length limit particle-particle encounters are the
effective mechanism for damping, which is out of the scope of this
theory. Actually for long (or short) wave lengths the hierarchy
equations require a re-ordering and are not those being solved for

here. The importance of particle encounters for the damping of
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long-wave length phenomena can be seen most simply in a somewhat
simplified model. In the linearized Vlasov problem if we add to

: . . )
the right-hand side a small collision term of the Krook form, - D '5: 5

where O is assumed constant, then for a resonant background distribution

functionr ,
"Fo = b 5 a Landau analysis yields
T (u*+b*) _
A - Lu)Pt - Tt
Exw v Exa NN 5
where Y = 1<)l b + 0.

As K ~->O , the damping is predominantly from D , the effective
colligion frequency.

In any case we limit ourselves to situations where the I[{ dependence
of functions is vanishingly small outside the intervals [k., K-..] and

*
[‘K'l-n’K-] . For example the spectrum of energy density "PK (= "P- w = ’q)u )

may resemble the following:
Wi
4 A > K
~Ka, ~Ky K, Ka

Upper bounds on the rate of decay of I,(or I, ) are then simply obtained.

We assume [Gltakes a maximum value G_,on Y_K., l<;.] 3y . then
- Kz -kt
ILI{ < 207 G s ATTE gy
—~ikia
[L.) §. . " AT, IV-32

o a AT,_I_(eﬁc Kadt) _ o f K.At‘))
—> 0 in a time t such that

Ke A £ >> 14, IV-33
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where Ko is typical of the range l:|<\,\<,;|. In actual fact for the long
times the slowest decay in IV-33 is from the long.-wave length, K, -
limit of integration ax;d IV-32 should really read
Ki At >y 1. IV-34
The advantage of such exponential decay is clear. In higher order
(e. g.,the calculation of c]u‘)) where we have consistently neglected

-kt _
R streaming terms, the effect of including such (e.g.,in

the calculation of H‘Z) and h'ence 3(1)) is to yield 'tn J)__- teut
behaviour, where N depends on the number of velocity derivatives
operating on the free-streaming terms. As far as moments are
concerned, the velocity and K integrations will still lead to terms
which are exponentially damping following the preceding arguments.
The point we wish to emphasize is that it is not adequate that velocity
integrals damp rapidly (see the integrand in Eq. IV-30) as is often
assumed in the litérature. One must also examine the results of the K
integration. We have shown that in fact the K integrations do lead
to rapid decay when the integration is carried out over a range
sufficiegtly far removed from K =0O.

These statements are all relevant to the validity of the usual theories

of \;veak plasma tur.bulence. For instance in Kadomtsev's treatment 10
of homogeneous turbulence in a Vlasov plasma there is a driving term
in the equation for the background distribution arising f{rom the free-

streaming of the initial value 'FK (u,0) of the form

Uww~ku)t IV-35

U = e 2 f E..
= g, 2 dx E- frluoio)a
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Using‘F to calculate the evolution of certain moments , the term on the

right damps by the preceding arguments after t such that
 Kedt 3372 .

If we were to examine Eq. IV-35 as it stands without taking velocity

moments , then the most rapid growth would result from 92. operating
U
-tkuvt ,
on a2 > 1. €. P
2 LW~ ko)t
t & gdk (-wx E-x Fk(V.o))\_Q . IV-36
m

If a stationary phase analysis were applicable in Eq. IV-36

it is clear that a

+ x (o scitlation ) IV-37
.t‘I'L

would ensue which diverges for large t . Using 'F' to calculate

moments, Eq. IV-35 leads to a damping contribution. For this reason
we have taken the latter philosophy. In a multiple time analysis the
appearance of such secularity as in Eq. IV-37 is a reflection of the
fact that t,Gt,"' are not adequate time scales for a microscopic
description and a more complex multiple time analysis must be done.
We can use Eq. IV-32 to construct a physical condition for the
validity of ‘the theory. The theory presented in this thesis and the
uéual theories for weak plasma turbulence give for the slowly changing

background distribution in the region of slight instability,
2
it - (& ) 2 jd\( K* W S(We-ku)af | IV-38
Ot m QU- AUV

From the previous discussion there are corrections to this which damp

L)

out as far as moments are concerned in times such that WKe AYX 3>4 .

The basic demand we make is that

Ko A to 2> 2, IV-39
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where t, is the characteristic time of variatioz# of the moment j‘M fdu,

estimated from Egq. ‘IV-38. In particular we consider M to have a

characteristic width AA of order the width of the instabilty: region.

Since Eq.IV-38 includes only the process of resonant diffusion, condition
IV-39 should give some physical es"cimate of the conditions for

neglect of particle trapping. From Eq. IV-38

%YMFdU = —(%)" ”dvdx :_M %__ S(obn—fur) K2 Wy

Order of magnitude estimates (e Q- ,QM

t/\_, ) readily give
v o

e \*,2 . | . IV-40
A v (&) K Welt): A

where Ko is a typical wave number of the packet 1‘P|<°, and AKX is of

order the width of the packet. As™ Kq ‘-PK, is the typical energy density

in the wave'.'.s, Ko Weo AK wE where Eisthe electric field amplitude. (V -40
may be written

Y

IV-39 becomes

- 2
e \ (¢ 1.
< Ko E) TNSL IV-41

M2
Recognizing (g Ko E) as the approximate inverse time, (A)oJfOI' a wave
m

of amplitude E , wave number Keo,to trap a particle ,

iV-41 can be written

TT << 1, IV-42
where
\rr - v : .
Ko O Ko % change in Wk over AK
K
“ |

K Wi
=8 )SKV*AK

v transit time of particle moving through packet.



~-50-
Eq. IV-42 is a statement that the transit time is short compared with +he
trapping time,as was previously speculated in Chapter I, a nd is
a requirement that tht; field amplitude be sufficiently small and that the
spectrum width be sufficiently large. Under these conditions the
particle diffuses through the packet before it has time to be trapped
by a particular wave of the packet.

In obtaining the above order of magnitude estimates, we have
used condition IV‘-33 with t vt,. As previously discussed.,
however, the long-wavelength phenomena undergo a slow mixing
process. Thus, in order to obtain some idea of the minimum K
values tolerable in the theory we ask in relation to IV-32 that

KibDt, 2 1.
Using the previous estimate of to and E* v enkT 5

this may be written

o2 £ ( wele) e

Ko 7 gm A

A?—
K.is a wave-number typical of the packet,and K, some estimate

on the lower bound. If we were to take Ko l/)\o y then the

above estimate reads

(K, N\o) 2. €& ( KT/mf.
AT AT



-5]-

h) Comments on Mode Coupling

In reference to the kinetic wave equatibn Ii1-65 a careful examination
of the derivation in Appendix D shows that the mode coupling terms(terms
associated with §( Wk -Wa - LOK—-:.) ) arise in taking the long time

behavior in A integrations of

Lk~ Wa ~Wk-e ) L _ (2)
£ - A as — L { .
Ll ~wWa ~Ww-a) > Wr = Wa — Wr-a +:(§

This is also encountered in the study of a simple equation exhibiting solely
wave-wave interactions in Chapter V and is discussed in Appendix H ,

The basic restriction found is that

é__. (Wi + («)g—«') = 0, (b)
dg!'

must not be satisfied for those K' such that

Wi - Wk' = Wue-~k' ) (c)
given K , for the theory to be valid. This is usually termed a '"'simple"
(7

resonance in the literature in contrast to a double resonance where

' both (b) and (c) are satisfied. Mathematically, the § (Wi ~Wa ~ (-O&-n.)
arising in (a) leads to a divergent result in the S integration if both
(b) and (c) can be satisfied simultaneously. In Appendix H , we show
that under these circumstances, (a) is not the proper prescription for

dealing with the long-time behavior of integrals of the form

Ll = WKt —d-1¢t) t

gdk‘ £, k') - A S

Ll - Wk - -1t )

i
and in fact the long-time behavior diverges as t /-_L . In such situations

a more general multiple time analysis than t, et .-+  must be done,
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since the wave-wave phenomena effectively evolve on a faster time

scale. Physically. by assuming that d (W' +We-wt) $0for those k'

——

‘ dxt
satisfying Wi ~ Wk' = Wk-k' (given k). we are excluding problems

in which the wave-wave interactions are strong in the following sense:,

When a wave frequency Wy decays into wave components W' and W~k ,

e oy Wty ( %%“)
E Y R S )
i
ey Wik (g_%n k)
the associated group velocities are d W' [k and d Wi~k Jd »
respectively, These group velocities are clearly equal if (b) is
satisfied. Under such circumstances the associated wave disturbances
move away with the same velocity and thus are capable of further
interaction with one another and altering the state ( LWik', Wk-k' ).
However under the assumption that these group velocities are
not equal,‘ that is, _ol_ (Wit + Wr-~k )4.- O for those k' such that

K
Wir-Wk' = Wr-k' , the wave disturbances move away from
one another and do not interact effectively. The argument is similar

in the three-dimensional problem. In this case we limit ourselves

to physical problems for which

d (wik)+wle-k')) #0
dk!

for those K' satisfying

W) -wie') = wlg-g')-
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i) Discrete and Continuous Representations

In the analysis presented in the previous chapters a continuous
k representation has been used,. consistent with the Voo  limit.
We have also envisioned a situation where a continuous band of modes
have been excited as opposed to a few isolated modes. However, much
of the material in the literature ) 16 has utilized a discrete k
representation in which the Four ier analysis is done in a box volume ,
L3 . It is ourcontention that many of these results are meaningless
except in a continuum limit where " L® = e and the wave numbers

become closely packed. For example, in Reference 7 , the kinetic

equation for the spectrum 1P|< involves

D_IP_K = Z_ |M|<K'lz1p\<'1pt<-|<' S(Wk - Wkt - We-k') >
9t

%
which is analogous to the last term in Eq. III-65. As it stands IV-43

is highly singular as it is a sum over delta-functions. However, in the
continuum limit it may be identified with' the last term in III-65.

It is imI;ortant to note that changing from a discrete to a continuum
representation and determining long-time behaviour are both limiting
processes and that the correct order for performing such limits is
somewhat ambiguous. A simple example illustrates this point. Consider
the two following equations in a continuous and discrete representation.

!
Continuous:

LWk Wit —We~r 1 E
IV -44

G - gdx' Fik, k') o
ot
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Discrete:
LWk Wkt —Wr~t ) E

6u = § fluwr) @

ot IV-45

Call the set of all k' such that Wk — Wk' = Wk-K"® ; S .

IV -45 then yields

Lk~ Wk! ~We-! ) E
G = Gulo) +t1 ) flwx) +z:_§(t<,x').o. - 1

KES kds L(@e-@urcie) T 46
IV-44 becomes
(Wi~ Wkt -We-i') L
Geio) + fdl('t'(KK)&- - A, a7
LWk — Wi -~ Wk~it) v-

For large t (see Appendix HZ),despite the fact the integrand in IV-47

goes as t for Wr -t = WOK-K',

G = Guto) + gdk' F (g, k) L ,
(Wi-Wk* ~W e~k +18) IV-48

We now examine IV-46 for large t. It can be argued that for large

t the oscillating term mixes out. We are then left with
t ‘F (i, iK) -1 - ?
K'&S L(wcr.—wu"'(«)lc-k')
(corresponding to the principal value, in IV-48) and a term proportional
to t, i.e., T z—_ Flwer)
K'€S
This secular term corresponds tothe §(Wik—- W' — WK -'l<')

in IV-48; however there is no obvious way to pass to the continuum
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with L i: f (¢,K') as it stands. If however, we pass to the continuum
TAX-RY .

in IV-46, before taking & —> o | then upon rewriting IV-46 as

L(h)m-&)tc\—wsc-ﬂlc‘)'t
.G'K = Guelo) + 2—_ flg,x") = -

1K LW - Wit W K-.lc')

it is clear that IV-48 is recovered. That is to say,we obtain IV-48 if
welet [.>~> o before + —> e . For this reason it is convenient
to work in a continuum representation at the outset as in IV-44. We note
that in reference to the simple example just studied, if there are no

x . .
k such that Wk~-Wk' = Wu-Kk, the order of + > o ) Z — R

does not matter.
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CHAPTER V

A SIMPLE EXAMPLE EXHIBITING WAVE-WAVE INTERACTIONS

The Basic Equation

In this chapter we wish to give a detailed analysis of a comparatively simple
problem relevant to physical systems involving weak nonlinear wave-wave
interactions. The structure of the equation is such as to include 3-wave
processes; the simplicity of the example minimizes algebraic manipulation but
retains the critical pQints in the analysis and results in terms similar in struc-
ture to the wave-wave terms in the kin;atic equation for the waves in Ché.p. II1.

Consider the equation

: = ' k! ! -
Q_Ek(t) +ig Ek(t) K(k',k-k') Ekl (t) Ek-k'(t) dK V-1l
ot = = = = ==
where we assume
wf-k) = -w(k) ; wk) real . V-2
Since we are assuming Ek is the Fourier transform of a real function
) E = E* V-3
-k T Tk )

Changing variables in the integral term of Eq. V-1 from k' to k - k' results
in‘the same equation provided
K ok -k = K-k, KD V-4
If we let k -—) -k in Eq. V-1 and take the complex conjugate of the resulting
equation, we obtain
*

* %k
i = ' -k - ! ' -
2E, iy By jK () sk-KDEL By, dx' V-5

Changing variables (k' —) -k') in the integral term gives

* % *
QE_ + ig E_ = JK (-k', -k+k'}E, ., E , dKk'. V-6
Jt 7 -

— —
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By virtue of Eq. V-3, this becomes

. — * ) ’
QE + i Ek —J‘K (-k', -k + k! )Ek k! Ek' dk’ . V-7
= = = . -T= = .
This reproduces Eq. V-1 if
%
K, k-k') = K (-k', -k +k') v-8
*® .
ie., if Kk',k-k') = K (k' -k, -k') . )

In summary then:

DE +iy By - Sdk' K koK) By By v
= = = -
where w("E) = -Q(E) .
' _ *
E-k = EE ’

Kk', k-k') = Kk-k', k)

and _K* (li‘ y k-k') = K(-k', k' -k) .

The evolution of a spatially homogeneous ensemble of systems each of
which is described by the system of Eqgqs. V-9 has received much attention in the
literature (see for example, Ref. 15 and Ref. 16). For example, in Ref. 16
Eq. V-9 arises in the description of a low-density, cold plasma in which the
thermal motion of the particles can be neglected and the magnetohydrodynamic
equations can be used to describe the motion of the plasma. (The notation "Ek"
shoqld not in general be interpreted as denoting '"electric field.") -

| Both Ref. 15 and Ref. 16 have in common the fact that they treat the non-
linear terms as small and obtain a perturbation solution to Eq. V-9 for E
(where E, = ]/E\‘. e-l, -—t) to third order

k k

k



-b8-

Il;‘..k e\ %1(:) F A %1(3) P N %1(3) o V-10
Reference 15 uses a rr;ultiple time analysis and in asking that certain ensemble
quantities be nonsecular obtainsa kinetic equation for the waves. Reference 16
obtains a kinetic equation for the waves by considering the transition probability
per unit time of relevant ensemble quantities. Both of these methods are briefly
desc;'ibed in Appendix H1 and H3 and objections pointed out. In par?;icular

we feel that an incorrect multiple time analysis is done in Ref. 15 although the

final answer is correct. We give in Appendix H, a derivation of the kinetic

3
equation for the waves using techniques similar to Ref. 15, but a more rigorous
multiple time approach.

The basic philosophy of both Ref. 15 and Ref. 16 is to solve Eq. V-9 to
to a given order ( ) and then obtain a kinetic equation for the waves by
performing appropriate averages over a statistical ensemble.

In this section we offer an alternate approach. We construct at the outset from
Eq. V-9, equations advancing certain ensemble quantities and from these equa-
tions derive a kinetic equation for the waves.

ia.i<t

A
We rewrite Eq. V-9 with E. = E e

k 'k
A AA E e T L
= ! ! - t - = A -
2 E, Sd& Ke' k-kDE, B, e . V-1
at —
AA AA A
From Eq. V-1l we can construct equations for E. E. , E E E , etc.
k., "k k. "k, "k
~l1 =2 =1 =2 =3
Namely,
A A A A i( - T _ )t
3 (B, E )=\ dk' K(k', k, - k') E_ E E ewl—ﬁuif C‘?‘511"
~ k. "k - - 1 k' "k -k' "k
oF 1 =2 -1 = =2
i( - - ) t
d! . ' A A IS %.52 Ui(_, wlfz'kl
+ k' K(k', K, - k') El_(, EISZ'IS.' E1§1 e V.12
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and

i(lw - - )t
— dk!? t k k! A A N A aisl “'i(v 'u)l‘(l-k"
= | dk K& Ky -k B By By By e
12 253
i( - - ) t
A A A A wl.(z ui.S' aifz'k’
1 L] - 1
+ | dk' K(k ,152 IS')Ek-k'Ek'EkEke
L5 8 X3
i( - - )it
A A A N ai.53 ai_(.' uii -k'
' ' et
+\dk' K@' , k, -k E__ E,,E E_e
375 2 8 X
V-13

As is common on statistical theories of homogeneous turbulence it will be
assumed that E(x,t) is a stationary random function of position (but not of time,
the time variation of average quantities being the point in question) (see

2
Batchelor 1956). 0 We assume in averaging over the ensemble that

{EY = o0 V-14
ks '
A A
(E, E ) = G_ 60 +k)) ; V-15
S 51
(B _E_ED> = H 80 +k, +k V-16
El—‘l 5 ks o Epktl o2
(e, &, E B> = F Sk, +k, +k, +k,)
SRR SR 1 kplop.kgm 710 T2 1T

* G G, Sl +k)) Sy +k))
+ G G Sl +k;) 8k, +k,)

+ Gl_< § @& +ky) S, + k) | V-17
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The relevance of Eqs, V-14 and V-15 can be easily understood as follows.
A
(Ek5 = 0 1is a condition we impose on the system for simplicity and corresponds
to the assumption that E(x, t) averaged over the ensemble is zero. This is a

consistent assumption for all times if true initially,provided

K (k' ,-k') =0 . V-18
This is most easily demonstrated by averaging V-1l and using Egs. V-15 and

V-18 . This gives

A
2<Ek‘7 = 0. , V-19
A ot =
and hence { Ek) = 0 for all times if true initially.
Equations V-15 - V-17 merely reflect the spatial homogeneity of the ensemble.
For example, in reference to Eq. V-15, we consider the average of the product
-E(x, t) E(x + X t),viz.,<E(x,t) E(x + X, t)> . The spatial homogeneity of the
ensemble tells us that this average should depend only on the relative spatial
co-ordinate x| » i.e., E(x,t) is a stationary random function of positipn. In

terms of Fourier transforms we ask that

e AR /
Sd-l.idk' e11_<x e11_<_ (x+x1) (Ek Ek|>

be a function only of x , or that

1
A A 1 . : v | . .
<E1§. E1_<_'> = G S(k+k') as given in Eq. V-I5. Similarly Eq. V-16

ensures that (E(x) E(x + xl) E(x + x2)> depends only on x. and x_, i.e,,

1 2

on the relative spatial co-ordinates. In Eq. V-17 the product of 4 E's is
written in terms of an irreducible four-correlation,F, and all possible products
of lower correlations which in this case are GG correlations. By virtue of

Eq. V-14, there is no possibility of H terms in Eq. V-17. We see that Eq. V-17

is manifestly consistent with the spatial homogeneity of the ensemble, i.e.,
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<E(x, t) E(x + xl,t) Ex+ xz,t) E(x + x3,t)> depends only on X X 3°

5 2 and x.

The F term allows for a general dependence on x, , x

5 and x3 , and the GG

1

terms a dependence on x_ , X, X through the differences X . X

1 3° 27%37

Xy 0 X =Xg Xy, X -X, . The writing ?f the ensemble average of the product
of 4 E's in terms of an irreducible 'Fouv‘-cov-v-s\cd-uon,F,‘and lower correlations
(in this case GQG) in Eq. V-17, is similar to the usual cluster expansion
employed in working with the B-B-G-K-Y hierarchy of equations. The GG

terms in fact bear special significance. It is common practice in the Russian

literature (e. g., References 7, 10, and 16 ) in averaging the product, El((l) El((l)
1 2
El({l) EI(:) , over an ensemble, to average with respect to the random phases
3 74

of the separate oscillations by considering products in pairs, thus giving terms

of the form

6151 Ek35(151 tk,) 8k, +k,) + £1<1 51_(35(151 +lky) §lky + k)

¥ El_c_l Ekz Sk, +kj) 8k, +k,)

We s-ee that this is similar to relation V-17, neglecting the. effect of the
irreducible 4-corre1a..tions F,and is consistent with the spatial homogeneity
of the ensemble, as diécus sed above. A brief discussion of their averaging
techniques is given in Appendix H4 .
We now return to the problem at hand and ensemble average Eqgs. V-12
and V-13 utilizing V-15 - V-17. This readily gives the chain of equations for

the wave correlations,

Sk +k) DO
ot ~1

=5 + k) j’dly B N N

+ (16> 2) \} V-20
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and

S(k +k2+k) 9

'k,
ot AL R R
_ 1 =3 1 =3
=6k, +k, +ky) > {K(-153,1_<1 + k) sz Gk3 e
{1,2,3}
+ (2 ¢ 3) }
FEl tky tky) ) Sdlf' Kle' k- k) Fioy p ke
' = 122053
{1,2,3]} - @ - yt
w‘lfl ui_" “i( 'lf' ?
X e v-21

Consistent with the assumptions of weak nonlinea.rify in Eq. V-9, used in
Ref. 15 and Ref, 16, we assume, Gk is of order some small parameter € ,
We observe that H is driven by GG terms and hence assume H is of order

€.2 to leading order,and so on.

Thus the multiple time-perturbation expansion we assume is

Gk: G(I)(t et:---)+eZG1(<2) (t,et,...)+... v-22
2 @2 | |
Hkk't: E Hl(()l(l(t’st,..) + e V-23
3_(3 .
Fkak',k”‘: & Ff(’)kl,kn (t,et...) +... V.24

We will need only go to order 6.2 in the G equation and thus only need H to

lowest order 62). Equations V-20 and V-21 then become

+ (k, — -__kl) , V-26
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i(
) “i_<1 “i_gz “i<1+k
A N
a'f ~1’~2
1) M 10 )
x § Kl +k,, -k,) G + K(-k, , k) G’ G V-27
1R TR O Sy TR TR S G
1) (1)
+ K('I_S ’ 15_ +1_S) - s
LR By Sy z}

where in obtaining Eq. V-27 we have used the symmetry relation of Eq. V-4.
We solve these equations, starting with the lowest order. Equation V-25 tells '
us that

G]S) - Gl‘(l’(o,et,...) .

In reference to Eq. V-27, we see that the GG terms appearing on the right-hand

side do not vary on the t scale. The equation can therefore be integrated

directly,giving
(2) (2)
(t,ety..) = (0, &t,..)
Hlf.l’lfz Hk1,152
T " )
L -2 -1
+2-
1(‘"& ¥ “k, %‘14’152
2 - =1 —-2
1) (1)
+ K(-k , k, +k) G
Slhmz Tl g '151'1-52:}

This result is then substituted into Eq. V-26. In this regard the quantity of

interest is
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) (a)
H‘K'\K\—‘K' = HK‘\K|-K' (o,et, )

LW - We, =Wkl -k )t
- 1 4_ - ‘1

LWk, - Wl — Wi, -k")

‘ Q) (1)
X { K(E\)‘_‘."\ﬁ-') Gl_c_.-\g_‘ G‘,..:‘

) .
+  Klk'-w,-«') CT‘:\ 6'\5_‘—\5,‘

-+ K("‘S‘, E_\) G(:E)' 'G(-.-)E,_. }

This gives
, (2) \
?. G':‘ + 2 Gé')(o,éft,"-)
JE 7 oet

Wk, —Wie! =Wk, -x') t
= 1 gd\f_‘ £ - A

Ll wy, - Wit ~ W, -

) « ) )
X {K(‘E'; k',-x) G‘;).-ng G'_;. L \<(‘E"‘£')"5'>G'5'65t-)‘5' + Kt K, 1)

+ (K_l - ‘*El)

k'K -k

' { E\dg' K ki-x) Hm lojet, )2

\< (L(._') K = \5‘)

+ (.‘_<_| "7"5\) }'

As discussed in Appendix H2 ,for large t, under certain conditions, the

quantity

V=28

G(l\

k.
r

LW Wi ~ Wi —gt ) E

G .
vl:\

V-29
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behaves as Yeqardsintegrals over k' of relatively smooth functions, as
s i L
-1 — _1 -
e -1 — i 1
e~ ) LT

S — o+, V-30

Hence, looking at Eq, V-29, for large t and asking'tha.t Gl(cZ) not be

secular in t as t — = (in order that our solution be uniformly valid), we

have that
DG. (l) t d \ .
ll te ) = 1 K - K (.‘E‘\ \E_\ "‘_‘_\)
aé't (“')E"'wf"wl_g_,-.sn-fig

{‘<(kl LY ) GK.-K\ ~K\ as \‘<(k ~Ky -~ k! )Gm Gx.—k‘+ K( E;K-) G—K'Gm %

- (E\ -> -\S_\) V-3l

barring some pa.tholog1ca.1 behavmr of H( ) ’ 151

,—

- k' (0,ety..). Using the
symmetry relation V-4 and V-8  /Eq. V-31 may be written in 2 more familiar

form

u) ! 2
?5%\::‘5 = 4“’S‘d|~<_|‘ G(:‘G’n k! l K(K' K- K')\I § (W "(4.3_\5‘—&)\_5—5_')

Q)

W)
-2 TIm gd\g‘ G Ge-wr K
. CT (

vV-32
This is identical to the kinetic equations obtained in Ref. 15 and Ref. 16. How-
ever, the technique of derivation is entirely different. We believe this method

has several advantages and return to comment on this at a later point. First,

however, we discuss Eq. V-32.
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b) Comments on the Kinetic Equation V-32

1
1, If we were to interpret G()

e 28 the energy density in the waves (see

Eq. V-15) in problems where Ek refers to the electric field amplitudt?, we

see that V-32 describes the time evolution of this energy density due to 3-wave
interactions. Namely, it describes the effect of mode coupling on the enefgy
spectrum through the coupling of 2 waves into 1 wave or the decoupling of 1 wave

into 2 for those waves for which

ul& - “)15' = uk’}i' . V-33

-—

These terms are identical in structure)to the additional terms obtained in
Chap., IIl in the case of weak turbulence in a plasma.

Relation.V—33 is often difficult to satisfy for many dispersive media. (For
example, in the case of plasma oscillations.) However, in situations in which
it is satisfied it is the dominant wave-wave process.

2. Inherent in the above derivation is the assumption that

%k—' “er + YGeger) =0 V-34
and . ()J(k') + w(k_kl) - (IJ(k) V-35

cannot be satisfied simultaneously for some k' (given k). This has been
considered in some detail in Appendix I—I2 and its relation to gssumption V-30
of thié section pointed out. For simplicity we look at the mathematical
difficulties encountered in a one-dimensional problem. In evaluating integrals

of the form -

jdk' Flk,k') §(9 -9, -4 ) ,
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we imagine changing variables from k' to Vie & Yt Y - W k' Assuming
this can be inverted to give k' = k' (k,y), the above integral can be rewritten

with appropriate limits as

Flk! (k) § () V- 36
dy - ’)

d v
T @, g 0

which diverges if Eq. V-34 and V-35 can be satisfied simultaneously. In

Appendix H this has been traced back to the fact that replacing

-
e T T S .
UG - 9y - G yei) (e - Qs - Gy +15)

in the calculation of the long t behavior of certain k' integrals is not

-1

by

appropriate under these circumstances. In fact, these integrals have portions
. 1/2
growing as t for large t.
Consequently our derivation holds only if Eqs. V-34 and V-35 cannot be
satified simultaneously. This does not seem to be a serious limitation on the
theory as these conditions are difficult to satisfy in many dispersive media.

3. In problems where E._ denotes electric field amplitude, the quantity

k
Gk can be interpreted as the electrostatic energy density. It can be shown that
Eq. V-32 has the desirable property that if Gk is initially positive for the
whole k spectrum it remains so. We include as in Ref. 10, the possibility

of a weak instability, since this does not alter the result. Equation V-32 then

becomes
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JEt ‘
N z
+ 4w Ed\s_‘ G G- | K e k-6 Slwe - !~ -1e)

- ¥ Im &d\s_‘ GeGee Ki'ie-v) Klg,x'-g)
(W ~We' ~ Wy - +i$) V-37

We assume that the G, spectrum ig initially positive and that the spectrum

first turns negative at 1_50 . At the instant it is going through zero

Gk=0.
o

"Then

D~G‘i° - 4.“" &d\i\ G-‘S.'G-'f."'f.’ \ K(El’ Ka __\il)\—" Stwﬁor Q'S""Q“S_w —‘5.')
Jet V.38
> 05

that is to say, it is repelled from turning negative, a useful result for the
kinetics of the spectrum.
4. In many situations of interest it is convenient to introduce the nymber
of quasiapa?ticles n o associated with the k'th mode, defined by
nlS Qi( = Glg ' . V-39
In the case of a ""transparent" medium10 where K(k' yk-k') is pure imaginary,

Eq. V-32 may be rewritten in terms of n, as

)

_D‘f = 4-[T' gid‘S)ClK_I LS(E""S«"EJ—) S(QE "wk_\ "‘L.&Jl_(z)
JE€t W Wi, Wy, o

2
R {! “(E"\ﬁ")[ n‘f»n‘.s:. - 1;,““5-»\ﬁz)}A(E;’\ﬁz)n!ﬂsz},v"m



-69-

where we have introduced the notation
M. kp) = “ %, K. ky)
Under certain circumstances, namely when
Ml k) = plkk), k+k =k , v-41
Equation V-40 has the intéresting integral of motion,
Jemes
We recognize that condition V-4l is identical in form to condition IV-19

demonstrated e:::plicitly for the problem of weak plasma turbulence. Utilizing

conditions V-2, V-4, V-8, and V-4l we may write

Jet
; 8WH§ dedicdra Sl =16 —K2) S(We ~Wk ~e.)
We W Wi,

2 gd\s M WOk

K |k k) ] N N (Wiea = Wi )
= 0 ] V-42

The right-hand side of V-42 vanishes identically as the integrand is antisym-

metric under interchange of 1_51 and k A similar conservation law can be

5 *
obtained for B‘dl_t n k , namely

2 kdk = 0 . -

n gdk V-43
Equations V-42 and V-43 are statements of conservation of quasimomentum
nlil_(_ and energy n].S a.i_(-
5. It is interesting to note the analogy between Eq. V-40 and the kinetic
2

equation for phonons in a solid. ! In fact if we write n >> 1 in this latter
reference, the equation has the same form. It is of interest to note that in the

case of a Rayleigh-Jeans distribution,
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n = T/wk 0 V-44

where T is the effective temperature of the mode gas, the right-hand

side of Eq. V-40 vanishes identically and 'an/Qet = 0. Equation V-40 becomes

9N - 4y ﬂdgdm 8K -k ~Ka) LWy - Wk, —Wka)

vet 00151 L\)lﬁ\l (A)k_:-

X \}A(lg..k_;)\l ( W - 2 Wi, )

- 4\T‘ Sgdgtds_z S(E"K_."E:&)S(LD\& -(.QK?. "’U\)_\ﬁt)

W™ WE Wi

x Al k) )* ( We - Wi, —ulsg_z)

(i
O

by virtue of the S(wk - (o.)k - (o.)k ) in the integrand.
= -1 -2
Comments on Derivation of Kinetic Equation

We wish now to comment on the advantages of the techniques of derivation
of Eq. V32 presented in this section. The one advantage is simplicity, and
can most easily be seen by referring to the alternate derivation presented in

Appendix H The basic philosophy in the literature has been to solve

3 *
Eq. V-9 order by order,
~ . ~ (1) 2 A(2)
E:15 = /\Ek + A E 4.

-_— —
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and thereafter perform suitable averages over a spatially homogeneous
ensemble and obtain a kinetic equation advanciﬁg <Ek Ek,\) . Our philoso;ihy,
however, has been to utilize Eq. V-9 at the outset to obtain-equations a.dv.ancing
Gk ' Hk,‘,k"etc' » which characterize the spatially homogeneous ensemble and
then, with the help of these equations obtain the kinetic equation advancing

GS) (Eq. V-32). That is to say, we .perform the ensemble average at an
earlier stage, which is a more direct way to approach the problem. This

1/2'). In

method also avoids the introduction of half powers of € (A~
Appendix H3 » in the multiple time .deriva.tion of Eq. V-32 using methods
similar to those in Ref. 15, the algebra is quite tedious to show that the At
time scale is superfluous in obtaining a kinetic equation, and that the quantities
of interest vary on the A 21: scale (i. e., the €t scale). In the analysis in this
section, however, the t, €t,,.. scales occur quite naturally in that there is
no apparent reason to introduce the possibility of an el/Z t scale. It is

interesting to note that the quasi-linear analysis of the Vlasov equation in

3
Ref. 1 indicated that the )\t, )\ t time scales were unnecessary.
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CHAPTER VI

HIERARCHY OF EQUATIONS FOR A SPATIALLY HOMOGENEOUS ENSEMBLE

OF VLASOV FLUIDS

The technique of obtaining equations for ensemble quantities at the outset,
and then solving these equations in lieu of solving for the properties of an
individual system and then ensemble averaging has interesting possibilities in
the study of a spatially homogeneous, weakly turbulent ensemble of Vlasov fluids.

The latter approach is currently popular in the Russian literature (e.g,,
Ref. 7 and Ref. 10). Namely, they‘ solve the Vlasov equation order by order
for the self-consistent field. Then they obtain a kinetic equation for the waves
1

by averaging over a statistical ensemble assuming the phase of E

random. For example,

(1) (1) -
Their averaging procedure is a manifestation of the spatially homogeneous

nature of the ensemble and is briefly discussed in Appendix H We propose

4 .
in this section as in the last to obtain equations advancing ensemble quantities

at the outset. We imagine a collection of multispecies systems, each a

continuous Vlasov fluid obeying

AUV 43«\ + Ca E(xi). 2P =0

———

J -
d M, Vs vi-l

where

Gy, Ex,t) = — Zml %%‘“‘WC (%2 V2 it ) dxa dya VI-2

We expect to be able to describe wave-particle and wave-wave phenomena but

not the effects of particle-particle encounters associated with the discreteness

L]
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of matter. In fact we will obtain a hierarchy of equations identical to
equations II-9, II-1l and II-12 of Chap. II where all the terms involving the
plasma parameter Ep (see the releva;nt estimates in  II-21, II-22, ‘ana
II-23 of Chap. II) have been omitted. We proceed by constructing from VI-1

and VI-2, equations for the products f , f £ f , etc., and then
a.1 a, a a.2 a3

performing appropriate averages of these equations for a spatially homogeneous
ensemble. The averaging procedure used here is formally identical to that of
Klimontovich22 with the omission of those terms associated with the discrete-
ness of matter. We return to illust.ra.te this at the end of this section.

For brevity denote d):gz d;l_.,_ by ‘d(Z) ) ' and fa. (xl,vl,t) by fa

. : 1 1
" Rewriting VI-1 and VI-2, we have

Jt g)}_\ 4 &

fa, ) -1 o
Mo v v LG = L nqudu) ?_st Dea - 2 (fo) - yrg

From VI-3 the equa.tions for £ f , £ £ f are
. 3 3 3 A

Q ('F'Q 'FG,_) (_1:—2 +V2-_ )('Fq.'FQ-._)
ot

QX\ 9)(7_

- F o [ [ 28ue 2 bh)eaon]

o Ma, 9 Xs IV
and
2 (hafunfar) + (w2 402 +5.2 )Fafufes)
Dt d 9__1 DX?,

p) d(4) 1. 9Pa,a. . 2
_GZ " y A 32eea 2 (Fafed,fo,)
S h2,33 ~ VI-5



iy

We then average VI-3 - VI-5 over an ensemble (denote { » ) introducing the

cluster expansion

4 fal fa2> = ¢ fal} { faz} + Ga1az : . VI-6
<£""1 falz fa:;> < fa1) <faz> { fa3> +<fa1> Gazae, ' <£az> Gaﬁs
<fa3> Cpa * Hana - VLT

Cay oy o (€00 + ECR) P

2 374
+Ya. . G +Z(f><f>'c + K : VI-8
] N1%2 23% 1 %2 %% #1%2%3%4
The summations are over permutations of 1,2,3,4 . For the case of a
spatially homogeneous ensemble
. < fa1> is independent of X » VI-9
Ga a depends on X -%X VI-10
172
H a g can0 be taken to depend on the differences X, - X, and
*1%2%3 VI-11
X, - Xg since it is invariant under translation, Averaging
Eq. VI-3 gives
L o) v 2 ) = LY Ney 2 {3Paa, (G and + Gaea)d )
It Xy Ma, g MV | ax, VI-12

By virtue of spatial homogeneity this becomes

o <‘F4(> = 4 ‘qqu—‘d(n @lqm- QGGIQ-._ 5
: Ma, ay

D& v D—Z VI-13
where we have assumed charge neutrality
) onoe  _ o . N1-14
L a, a,
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Averaging Eq. VI-4 yields

Q 4-:’ 2 = "a 'q a
(Ot Vi gx\+v %‘)(OP.)UFJ t Gaan )

. 7_%{;‘: gdaz) Iaias 2 (<5a) (Far) (Fagd + <ar) Grimas

q.s Q-\ 925\ 9 v_i

t+ <‘FGL> G_Q\Q:s +%G_'q,q-._+ HQ.Q,_Q; + (lé>2))' VIi-15

The V.. 2 operating on <fa.> vanishes by virtue of spatial homogeneity.
IxXe ' i
The crossed term (/) is zero because of Eq. VI-14. Utilizing the result in

Eq. VI-13 to eliminate {f ) 2 { f ) + (14>2) in Eq. VI-15 gives
1

ot 2
Gaar +Vi+ 2 Ga,qa — 4 SRS Y APasas Ga,q, &
—— . Vi K —_— — ] d 1 (3
gt 7. ?)_C_\ e Mla, 3_\{| qu, 5;? * a3 )
+ \_{'_L . g_ GQ(G-:_ - 4 /'>._. <'§Q1> ) Z n03 EQQQLQJ G_G.Q'S d(3)
DX qu_ D\Lz Q3 g_x_]‘
Mg { y dias . D H La. A(3) + (1602 } . VI-16
Z— 3L mMa, X, Vi ranas !
A s1rn11a.r analysis of the average of Eq. VI-5, advancing f f f ,
% %2 %3

using Eqs. VI-7,-8,-13, -14,and -16 readily gives

( iy_ 2’2 ) H'Q.c..,_qs - Z nq4 Y — Dv‘<'§'q\ gﬁq)q.qq HQ,_Q,SQQ C“‘I)
| R

X
a4 ‘{'11‘53 \

=5 ey (s Qg—q.ql.gwq\q«c‘;‘,g%d(q) v (a<—>3)}

mq a
G4 {‘)QD-SS ! \_l_‘ :)X\

n Nag 2 . QCbo sy K -17
Z; 0233 Mar &Y, Xax\ meadaay da) - VI

If we truncate this hierarchy of equations by neglecting the 4-correlations K,

the resulting system of equations is identical to the system II-25 - II-28 in

Chap. II, provided the source term Sa. a is neglected. That is, the system
12
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VI-13, -16, and -17' is identical to the B-B-G-K-Y set of Eqs. II-9, II-11,
and II-12 of Chap. II if.the terms involving ép (se_e the estimates II-21, II;ZZ,
and JI-23 in Chap. ]I) are omitted from the analysis .

We give an alternate derivation of VI-13, -16, and -17 in Appendix I:
Writing fa = <fé.‘> + Afa and Fourier analyzing Eq. VI-1, equations are

1 1 1

constructed for the quantities <A fal (kl) Afaz (k2)> s <Afa A fa A fa. > P

where the averaging is performed over a spatially homolgeneois ens?'emble. The
advantage of this approach which is completely equivalent to the derivation just
presented, is that the parallel with the usual averaging techniques20 for
homogeneous turbulence employed in the previous chapter is immediately obvious.
The fact that Jt.hese two approaches (ensemble of Vlasov Plasmas and B-B-G-K-Y
accqunts
approach of Chap. II) lead to similar determinative equations,for the similarity
in the resulting kinetic equations appearing in the literature (see, for example,
Ref. 10 and the final results of Chap. III which used the Vlasov ensemble and
B-B-G-K-Y apl?roaches, respectively) and in fact justifies the former approach.

We now outline the relations of the preceding to the Klimontovitch approach.

The phase function

Na,
Oa, = ’ S(x-%.a,)8(yv- V)
Qa IAENARY N vy D-AR N . -
' v L q vi-is
satisfies the equation
d Sa, + v . 2 '
—— q v L.« Y
ot CoAx %
=L ) Na IParan x-591. 290 ,v 1) VI-19
m )2 =
Y g x Qv

X {?Q:.(&"\l.lt) - ,:\Lq“ 5(4*5‘)5(‘1’!')}d’£1d‘_/’:
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by virtue of the classical equations of motion

_d_x_\.(t) -_\]_L(ts ) m\.d\ﬁ- = — z ngi.j
ot de i X VI-20

Except for the § -function term appearing in the integral of VI-19, which is
related to the discreteness of matter, Eq. VI-19 is identical in form to the
Vlasov Eq. VI-1l; and with the omission of this discreteness term, e%ua'l"nons for
... can be constructed similar in form to VI-4 and VI-5.
?a. ?a , ?a. ?a. fa
1° 72 1 2 3
Using the explicit form of ¢ in Eq. VI-19, the definition of the s-particle

reduced distribution

s
» o8 0y = 1 PR -
falaz. o a’s(l, 2, s) v K fNa Na L d(s+l) Vi-21
1 72
where fN N is the Liouville distribution, and the normalization condition
al a,
1 = ijaNa"" daql) ... . VIi-22
1 2
it is straightforward to show22 in the N-V limit by averaging over fN N
a a,
1 2
W= P Vi-23
1 1
Faa 1121) = Bal) (0a,(2) — Swien 500 -x4) SW-w)) yi24

Na,

‘FQIQLQ'_g (l,2,3) = ?Q\(‘) ( 901(1) - S_C_'_\_t_f_lz SC).(_' ",75’,7-) S(Y_.—\@.))
\—lq-._
V1-25
x (Qay(3) - Savas (X, -X3) §CVi-V3) ~ Saraz § (Xa-%3) Sly;-v3) )
Taa Nax
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?a.azo,q, (42,3,4) = Qo) ( 0q,(2) — Sao. S -%2)$(Y-Va) )

Qa

X ( 9(];(3) - S_‘l._o-_; 8(_’9-)5_3)5(.\_& ~Js) - g_“:% S'U_(_z—)f_s)S(\b -;I__;))

nq3. Mas

X <9a,l4) = 89,04 808 %)ty ~V4) = Scraa §(Xa= Xa) (V2 -Ua) ~ Sagan S s -%a)S(Vs -vq)).VI'Z(’

If we omit the § -function terms in VI-24 and VI-26 then

?al(l) 9a2(2) = falaz(l.-z) , VI-27
NI A LT I v1-28

2 3 4) « f 1,2,3,4) . -2

?al(l) ?az( ) ?a3( ) Saa4( ) a1a2a3a4( ) Vi-29

in terms of irreducible correlations g, h,

With the definitions of f_ , f3 , and f4

2
and k (Eqs. II-6, II-7, and II-8 of Chap. II), we see that VI-27, -28, and -29
are of a form identical to VI-6, -7, and -8 of this section and hence Eqs. VI-13,

-16, and -17 are obtained for fal(l) , gal’aZ(I,Z), and ha1a2a3(1’2’ 3).

If the § -function terms had been retained in VI-19, -24, -25, and -26, the
complete equations for f, g, and h (Eqs. II-9, II-ll, and II-12 of Chap. II)
would have been obtained. Thus, in the context of the estimates made in
Chap. II (II-22 and II-23 .of Chap. II), the omissio-n of these ""discreteness'
terms has iaeen formally the same thing as taking ep——> 0 . Alternatively this
may be viewed as removing the effects of single-particle encounters by subdividing

the charged particles into smaller and smaller units = such that
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e > 0

ne —> const
m— 0

nm —> const
l/n —> 0 >

in Eqgs. II-9, II-11, and II-12 of Chap. II

Although the analysis in this chapter has been done for a spatially homo-
geneous ensemble, it is obvious that the conclusions are the same if the ensemble
is spatially inhomogeneous. In lieu of VI-13, VI-16, and VI-17, the spatially
inhomogeneous versions of II-9, II-1l, and II-12 are obtained with the omission

of the same discreteness terms associated with single-particle encounters.
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APPENDIX A

Coulomb Interaction Energy Density

The quantity “Z;;. (4!‘1'046«)(4? r\pep)ﬂd\gdv} 9“‘;(5,\4.,\1_.,1;) 1
)
bears special significance in reference to the electrostatic energy in a plasma.
We consider in the N~V limit, the ensemble average of energy per unit I

volume due to coulomb interactions in a multicomponent spatially homo-

geneous plasma.We assume charge neutrality, namely

7 Naéy =0 . 2
«
We have
L _L< | T Y e«e
V2o V \ 2 «2,? %3' IXe -%] fens. av.
L$s .
G 1
h £ T Lo g st dsr
= Q‘Nel.-.
V—)OO l d')c\z l-)-i. v |x_l--)5)' 3
Ldy
= m i Na Ca, Nar Caz L d’.‘.‘ dxs dvidv -ﬁuq‘(‘il) .
V- A Y-S \ [ X - X2
We write £ 1,2,) = £ (1) £ (2) + (1, 2) . 4
ay 1( a, a, ga; aq,

Because.of spatial homogeneity
-FO. Ll) = ‘F’Q\(\.{') > ) 5
and 9 ai,aa (L) = Yaraa _&l—)_(_'n.,\/_t,\_f_z). 6

Also S‘d\_/_n ‘F‘m(.l) = 1. 7

Enforcing the charge neutrality condition (2), (3) may be written

" using (4)-(7), as m L Z Na. Na, €a,Ca. L Md‘{! Gaiaq,
Ve % ajas [ Xe=Xa| g

= L ¥ neew Nuea [ 2 dvidvs Gaas (X,v,vs,¢) .
o1 aa (%) T
Thus, the energy density of coulomb interaction may be written

- de (4T Nq.€a.) (4TTNe 86,
d 8m™) J Qwd k* (Q.Z,;‘ - s

A j‘Sd\!_l d\_’__"- qO\‘Q; (\ﬁ,\ﬁ,\b.)t)) .
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Hence

A (41N68a) (4T M4, Ca ﬁ‘dy. dVe Qa a (1, Vi, Va )
(3T) K™ 2::; ) ) ERLRLTA -2

can be interpreted as the energy density of coulomb interaction in

k- space.
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APPENDIX B

Formal Solution for ga“)a (s)
T2

Consider Eq. III-35

()

(o) to
( 2 4 Lq,(lg,\_/_.) +L_¢;,_ (~1<,v2) C‘jc\,qz(‘ﬁx\l':‘ﬁi;t)et;"') =0,

ot 1
where
(o) )
La (g,v) = Li.vi — 4Teq, cic . dFg) an,eq.gdv, »
Mg, K* Ivi T - 2
and fz does not vary on the t scale by virtue of III-32. We denote the Laplace
1 .

transform of g(t) by g(s), i.e.,

00
-st
qes) = Jqure™ Tt
o at 3
where, provided g(t) does not grow faster than e , g(s) is analytic in the

region for Re s)a . Similarly the inverse of g(s) is defined as

st
C_g‘“t) = gds/(lﬁ'i_) 9is)o™ ", .
c
where the contour C is parallel to the Re s=0 axis, but to the right of all
the singularities of g(s). For simplicity we denote
o)
L"CH = LCu ( K \.{' ) 5
We note that La is just the usual Landau operator encountered in Landau's
1
solution of the linearized Vlasov equation, viz.
o)
( g—'-f-_ + L‘Qu('/:)\_/.‘)) -FCAI(E)\./_‘I'E):O . 6

In reference to 1, we may write a purely formal solution in terms of the

operators 1, and L_ , namely
! ")
(1) — l—q‘t - L‘Q-;_-t 0 7
%GIC\'L (t‘) = - £ ?CHC\‘L(O) :
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~-Lat 1
Now the operator e *" has the Laplace transform T+ L and thus we can
a
1
represent
~La, st
2 . o Sds. 2
(ITT‘L>CI S, + Lq. 8
Hence
«) st S.t )
Gaog(t) = L | _dsa | dsva?™" gqole ce .
(atri) Si¥ La, J Sy +loqa 9
C\ . CL
The aorder of the operators ! , S , does not matter since 1. and
Si+La, Sa+tleg, 1

La comrmute. Cl and C2 are the usual Laplace contours taken to the right
2

of the singularities in the corresponding integrands. We note from 9 that we

may write

()
)
(}Q‘q,‘(s) = ! 11‘&\ ds, dsa 1 ! qqf¢%(°)
GmO* ) ) S-5-5. Srla, sitles
C, €Ca

where Re s) Re(s, + s,) for s, on C, and s, on C,. The problem then

2 2
reduces to a knowledge of the action of the operators __! . This however
S+ Lg.

is known from the solution of the L.andau problem, namely

ey
| (o) qonaz_ (E)Y_I'\L;)o)et...)
SI + LQ,((S|\_(|)

i

-4
(T Suime e Ay ne, [ dy
I—‘

S\""L\f-\f_\ €(\_<_lsn) T-(:‘_' 5§| G, = g'fL‘f‘V‘

(1)
X 3(\.6\1_(‘_{1\_/_1,\{1)0,6‘{'_.“’) J
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APPENDIX C;

a)
Long-Time Behaviour of Qaiaa

To obtain the expression for g <;)q(|_<,\g.)v,,-t)a.s a distribution where
1ay -~

s\t St
ﬂa.(::\,t (€)= Ao S\J)— ds. J'ﬂ, “ds. Gaw U, v, v,0,6t)
)

T\ 1
Q@I ) g4 L9 (kv ) JSut Lanlok, va)
¢ . C’L
we first consider the inversion of
sit .
o g Q2 dSI 'F\_g (\_Ll) >
(ami) st L e, w) ¢

where f (v, ) is analytic in a strip containing V; real. Multiplying

this by @ (yl) and interpreting over v., and changing the order of

1

integration gives for (2)

1__‘_)' Tds.&g'tgdg @) fely)
(1S c.

a Stttk Vv 3
po1 (de oSt (dv ea ue. L @w) Yarnae, | dyfetuol
Griy I TCle s T Mar k: 3V G Stie.v
e TR St L . Vs
By virtue of the analytic properties assumed, the LK -V poles

lead to damping terms. Picking up the contribution of the zero of

€(¥k,s.) at $|=-"L(¢0\¢_ gives for 3,‘for large t

: [€Y]
-l t LK o4 .
£ Su - D dv « arnae., | du futy,o) 4
Ma: = N -~
T Y B T
S Sz~tWu
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The Laplace contour is pulled over into the leftrhand plane
( with Re €, ¢ O ) with the proper analytic continuation of the
functions involved and the oscillating pole Wy picked up. It is
assumed that contribution to the integral along Cl y =20 for large t.
We see that
e ds, 25"
@rd) Josr Lol

te) —.Lw\ft
e, “¥ . Qfalan 47 No.Ca, y dy.

= =2 K -
MNa, LWy FLr N, YO a QE‘& ‘-b)\c-}t.\:{.\{_. +A

as

. S=-lWx
and thus that

) ‘
g&|‘01 - e°' L\ . QQ—:.IOU» e—:\_} -t 'QF:‘[Q Va ’LPE.’ 6

Mo Sl LK.V 4D Mas Ly ~LK.Va + A

- by virtue of 1 and 5

where

Z- (4rna\em)(4‘ﬂnmeo¢)jj‘d\ﬁ d‘\.’.‘ Qaiar (¥1V V40,6t ) -7
k* (e e yorn ) (Wr-Le. vy +4)
Qs 23 SS—WK
1P|g is 8M times the lowest order energy density (associated with
R*
gu(];)) of coulomb interaction,for if we consider expression 6, then
11°t N

1)
_.‘__. Z jj’ d\icd\’_z aqfam (4“‘?”0\6&1) (.4Wﬂhecu._)

(6T ) k*

= k¥ (1= ek, - ra) )1 = Ete, wwera) W,

"‘E_EQPK
9T)

n
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(1 )

This can also be seen directly from the original expression for g o ,
given in 1.

We first note the operator identity

TN, Car d\}' (4 a.eq)jdv'
2;(4 Ne, € )gs Z_ idg!

1+ Le (o) \1.) C(K ) Sit LK. Ul

Operating directly on1 with

Z (47T Na, QQ)L4WDWL€Q'L) S'SO\\_J_I d\b.

|
.E__ QI'Q'L
then gives

s.t s £ Q)
A E (QWQQ,EQ)(q‘“‘nq-‘_eGL S &’d$|d5‘1.ﬁ. L g d\’_\ d\_’_; qq\q,_(“_,\l\.\l},olet_)
u Qmw L)

OyQa, ‘ €K,51) E(-K,Ss) (SitLi.Vi) (Sa-L1g.Va)

Picking up the contributions from he poles at Sy =-LWy and S3 =.Lh3\& >

by' pulling the Laplace contour over as before gives

' (13}
L E (4““°-e~-)(4ﬁ‘rme%)yj dv dvr Qaian L1, viv:,0,6t )
k4 ng"‘ c,ar (LW +ec.vy w0 )(LWi ~Lie.Va +A )
S

(B3]

S~ WKk

1
<

|
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APPENDIX C 2

Solution of Eq. II1-55 in terms of La.pla.c‘e Variables

- Lq,, (I(z,vz )t '
To understand the action of e on g.. Ckay Vz)

we express it in terms of its Liaplace transform; namely ,

d sst ‘
| S'z.'-o-‘o QQ-,,(.\_C_;,\[_;)>
(.awu) ) Sar Ld } (ke yVa ) 1
where
o)
___.!___..-—- = ) [l + @gl Lia ¢ Q‘?Q‘IQV‘E‘T“& QG‘S d\’t
Sa +L‘3’1m,v; ) Satlica.Va Mag Ka € (K2 ,)Sa) S;# TN
We first observe that
-.2 (4? noq,eﬁi ) d V_?. q‘h- (“S."' ' Va )
G, ' Sj, + LK__'I. . \_Ll 2
(S Leo)
= 4'(T‘nu1_e“_ d\L,. Lk Q‘FG; IQV“I—
~ Mean (S + LieiVe ) (L, + Lz «Va +A)
a
Writing 1 x 1 in terms of partial
Sa ¥+ LKa -V_g.. . ~LWka FLKa N2 + A
fractions, using the expression for € ( Ka, S2) and the fact that
€ ( Ka » "“‘)u{" A) =0, 2 readily becomes
€ ( @3 1 Sa, ) 3
We thus have that
' (o
1m Qas (Ka,Va) = QaxlK,Va) 4 @a, Ltis-2falavy,
Sa + La, (Kt,\h) ‘St LK.y Ma, (Satina Vi) (Sa~twuq + a)
which simply reduces to Qaa( KayVa) » and hence
S‘L+ L‘OK_‘L
(o) .
— La, (ks \h.)t —LwWk T

L2 qaz('i'-n\’_’-) = C_(Qq.(‘i_z)‘[_z). 4
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We thus see that g, (52 ) _y_z) is the eigenfunction of the operator
T2

L(o) (k, , v,), having as eigenvalue i(.uk . The operator
a, =2 " =2 k,

t
—(ka, + LQ,_‘\'LQ?,)t-Y | (LQ.+LQ1_'1"LQ3)t'
£D dt N/B qQL(E"‘Y-l) qqs (-‘E”\./_3> >
Q

appearing in Eq. III-55, thus becomes

t | (la, +tWe, +LWey ) (t'-1)
Edt = Jas (KaVa) Qa3 (kasVs)
o)

The Laplace transform of this is simply

Cjcu,(\i"l\.).*) 9 a, (K3, \_l_s)

. (a)
S{S+iog,+Lwe, + Lo (e,v))
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APPENDIX C3

(2)
Effect of the Initial Value h Q, Aa QD ( .9_- ¥ 1*!_' ) \[_ﬂ-;}_f_! Py O;et"')

(2)

The initial value portion of the solution for h (see also Appendix C;)

may be written

(1)
thon.Qg (k_'s 'i")‘bn\!.‘l\,’_‘!,t,et"')S(l_(_uf\f_z'l‘l_(_g) 1

LW, + WratWiy )t
= S(_KJ"'E_Q."'ES) 30.|(K_q\b) qog_(k_‘t,\b‘)ﬂcg(E,'\ﬁ’) L’-J. Kk @ L3 3

where

L’J _ Z_ (4T Na.€a) (ATNe@ar)( 4T Nag€as)
kll&‘l,l‘_' =

) 1€ P
Sz-tWi, 45 [$:-Dw, 35

Q\)QFLOS D_g-k.
as

(a)
X S‘Kg d\!_l A\L‘L d\_r_! h ait aa a3 (K. 1Kay Vi,Va,Vy »y ©) C—.t'")

(-t FLkeVir'd J(~Ldka +LkiVat B ) (~Ldig +¢Kk3Vata)

S=rlduy

t2) ' _ .
H o, an (R, Vi,Va, s,et-) is then simply
(2)
l-*ol ar ( ‘ﬁ)\_!_‘)v;‘!-,s)et'“) 2
"L('ﬁ"g) l Q;(‘!‘.)\L‘) E_’_\g- )
= Ca Ciq“‘—(-ls’v—") <_i__~£_ ( 9\’.!9 LH-‘-:"";“"" t ((6—7 2

Ma: -~ - Qr)3 S+ Llwe-We ~Wa-w)

()
The contribution of this to C‘j a, aa is given by

«1)
gmdm
)
- ds, dse \ ‘ Hravaw (id,vs ) 3 i
B CQWL)‘Y S-5.-52 SrLaleu) satldCie,va) 3

v Qo

From Appendix C,

‘ 5 Q:.("E\V_t.) = — gqa. -k )\{3) -
1°
Sat Lea. (-¥,Va) S2- LW




-90-

Closing Cs: to the left and then C, to the right gives for 3

(2)
qQ\Q-‘L (k& \ V“_o,\l_} ) 37611'")

3 QQt‘.‘lf_JV_‘_l-) €a, d,_g -L(E-‘S).%'C_{q.(‘!»V_')Ltj_!_,-.s,.s.g_ ' 4
(o) - -
S"(.LO«_&_'I'LQ‘ (,g'\)_,)mcu (Q'ﬁ')-’ { S+ L(wn.-u)u-h).n-&)) 4 ( |5_—)-|£).
t e 2

For calculating the long-time behavior of 4 we note that the first

factor 1 certainly has a pole at § =0 through the

(o)

) S_L‘A)I‘ + LQ|
effect of 1 . The long [ inversion of 4 may

€ (g, s-wWy)
' then be written

) (1)
ﬂQIQ'- (E)\_,.‘n\f} ’-ta,;ab) = /Q(/YY\- < %Q\QL (lf.‘\’_l,\)_}‘S')
$§20+
= Qo (1% Qaal-k,Vs) °
X [ 4“‘ F\q.eq} \ a__g_ L‘J"l')"ﬁ 1K -% gd\b (-L(."'-g).g_\h'gq'(‘g, Y‘)
o Ma, Q_Q.«\ '(Qﬁ‘):‘ (B~ Uwa-Wk-Wa-)) (FLWy Fricy 4 A)
ds Sa-tWig

+ (K »-k) ]'

N
Denoting the square bracket by IPK , we see that the effect of

2) >
including h: l &o,gt --- ) in the analysis is to give a contribution
vQady

(1) ; .
to 34.‘,;1:. of the form e -
¢2) - ¢\ 'q)
. ‘iouq:. = %Cu ‘.‘_‘.)\L‘)cxc\-a.(“.J J2.) K 6

- Gl
We recognize that this is identical in form to (10\01. given in Eq. III-46

and can be trivially absorbed into this result. It has no effect on the
kinetic equation for the waves ( which is manifested as secular behavior
2

as L in g qiar )-Asreqards the equation advancing 'Fq. , it only

leads to'terms similar in form to the right<hand side of Eq.III-48.
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APPENDIX D

(2)
Contribution to 3 a, 62 from the Third and Sixth Terms of Eq. III1-62

By changing variables in the { integration from 4 to k-4 the

-

third and sixth terms of Eq. III-46 can be written

—Z‘ZS‘S ds, dsa /Qwi)®

S(S~5.-52) CS: 4 Lag (i€,V) ) (Sx+ Lay(-g,v))

(amr)3 m
B e B
Ld. (]n.“‘?.\f.\)] + (|<-—>'1)

Keep in mind Re s »Re (s4+52) fors, onC, and S,on C,.-C,and C,are

X gcﬂl W Voo G, (L-K,-2us5) & [teet)2 quidv)

the usual Laplace contours parallel to the Ims,(Imsa)axis and to the

right of singularities in the integrand. For brevity we denote

e_s_l [ L(l&"_o_ _g__ QQI(J V() fL.Q D q (K 2 Vc):} {VI}

e Qo ¥ - ‘)1
Also from Eq. III-58
an, (‘2".‘. ,‘-9_)\[3.)5) = J {\[_1.} 3
: Cs+ (-2 +wa) + L"’ “Sn",z)) QyyA-¥,-4

Performing the §,. integration in (1) by closing the C, contour to the

right and picking up the only pole ( at §, = §-§, ) within readily gives for

(1, _\_5c\-° 9 W,.. gdsmau )
2| @ar? S (Satlaa)(S-Sutla)(S+ilbu-etwWa) +las)

Qb 10 ez,
a ?
' A, k-2,4 { }q‘_ Lok, -t { > 7,

where we have dropped the arguments of the operators L'q q, (%W )

and Lq,‘_(-lf,\b) for simplicity of notation. One can show simply that

the operator product
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' ' {w]
. V1
(Sl+ LQ‘I.) (s*i.\tﬁu-g*wq.)-}-l_q\_) - Qa ) A-K,-< -

. V_’- <
§-5Sati(We-etwa) Sa+ La, $ +ilWk-e+wa) tla, Q) L-¥y- 2

Using (5) in (4), the last portion of (5) gives zero contribution as can
\

S-S+ Lq‘
is analytic for Re (s-s,) » 0,i.e.,Re Sa{Re S , hence it has no

be seen by closing C, to the left for this term. The operator

[
S - Sa +iL(Wy. s +Wa)

has no singularity to the left of C, ; hence the contribution zero from the

poles to the left of C, ( note: ReS) ReSa on C, ). Similarly

last term of (5) when substituted into (4). The resulting expression for(4)

becomes

Lo L f_i_':o-.. Yo l?u_c.g,g ds-
@awd) 2 ) GGrs3 S(S~Sa+ Llw-2+wWal))(s-Sat La,)(S2+ Laa) 6

Ca ‘
k -2-%
x {v’l} {V}} v ( > ) )
Qi k-8, & QqyR-w,~ & \ 2 -

(6) may be used as it stands, or if we transform variables from

Sa. = Sa—~LiWk-2 +wWa) it becomes

LA d"g w.twtc--ﬂ-g dsa 7
(awi) 2 (a3 S(5-52) (S-5Sa-LlWna 4Wa) +La) (S +ilducn +wa) t Laa)

K 5~k
0 e 1] e o)
QK- L7 daq)ye-w,- 2 [ &> 2

We use the result (6) or (7) whichever is most convenient. Before
proceeding to calculate the longtime contribution of (4) (o‘r (7)) to
)

2 )
q G , we attack the simpler problem of calculating its contribution
1Qa

to the second order coulomb interaction energy deﬁsity.
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Second~-Order Energy Density from the Third and Sixth Terms 6f Eq III-62

In reference to Appendix A, the energy density of interest is

proportional to

()
1 ¥ Gmoaea) (4mnaee) “o\\bo\\b o as

0!)&1—

Utilizing the identity

Z4wnq‘e°' g dy, | Z (4w nq.ea.)fj\_\f’_'___,__
a. (5 +LG) (erv)) €<~< ) P

3

“
and that portion of g q.)a-._ given by (6), (8) becomes

Lo (4 g g_d“
2 <:n?i.)§ = “‘ec S(S-52 +ilWr-e +wa) ELK,S-52) E(-¥,54)

EA

Qyk-2, -4. kt

(S ~Sa ri.Vi) S1~WKWVa Gaq

3

+ (K->-K)
:
We denote (9) as Ek

(2)

secular behavior as t. We demonstrate this in two different ways. Although

" the first method leaves much to be desired as for rigour it serves to
exhibit the secularity.

Method 1

Recall we have assumed that € (K,5)=0 yields a single marginally

stable mode Sk=-twWw . There.will also be zeros corresponding to
Landau damping ( zeros in the lef\t\hand plane of €(K,s) ). We have
been careful thus far to close the various contours away from the
region of damping, that is,close the contours around regions where

the analytic properties of the different operators are well known.

X _\_. ANV, (Z (47 Nq,Ca. {V‘] - g v (24”‘ Sa, {v;}

(8 ). The point is that the inversion of (9) leads to

1‘“ ,*‘-
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However in reference to (9) if we temporarily assume that the only

zero of €(-i,s.) isfor $1=iwwand that we can.close CZ to the left,

picking up only this pole, the resulting expression clearly has a double

. (29} !
pole at §=0 through i . bim sEys)then varies as {/e , giving
S E(kyS-1Wy) S04

for large t,

By = L 44 WuVo 1

e ol
(aw )3 a_g" A -k - W - Ww-2)
9s

10

S 5~

_— 2 .
x‘p(‘f"&)o“"-"-’:awd‘-j‘_(_,wu)\ I (¢ >-w),

where

}—-l-(‘-‘-"z-) We-2 5 & ,Wa ‘§.)"‘)‘5’-)

u i 11
- 5 (4rrr\o;e)8A ¥ {!}Q,K_h_,_.

Y K* — Lt .V

The principal part in (10) vanishes because of antisymmetry when ¥ -~

and integration variables are changed from ,_Q_ = -2 | thus giving for

(10)
= u)(t\ t E ‘ d" ‘LPJ.'“) -2 S(wn-h)-t Qu-.&)\p (-2 )Qu.g AL (J.n., K.h)g)l‘l
2 €. (am)3
95 [s=-con + (e -o>-r) .
Method 2

In this approach we push C2 up to the imaginary Sa axis, changing

variables to Sa= -twW+A . As Res D> Re S.» for S.on CZ’ we write

§=2A and to find the-large t behavior consider §¢ - O, . We expect to

find behavior as |[s-a. leading to a secularity as t.

(9) becomes
oD

Lo (4L YW g L dw ‘ ‘
QS (awl) ) @m B+ illw+Wk-atWa) E(i,Aviw) ECK A-tw)
12
! d v, (Z (4mna.e) V] L (e (F(ar
- 1€, ™ Nar€aa) { Va
k"jM-'Lw TRVRVEY “"“""" K™ J A~ -t Ve wee)l 301;*"‘:'1)

T e S>-k)
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The | term vanishes because of antisymmetry then giving
Wt Wu-<«tWa

A c.l_:'o"’_ w-&."'\)u-a L ! !
3 (aw)? 2 €k, B-LlWeerWa)) G (¥)rB+ L (Wk-ate 11’3
~ *
x | Ak Wuee) £,Way 1) Weee o) |
+ (K >-¥%).
If for a given K there exists £ such that W)= Wlk-2) +wll) it is
clear that (13) is singular, for if we were to write (as in Ref.7 )
i - P + 70 S(Wk-~We ~Wk-a) 14
’
L Cyn €, -1 lDu-e +a)) EE )
e(lﬁ,ﬁ LEWy. -H-J.n.)) £y s Ts \S=_‘_Q"

then part of the integrand in (13) involves. the product of two §(Wu -Wa ~We. o)
functions. This is just a reflection of the fact that that part of the

energy density varies as 1/g¢% and really leads to a secular behavior

as t. Similar te'r';ns are encountered in Ref.|5 in the consideration of
wave~-wave interactions in a simpler problem. The prescription here,

as there, is

T 500500 TSS"" 15

i.e.

TPS)SX) = ?six) A T Sx) = WS(x) 16
2 2 T(XZras) 1o S
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The secular part of (13) is then trivially

t{' g w&‘%* (- Wa ~Wie-n) A (K-2; Wz ; £, Ve K&, h)«.))
(ﬂ.u\-"' AW 17

s 'S‘-LQK
- (L >-Kk) } ’

as in (10). Thus that portion of g f:L_L given by the third and sixth terms
of Eq. III-62 leads to secular behavior in the second order energy density of
coulomb interaction. In Appendix E we calculate the remainder of the
energy density from the rest of the terms in II1I-62 and III-63. Re-
moving secular behavior will then give us a kinetic equation for the
waves.

As discussed elsewhere ( Appendix H, ) the validity of (10)or

(13) is contingent on the assumption that
Wik) —WLa) = Wlk-2) and é_‘l_-o_ (Wee) +Wik-2)) = O 18

cannot be satisfied simultaneously

for some Jo (given ik ). We now return to the problem of finding

the contribution of the third and sixth terms of III-62 to g 2 .

Ge G

Solution for g L:‘.a\.

For convenience denote (7), by g(s). We have in mind following

the same procedure in '"Method 2', namely writing Sa=-t+0 , 5s=2A
and obtaining the long t behavior from hwnm s A (s) . (7) may then
S04

be written

sqes) = F{dd Y. We. 4 S"oho '

Qw)3 (AT) 75 A+tw (B4iw -i(We-atwa) + L ww)

19

S m— N
W+ A FilWe-a twa) tLha, (~ig,va) QArpie- 2y A Qi &<~ &

r (‘.‘_—>"\5_)
| &> 2
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The P/w term vanishes because of antisymmetry in W leaving the

contribution from the & (w) , namely

1 \de WA'LPK-!;[ ! {!'}aue-e;-‘l

] (am)3 (n - i(Wu-e¥Wa) + L:,(‘Sl‘!.._)) -

1 ‘ K>~ 20
( & ritwe.etwa) ¥ Loq‘_(-n_s,y;) { !"}cu -l-\s,—{] 1.(M—) a)'

Careful examination of the _ operators in (20) reveals a term
S+

proportional to the product of two S(u)u-(ah'wn-n.) functions and

identical in form to the one previously discussed. Recognizing this as a

manifestation of secular behavior, we can write (20) for large t as

Q,Qx < 5= ’
( 7'}_ %‘%%)3 Pa Fe-e n's-qc_.& * (T«-m_) )+ T q“'““'!‘)?‘“(""‘i‘}{ 39
21

a, a1z
[

enotes
k-2 4 & deno

where{ } is the curly bracket of (17) and \’I
everything which occurs within the square bracket of Eq.20 except that
term corresponding to the product of two S(Qn'w.n.-wu-t) functions.
The first part of (2]1) is the contribution of the third and sixth terms

of Eq. III-62 to g:L‘_(t-W’O) to be used in Eq. II-34 to determine

the evolution of the first distribution. The secular part of (21), when
grouped with the remaining secular parts of g:‘xit from Eq. III-62
and Eq. III-63 will lead to a kinetic equation for q)k on the €t scale.
The resulting equation will be identical to that obtained by asking that

the net second-order energy density of coulomb interaction be given

by a uniformly valid expression.
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APPENDIX E

(a)
Calculation of g G ay

In this section wé examine that part of g;z_‘_ given by expression
II1-63 and the first two terms of II1-62 ( together with their ( '5‘ Z"_;f )
versions ). The effect of the third and the sixth terms in III-63 are
considered in Appendix D .We preface a discussion of the explicit form
o.f g :i”q‘by looking at a physical quantity of considerable interest, namely

the energy density of coulomb interaction (see Appendix A ).

Energy Density of Coulomb Interaction

The quantity of interest is proportional to

t2)
._L-. Z_ (4T'I‘ﬂmem) (4“‘ nqte“l) gfdv.' d\,.} %QI - T 1
k“ G.,O.:. )
Utilizing the identity
Z(4Fﬂq.€q.) S dy \ ol = S N (47‘-‘“&.90:) d! 2
r S + La, (1g,V) €lk)s) a, Stlg.v

and noting that

]

.||<_7~ é (-4'll—r\q,_€q,_)gd\b 3&1('51\,}) 1_‘)

(1) becomes ( except for the third and sixth terms in III-62)

s E(K)S'ka) G‘—T_rlz Q) m°l Kt (S-LQK'.' LK.V.)

WDy - \ { S‘ dg Yy Zmnme,},g dv Ltg-gl.%hG(g.i«.v.,s)

0 W, 4T No.Ca, S dv, cte-2)-2 et

Q)3 a Mo, K* S-LWy tLK. Wy v

X 4" Na3 Cay gdgs G'Q.;(‘og)l_(_.\{;,s)} + (g -»>-x)

X
aa fg - &\ .

(cont'd)
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+ t - Z 47 Ne.Baq) __'_ d‘!_' gil(-‘f I\L') les
) e(K,S-BdK) a; K* 2 S-cw\d-l.u.s;: et
~ Y 4T Na, Ba fdw ! 2 Qai i, V)
T K™ S-tWkttu.V, JEL 4

+ H)‘_,. Z jﬁ‘ﬂ;.eq.z'gd\!’, ng.Q'F.,m/’o!. S

Qs Mo K> (S~tWk FLKk.v,)

v (g >-g).

For large t, the double pole at $=©O renders (4) secular as t. It
is convenient at this point to record some identities useful in con-
sidering (4) and introduce some notation.

Recalling the definition of G as given in Eq. III-58, we note that

Z (4Wﬂqg eq_g) S‘d!—, Gq, ("'.Q.I‘S,)_'l )S)

G3
=1 — | — Z._ 417' nqqeq;
€(¢-2)-L{We-WeltS) a; Maj
dvs {:th:?_ -R,vs) -2 2 («,V }
xy Sk A ‘ =3 ’?Qa( l..!) :v,qcl:s -)_’)
(§- ilwu-wa) +itk-2)¥) = 4

5

Also

| (4T Nasla) ( dvr Qaiic,u ) I
[ e[ g :

* 4
E(K, S-(Wx Py S S- LWk FLIC WV,
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(2)
Keeping in mind we wish to find the long time behavior of lplc by

a
considering lim S'Lpu

) .
(s) , it is convenient to introduce the notation
20+

O ke woa; s ,Ws)

1

yd\l }—J_v (K, W) ke, W l<5:‘-33)

M (Kl,h)n,' l(-z.,h)‘z.j\(-,'ws) + /(.L(.\(a.)w?.; l(l,wlj ‘(g)h)3)

]

gd \_’_ (MV (,Kl,b),s K;,LJ-‘_;, l<3,h)1) + }AV ( K’L,h)t:, K“h)c Ry KS)(A);J)
6
= Z S\d! (5 (koW a ywas ks ) + o5 (e, W Ky W W3,Ws /
(=¥

3
- [ 4W‘nﬁ\e¢l| d\!_ { LK:,Q Lika , Q'qu,/g\/
o %Y May (A-LW3+tKs .Y ) W A LW +lKa.V

+ L lf_t.g
IV

v . 2fa, Jav }

D - LW +Ll§_n.Y

where the definitions are self-evident. With these points in mind, we
consider
(0 7
Lo s Ys) .
§OO0+

This behaves as /S because of the double pole at $= O , leading

to a secularity as t. After some tedious algebraic manipulation, for

example changing variables from L to ¥-2 incertain & integrals,

and using the symmetry 1{),& = IP'E , then for large t, (4) becomes



~-10]-

A (g Wiy ~R Wi K2, Wk~wWa )

_é.w%[

e (kg

F (-2, Wu-Wa; L,wa’) ¢,we)

|\<--Ql ~dv ~ q,
T t‘ mcu \g " Lé.}v “!

Q. (-t ¥tV +0)

‘ 2
-L Lpu_ _ W 41 Na,Caq, d
1 Jet TG Meac g 6 @xiiew det

s--uog

Al 'qu"/ﬁ Vi

4T NaCar /Ma, de. Lty . » v
(A -t +tK. V)

— 1
+’LR5 E K* 28w

o 1€ \
9s =LK

The net energy density of coulomb interaction associated with

)

-2, - {(We-Wa)+ D)

(g, We; -2 e ;0 -2 wsw--t):l

E_‘_ . Q.F%lla\!.l

(0-tderee . v)

il oot

1)
g Q.G

(apart from its initial value g ' o, (i, \Va ,01€t:) ) consists of

adding (8) and Eq. (17) of Appendix D .

In order that the energy density

be given by a 'uni‘formly valid expression we set the net coefficient equal

to zero thus giving a kinetic equation for l'Plg on the €t scale; the

(¢ »~1)

terms add to the existing terms their complex conjugate.
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We thus have

WY, = ATk wK» - AY Re AT Naar d! i 2 e 2 “‘IQV
-a—e—t q‘ mﬂ;‘(" ?._g_l‘\ . A_L‘AK'\'L\(-V Det A-—Lw.""Lu.V
| s

Sa-luwy

= dd Wa | G 06w -4 ,0ee; -2, 0u-wa)
\<\ Qw)’ E(K-2,-ilwe-wa)+A)
s

=-(.h)ls

+ QIR( Re.(

s

' (e -2, Wn )i -2 )Wu"@ﬂ

g d_:-g_ w_o_’q)u-n_ ‘)._J- (K- )Wy -2; ,Qﬂ-l’-lj K,Q,‘)lzg(wu-w‘-(‘)“.‘),
(am)3

s P 17

which is the required equation, where

= @e( 4'|—l‘nm€q}/mcu S‘dv _'.'_é 2fa (',/QV ) .

K* A€/ A5 ls= 10 (A-tWw i V)

T

)

2
We emphasize that the contribution of g‘m,‘u(o,et)to € a,a. leads toa

term identical in form to qa and can be trivially absorbed into the same .

€2)
Evaluation of g g.a-~

That part of g ::L_L from IIT-62 and III-63 excluding the third and sixth

terms of III-62 involves the operator,

(

S (S-cwe + Lot 0, w))
10
= 1 + g—:‘ (W72 3;2;’9\_{\ Z 4(TtheQ| S\j\{_\
St + Lic.

S(S-cdr+ir.v) Ma, S-lwWw L K*S E(K,S-tWu)
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1> -1

as well as its (
|Kaedd ]

) version. Because of the double pole at §=©

in the last portion of this operator there is secular behavior as t in

(1)

a.an * Careful examinationas S >0« in fact shows that the secular

term is just

t q‘h ‘-‘f‘.l\’_‘)qQ’l("‘_‘nV}){ } t ( | &> 2) 11

where { } is the curly bracket of (8).

If we group (11) with the secular part of g :?i_‘_ given in Eq.21 ,
Appendix D (coming from the third and sixth terms of III-62), the same
kinetic equation for ’LPK onthe €1 scale results as is given in (9)
which was obtained by asking that the energy density of coulomb interaction
be uniformly valid.

The ﬁonsecular t > portion of Cj c:?q._ thus arises from the

first part of operator (10). In the context of the notation introduced, we hawe

t2) ta)

CIthn. (£ -dos) = v g Y aca (s)
8—90'{—
: K D - 12
- ng( IC,V'L) ; (Vn + ( 1 &> 2
where
10w = i [ R [ sonotiss ot s
i WY (4||hq,ean) w3 E(K-2, - lOk-Wa)+a)
13
- Qa
X Jyy (-2, We-Wa) LW kW)
FoQu o214 (2.2 Jog 0161000 -2,0-25 1622, - 0a):
Ma: K (-t r Lz vA) 4 Vi -
- ﬂq.(.\_e.\{;) 1 D_’q’“ — Wi 2 qcuﬁléy\b)'

(A—va.-l,-u('.\h) 2 Jet (A—(_uo«-\-ug_.\l_.) 2e €

)
+ ‘LP“ €a, cig . Q‘Fq, /Q\Lc }
o Mar (A= LGk Lk
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¢2) to be used in Eq. II-34 to determine

The net expression for g o
[} -

the change of the first distribution is just (12) plus the nonsecular

contribution from the third and sixth terms of I1II-62 given by the first

term of Eq. 21, Appendix D .
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APPENDIX F

Calculation of Collisional Source Term Sk for the Kinetic Equationfor the Waves

— )
Noting that T 4T Na, e_j.-l S LV - Q'gt:- /av, = 1= €(k,s.)
a, Ma, k? Si + Lls.\l_\ - 1ol
Eq.IV7 becomes
(o}
40 ds.ds. /ami)* 1-€(k,s) | Z4rmq,e:, Sc\yn‘h 1
K4 S(S-5,~ 52) E(K,S.) E(-K,5,) Sa -Lig.Va
€' ¢ -+ ( ‘_(- = —‘S)
The portion of this corresponding to & ( K S,)
€ (!Sns_t)

gives zero upon closing C1 to the right and then C2 to the right leaving 'Fvom

the 1/ e(,s.) term

4w ggds.dst/caﬁ'i.)z 1 ¥ 4 naes ydy £
k'«c S(s-S(-%2) E(x,5)E(-K,S) = Sa-Lig.V
v Ca
+ (g > -K)

Denoting 2 by F(s) , we see that 2 is just a statement in Laplace variables

that
(si48. )L
R - 4 H‘ds.dsz_o_ ) Z4nme:jdy £

€(1,5/)ECKK,S) & Sa~LIK.V,

+ (K >-K)
If we pull the Laplace contours C1 and C2 over to the left picrk.ng up

the poles = —LWk; S, = v Wi then for large t , assuming the contri-

bution along C1 and C2 vanishes as £t >~ , we have
(o).
IF 4w, L F 4Tneed (dy feo .
ot k4 D—§~‘1 < A ¥y -
JS!s s (WK =
+ (e >-¢),

which 1s the required result.
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APPENDIX G

Quasi-Particles

In this section we indicate by simple arguments that the quantity

A 2
l E" ‘ Wi 'Q_g_(x,w) 1
g-IT' 2w Wk

is a meaningful entity to consider when discussing problems in which the
electric field amplitude Ek is subject to slow variations in time. It
represents the field energy in the K -th mode, |é.< lz/?n’ , plus the
polarization energy due to the interaction of the perturbed particles with
the electric field.

We take a particularly simple model of a one-dimensional Vlasov

plasma suppérting a band of marginally stable modes where the background

distribution is of the form

£

Phenomena corresponding to K outside the region of marginally stable
modes will be Landau damped and we do not include them here. Apart

from streaming terms, the solution forlarge t of the linearized Vlasov

equation
Q;FK Fivede = e Ex 2f 2
Jt m JUT
is )
~twet
. -FK - ‘:9 é\“ K Q'FO/QU' 9 )k 3
m ki Wk - Ku

A —;.U)Kt
EK = E_ EK K N 4
K
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where L.Jk satisfies

I+ wet [ kel du = 0O 5
K2 Wk ~ KU

All quantities are well defined as 9fo/3v= O for those v=Wx«/K.The above

model is exceedingly simple for there is no instability, norinclusion of
mode coupling terms. However it serves to illustrate our point, namely

that in problems where E, is subject to slow variations in time, (1) is a

k
natural energy density to consider.

From the Maxwell equation

JEw - 4T{.‘ES"9\< udir 6
It :
it readily follows that

E -« ,Q__ Ewx + (K >-k) = 4'ITE—X'U' (E-k‘FK f(K-#*k)) ol'u“. =
2t

Using (2) to eliminate E. on the right side of (7) this is readily rewritten

k
2 1EL* = 4ﬁ‘mj‘v' —L 2 1 Fu)Tdv . s
; ot 2fa/2U 2t
We thus define from (8) an energy density
A 2
JEu 1™ — 4wm Xv Ll do . 9
g W - Ftelav
From (3) this becomes
J
A 2 -2
| E «l (] - 4w e X‘K'U‘ Ao dv
g m (We -KU)*
al
- h

( |+ 4T,‘e1j 2f /v d"U‘__ WOx Arer [ Af /U
™ ¥ (We~-kU) m K qu.-uv)t

W

Using (5), this is just

= lé\uli(—wu qwe’ g fIv duU
T MKk § (W -kw)? 10
= ‘Eu\l( Wk 2 ek

o)

W PN

u),
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This represents the field plus polarization energy. (8) is just a statement
that this energy isconserved. If we had included the effect of a small insta-
bility there would be additional driving terms on the right side of (8),

however the natural energy density occuring in the analysis would still be that
given in (10).

A
1
Since the energy |Ewl” wu 3__8_" is partly made up of field energy
e IWlw,

and partly of polarization energy due to the interaction of the waves and

particles it is convenient to introduce the concept of ' quasi-particled
(although ''quasi-waves'' may be a more appropiate nomenclature). The

number of quasi.-particles in the K-th mode is defined to be mk where

Nk Wk = lé«'l Wi ?_ff_k 2
QT AW e

i.e. N . is the net wave energy in the K-th mode divided by the frequency of

k
the K-th mode.
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APPENDIX H1

The Method of Galeev and Karpman16

In considering the Eq. (V-1)

EK + LWk EK = fd'f‘ K('S‘) '_""f') E Exow ? 1
9t -7

the authors treat the nonlinear terms as small and obtain a perturbation solution

of the form

A A ) a B (2) 32 @
E'f. = A E K + >\ E K + /\ E 1< "
-iw. t
where Ek = Ek e , and wk is independent of t. Because of the struc-

a(2)

ture of the original equation they obtain E as an integral functional of the

product of two E( )'s and E( ) as an integral functional of the product of

(1)

three E 's and so on. To obtain a kinetic equation for the waves they then

average the difference

A N Ta) (1) A (1)
Ek Ek' - Ek X! over 3

N
an ensemble in which the phases of the Ek for different k are assumed

. 4 .
random, keeping terms to order A . Their prescription for averaging

(where < > denotes an average over the ensemble) is the following :

D EDy = EWsrry "

L AL AL
Cep) £ B -
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and

AO) A ) /\c-) A )

< EI< Ck' K" Egn\)
1)
8:5_ 8(_ Slk+k')S(x"+x™)

+ E‘?s« gkl' S(K+K“‘)S(K rKY) + gx 8\< Sk +x") S(k'+k™) .

6

As discussed in Chapter V, this is manifestly compatible with the homogeneous

O

nature of the ensemble. Effectively they are viewing the product of 3 E

as the product of three random numbers which they take as zero (see also

i
(1)'5 by taking the average in all possible

(t0), (7)., (18)

Ref. 10 ), and the product of 4 Ek
pairs. This method of averaging is quite prevalent in the literature
not only in the solution of the equation discussed in this section but also in the
treatment of homogeneous turbulence in an ensemble of Vlasov plasmas. We
briefly discuss this technique of averaging in Appendix H,, and do not
comment on it further at this point.
Averaging 3 according to the prescription 4 - 6 the authors find that

g - g (1) varies linea }y in t. From this they construct the change in Ek

. 8 gk-gk 8€

per unit time : , ( denote (

)) i.e., the transition
probability per unit time. The resulting equation is similar to Eq. 32 of
Chapter V, and also that obtained in Ref. |5 , describing the change of 8 Kk

due to wave-wave interactions.
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'~ APPENDIX H,

"Simple' and '"Multiple' Resonances.

We preface our comments on the approach of Benney and Saffmanls‘ with
a discussion of the assumptions inherent in the derivation of Chap. V, namely

1. For large t, intégrals of the form

L(UE -U)E‘—U}E_‘ﬁﬁ )t "

f.df_"‘:(lf,ls') .*Q- ; )

L (Wi - Wit ..(,,)\:_.ﬁ.)

where f is a relatively smooth function, behave effectively as if

LWk ~Wy!'- oo.;_-.s-)t - .
N3 — - 4 — L , 8§20, 2
L(wlg_—wlf'—h)g-lg') (A)§ ‘-wls_'—'bdls-lf_' +¢S

2. Also, in order that integrals over k', involving 6(wk - wk' g wk-k')

would not diverge it was assumed that

.2\.- (Wi + We-kr) = O,
dk' .

and

wk, + wk_k, = wk R 4
could not be satisfied simultaneously for some k' (given k ). That is, to say
we assume the resonance as ''simple' as opposed to ''multiple" .

The condition that Eqs. 3 and 4 cannot be satisfied simultaneously is in

fact a necessary condition that 2 be valid.
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We consider for simplicity

LfO)
vit) = | qx) < — L dx,
L f{x)

where f is a real function of the real variable x and g may be complex.
It is assumed that the x integration spans the entire range and that the func-
tions are sufficiently well behaved that the integral exists.

We first examine

cfx)t

%%(t) = fg(x)& dx, 6
and assume temporarily that

fi(x) = 0, 7
and flx) = 0, 8

can be satisfied simultaneously for some x, say xo . The problem of looking
at 6 for large t then lends itself readily to the method of stationary phase,
i.e., we expect the major contribution to the integral to be coming from the
region whe1;e the phase is changing most slowly, namely X - We thus Taylor

expand f(x) about xo.' Assuming f"(xo) F 0 the leading term is

%f"(xo)(x - xo)z + ...
Then 2
L L) (X-Xe) t

Qv - Jg(x)_Q_ d x

——

J



-113-

Changing variables (and for convenience taking f”(xo) > 0) to

Lj’ = \/E—go___)z (.X-Xo) 5

Q__Q_ = i S J ° 2 L‘}l
It /:0: 3 +met%)&
10

_LT/4
/ 21T (Xo
m_t 9 Xe) & 2 | for large t "

and hence apart from a constant, for large t

L/
Ute) » 2 [aT ghz pf" 4‘}] (Xe), 12
£ (o) :

which diverges. The situation is quite different if Eqs. 7 and 8 cannot be

satisfied simultaneously. For example if f'(xo) =0

but f(x ) * o0,

‘then for large t, Eq. 11 becomes

L 'F(Xta)t L-IT/4
?_ U('t) wr 2 L C_! (Xo) £ .
Jt £'(xe) 13

Apart from an additive constant, for large t, 13 gives to leading order

L flxe) T LTT4
Ut) « i L1 Cj(.Xo) £2 0

L F(xe) 0T e
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1/2
which decays effectively as l/t / , i.e.,

U(t) v Uo + O(‘/.t|l1),

15

To avoid the divergent behavior which occurs in Eq. 12 for large t, we thus

assume that

~
f'(x) = 0 and f(x) = 0 cannot be satisfied simultaneously,
: d =
or in the problem at hand that an (wk’ + wk-k') = 0
and | wk, + Wk T wk cannot be
satisfied simultaneously for some k' (given k). With this assumption it is
Lf)t
relatively simple to show that for large t, - 1 in the
Lf(x)
integrand of Eq. 5 behaves effectively as —r or
f(x) +i$
To(f(x)) + 1 ;:%{) . The sin if(x}i_;_ peaks for large t about the solutions
of f(x) = 0 and behaves essentially as 76 (f(x)) as far as the integral is
concerned. The c.os f(glt -1 behaves like i 2 for large t . The
L f(x) f(x)
cos f(x)t oscillates rapidly except about the solutions of f(x) = 0. But for
those x ., cos f(x)t -1 = 0. Thus those x for which f(x) = 0 are omitted -
cos f(x)t -1

from the integration and behaves effectively as i

P
L f(x) £(x)

Then for large t

U(t) - de q (x) L + corrections which
fix) ti§

are functions of t .

16
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In the case that f(x) has a point of stationary phase (an x such that f'(x) = 0)
but that f(x) # 0 for that point, the leading corrections are of the form 14

i.e.,

(oscillation) | ) 17
t1/ 2

In the case that f(x) has no point of stationary phase we expect that the

leading correction may decay even more rapidly. For example in looking

Jq(x)&i¥{X)tdx >

at

if we transform x such that y = f(x) (assume that this is 1to 1l for simplicity)

then the integral is effectively

dﬁ 18

where

The range of integration depends on f(x) as x — + oo . We recognize
that Eq. 18 is just the Fourier transform of G (y) over some range.
Depending on the properties of G'(y) and the range of integration this may

decay faster than in Eq. 13, i.e., than

oscillation) .
1:1 2
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- Bt

For instance, if for large t the transform in 18 varies as e
then the corréctions in Eq. 16 are of the form e Pt . In any case, barring
some pathological behavior of the functions involved, we expect that f01: large
t, 2 is a good approximation in the integral 1, provided 3 and 4 cannot be

satisfied simultaneously.
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APPENDIX H
(15)

3

The Method of Benney and Saffman Revised.

In solving the equation

. A A A L((.OE.-U)E’- h)g_-g')t
2 Ew j\dk Kk k-«') Ex Exeer 1
Jt
the authors use a multiple-time perturbation expansion
A A A
. |) [¢3
Fo = MNESE M) + N EST A ) + 0 )

As they are interested in certain averages characteristic of the spatially

k( ) nd Ek(3)

homogeneous ensemble, secularities are not removed in the E
in the usual manner. Rather, all terms are retained in these quantities but
in asking that certain ensemble averages be given in terms of expressions
which are uniformly valid, the freedom characteristic of the multiplé time techn ique
is t_lien! use€d to remove secular behavior and determine the evolution
of ensemble quantities on longer time scales.
We agree with their basic philosophy but differ in opinion on certain
points. In particular their conclusions concerning behavior on the At time

scaleareinadequate. This is a reflection of the fact that they demand that the

expression for

(£ 3@

be uniformly valid per se, rather than the total relevant quantity associated

with the }\ 4 order, namely,

[( E(') '\(:)I> N (K@K')J _\_</\ () A (‘1)>.
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A
In addition they take the initial value of Ek(z)

(viz. ﬁk(z) (0,

on the short-time scale
At. . .) ) as being zero which is not a priori justified in
the many-time theory.

One of the main fe;atures of the derivation presented in Chapter V
(where ensemble quantities are advanced at the outset and then solutions
obtained) was the fact that the natural time scales occurring in the analysis
were t, )\Zt » not t, }\t, )\Zt. It is thus pertinent to present a rigorous
analysis of the solution to 1 which will clarify the role of the /\ t scale as
far as ensemble quantities are concerned.

The relevant equations are

A

2E, =0

A A A . ) ‘
3_ E_u_.““)} + 2 E'f() = §(‘)_K_‘ K(| ."E—E‘) E_lf‘gk-K’JLL(QK W'kt )+

Jt Nt
4
N N '
2 B+ 2 EM + _Q_EK”
It It INE
A ! " , . K - 1 — —-— !
= ljd‘i' K (k' k-+) Eé-) E.:.g &.L(w We ~We-e )T
5

A A
From Eq. 3 with E W Ek(l)( At.. .), Eq. 4 yields

k
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A (a)

N (2) | AWy
E (t At ) EK (O)At"') s t 2.. Elf CO)At"")
- It
| w oA iWe-w We-wlt
+ ydg‘ Kl ) Byl B0 [ 1O oot
. 5 .

The expression for E (2) in Eq. 6 when substituted into Eq. 5, gives for

gk(s)
A s A (3) N a)
Ex (tAt~) = E. (0,Adt-) -t 2 Ey (0,At-)
AL
tz 31 A w o)
+ = o EI_(_ to,At ) ~t 2_. E . (ojA-t )
2 IAt? JA*t

-t 2__ j‘dg-' ka'x%‘&‘) A g‘: S‘_n_l (u)x—u).(._w‘;j.\g)t>

+ lj-dg' K(k\\( \<) %k“)u- é\:w (o )\t)( S‘ L (W ~ Wi ~Wgepe )T

dt )

T yd Hd l<(k‘k k') K, - K")EKK-A oo E oo
Tt t . ' /

x' ( f LDy =Wy ~Wk-wr )t j‘ L (WK ' - (D LT TR Y o
Q dt % 2. dt' | )

(™
(S
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We have interchanged orders of integration quite freely above. In contrast to

(2) (3)

Xk and E

Ref. {5 we allow the 'initial values of E on the short-time
scale to depend on )\t. .+ (in lieu of taking the initial values as zero).
A meaningful quantity to be averaged over the ensemble is Ek Ek' R

that is

A A Q1) A Aw) A
CUNEe + 0B + NBES s o YA B +A2ED 4 27 E,‘ji...)>8

4
To order )\ this is just

)\2 {» <A(.) A(.)>}
+)\3 { { é—‘Kt-) é“(|1)> s (K> "')3
+ M {[(Eﬁxm €:K(-3)> + (ILé-)K‘)-R + <€k(°‘) %k‘.“>}

+

the
To ensure the ordering remains intact, we ask that each of following quantities

be given by uniformly valid expressions
A A
< E 1) (2)> + (k&> k') 10

and
A @14 (3) ' } 224 (2)
{(Ek E,D  + (ke k) +(Ek £, ). 11
The freedom inherent in the many-time analysis will allow us to remove
secular behavior and ensure that this is true. The method of averaging over

the ensemble is the prescription given in V-15,-16, and-17.
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We introduce the notation
A ) A
E;_(_ E“l > = 805_ ()\f"')S(K‘PE')
All) ) ——
K E‘E' E|5u> = \K,K' (At“‘)S(.’S"'E“\'E_")

), (2)
= (D (At ) Sk +x')

Ky k!
(1), (3)

A w) A (3)
CES B op, ) =D, 0 (0, ) Sterir)

Lol Awy A A gy

< EK Ekl Egu EK"') = FK‘k’lK" (At,")S(L‘_ +,_<_l+§"+5m)
* € Oy ) Bur O, ) STk ri ) S (k7 1gm)
+ & thty ) €hr (Ak) ) STk ") S (k' +¢™)

+ &y (At)~) €y (Ao ) Sletk™) S (k1) 12

A ) 1), (), 1)

(& ner B
Ero oM B B ) o= T 0 O ) $ Gk 4k i)

(2),¢2)

K, K’

A (2) A ()
(Ex (0,Xt,) E ,_:_T (0)At,)) = V) (M, ) SCk+x'),

Equation 6, when substituted into expression 11, yields
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li) A O)
CEy (M) Eg )+ (K &x)

A )

A
= < El;)(o,)\t‘..) Elf_.> 1 (k & \_<_')

A
-t { E,:.)C) ék«-)> + (x ©x')

Auy Ao Ay Wk = Wk" = Wi-k"
'\"jd‘.‘." K(K."; K-x") <EK' Elk) Ko Eu"> £ e h;_ e

L (W = Wkti— We-uw)

+ (K ek') }' 13

{Sw +e') [cﬂ o, {dg" K ("

+ (ke k') ] }

=t Sre') 2 8, 14
Ixt

(2,3

t .
-x") _ru',n-nu (At) j-QL (w:“i‘“-w“‘.""x

Under the conditions discussed in Appendix H1 , for large t we

replace

LWk ~ W' — We-~x') T L
L — A by

LWk~ Wkt —Wk-wt )

W = Wit -~ W=yt T19

in integrals over k' throughout the remainder of this section, i.e., for

large t, 14 becomes
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) _
{S%Hs‘)(zﬂ.w (M, --) +5dy- K0y o) Ty e At ) 0) )

Wk - Wy = WyeentS

+ (K & ng‘)}

-t Sk+e) 2 8

AL 15
Our uniformity criterion leads us to conclude that
_2. 8;( =0 , 16
At

provided

2), (1) _
{QD K ,-K (xt) + j—\d‘su K(K“)K_'l‘(_“) I’K,K-k"(At"‘) i

Wy -~ Wy» - Qu-“u .|-\,S

t (K-> -)) 17

~. —is not ill-behaved for large >\ t. In the next order we will in fact show,
assuming 16, that J  of the expression in 17 is zero. 16 tells us that
I
there is no systematic change in the lowest-order energy density on the time
scale, At. In calculating 11, using Egs. 7, 6, and 12, together with the

properties of K given in Chapter V (V-9), one finds after considerable

algebraic manipulation that
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LSk +a) 2 (2_ ?\_)
2 AL\ IAE

A
+ t S(‘_‘_f\_(_'s){_ 2 ($|:ﬂ:<:‘)()\{:-") + i d'ﬁ‘ K(E‘)E'E\)TAJ)E'E"At"'

D/\'\'_ W - W' = Wwe-x' +1S

-2 (rveKs - 2 £

IR

1 4“‘ fdli‘ 8‘5_' 85",‘.‘ l K ( lg" \_(_—)_(_‘) Iz S(u)u-(-;)u' "U.)u-u‘)

18

— ¥dm ydK‘ gl_(_ gE-lS_‘ l<(\5‘)‘£‘5‘) \<(E)k_"‘_$)

Wi -We' - Wk -x* +i3

Gy (3)

+ S(L‘_Hf_s){ (QD ,i,’,,s (At-) +0.L<->'9)) + ( ,‘;’:’ (/\t,---))

’ J (1) 1y, 1)
+2( j.d[(_‘ K( l_(_',‘l_g-ls') T‘.‘.':'S-‘s‘ (At-) D) + (K&>K3) )

WK Wit —Wr.x +§

K, r-w!

" ( Xd'g K (ew-e) Ty t Us.@s:))

Wi - WK ~ Wk +L

+ 2(-— Yg d&‘ dE" ‘< (.‘Sll K_" ‘.‘.l) ‘((K",k"‘K") FK.’, K-K', Ki-x" (Xt‘) ' 4 (|.<. P 53

(Wk-Wut =Wy 1§ ) L wut ~Wun - Wwr-gu +l'.3)

"l"' (__ gs‘ d&' d'_C_" \< (‘.(.'l 'f"‘_‘) K(K“) '53'5“) F'S"‘S'i L"sz-K"()\‘l:.‘--))}

(W-Wkt - Wi-kr + 18] (Wey - Wun = Wyyoren +18)

)

)



-125-

In deriving a kinetic equation for the waves the last term in 18 is of little
interest (the term not involving t or tz). We only ask that it be well ~
behaved and the functions be such that the different k integrals exist. In fact

if we were to assume (as in Ref. (5 )

It
o
-

A (2)
E (o, At...)

A (3)
E " (0, At...)

1]
o

and that the irreducible 4-correlations ( F ) were effectively zero (as in
Ref. |6 ), the entire term would vanish. Our uniformity criterion demands

2 _—
that the t term vanish giving us

gXt(EQXtSK> =0 N

which reaffirms Eq. 16 . As regards the t term in Eq. 18 we imagine

integrating over k Removing the t secularity gives us that

3 .

2

CYNTD)| . ' T
{;%\t (DL o) + i yd‘i' Kk k') l“ﬁ:'i-'s'()\t'_"__'))j

' (W - W ~Wi-w' +18)

+ 2 8 - 4'?5‘3"5' Eir Bt I Ui -1 | S - Wi - W'
ANt

+?wmj‘d5‘ 85 els_-lﬁ_‘ l<(!£'a'_‘."$‘) K(En‘f_l"‘ﬁ) 20
( Wy =Wkt ~We-w! + '-8)

ik
O
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If we were to integrate this with respect to )\ t , then since 8 Kk is
independent of )\ t, the last two terms of the above expression would lead
to terms proportional to )\ t and give secular behavior for large )\ t

unless

2 8 = 4 [de B B | Kk koe) ] S te - e

- SQD\'Y\ gdlf_' 8\_ 85_\&\ K (‘_(_‘,\_{-\i‘) 1< ( E,\g_'-lg)
‘ (.w\_c, - Lt "u)k-\g\+i.§)

21

" which is just'the kinetic equation giving us the change of lowest-order energy
density f K’ °on the t time scale. This is identical with the result given

in V-32. We also have the additional information that

9_ (QD:?_)_::‘)()\‘\:) + L g‘d‘é' K(K_‘IK-&.)T-S,K_'-E‘ (At )
a)\t o (W ~ W' — Wi +LS)

+ (& »-k] = 0. 22

Discussion of results:

The quantity of physical interest g K’ which is essentially the energy
density associated with the k'th mode,does not vary on the >\ t scale. Its
kinetic behavior is given by Eq. 21 which describes its evolution on the >\2t
scale. The information in Eq. 22 on.the At scale seems rather extraneous

and of little physical interest. In fact if we take, as in Ref. |5

e

0, Nt...) = 0,
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then Eq. 22 yields

2 fd'f' K (k' k') T-ie, k-1 (At ) F (K= -k)
- (¢ - Wi - W -y +15) .
=0 23

A sufficient condition to ensure that this is true (see Eq. 12) is
A ) u) A
.?_. < EK N E Ko E kg > = O
3)\'\: = =

i.e., (1) > does not vary on the t of At scale. Any time

( E(1) ’\(1)
variations of this quantity would then appear in effects of higher order than
A4 which is beyond the scope of our present calculations.

It is of considerable import to note the general validity of the final kinetic

Eq. 21 . It is true whether or not we assume

(2)

(0, At...) = O (as in Ref. 15) 24
A N Al
and/or <E(1) (12) El(clg 0 (as in Refs. 16 and 10) 25

However, if we were to accept 24 (by assuming that the initial value of E1(<2)

) 4
is independent of A ) then to the order relevant in this theory (A ) 25

would remain true if true initially.
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APPENDIX Hy

Ensemble Averaging Prevalent in the Russian Literature

In problems of weak turbulence in a Vlasov plasma or in systems

satisfying dynamical equations of the form Eq.1, Chapter \/, the prescription
(7) (10) Gie)

for averaging over a statistical ensemble has often been

<E|m m> 8«§(\s+k) la)
A(l)

( E(l) (\) K“ > (b)

A Ny AW

N o)
{ Ex Ext Eyn Eenm) = € Buusltx) Slin +xm)

+ SKEK“ Sk+k™)S (kv +k') + € B S Sk +K™).
(c)

represents the k'th Fourier component

In the Vlasov problem Ek(l)

of the first-order self-consistent electric field. In problems associated with

the equation

. A N N L (Wk-W ' - W -yt t
g_{_: Ev = S\d‘f_\ K(K_',E-L(_')Ek‘ Ew-x LL(, “ <)

A
the meaning of Ek depends on the physical problem being investigated
( see for example reference Ib) -
In both cases the philosophy las been to solve Ek to a given order

from the original dynamical equation, i.e.

A

A W ) -3A 3)
E. = MBS +NEMENE

A A
(3) .. . (2)
k and Ek this gives Ek as an
® (3)

(1 )'s and Ek as an integral

N (2)

Apart from initial conditions of E

integral functional of the product of two E

A
functional of the product of 3E ()

X 's. Then a kinetic equation for the waves

is obtained by performing averages of appropriatequantities over a

statistical ensemble with the recipe given in Eq. (l).
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We first comment that Eq. (1) is a reflection of the spatial homogeneity
of the ensemble, thatlis to say the problems investigated have been ones
of 'homogeneous turbulence''l(a) ensures that the auﬁocorrelation function
<E (x) E (x-i:x1)> depends only on the relative co-ordinate xi . l(c) is’
analogous toV-17 and Eq. /2, Appendix H_, . In considering <Ek(1)Ek('1)Ek9)Ek'('1') >,
the taking of averages in‘all possible pairs corresponds to a cluster ex-
pansion (in this case for a spatially uniform ensemble) where the correlation
of four waves is written in terms of products of correlations of 2 waves and
the irreducible 4- correlations neglected.
Assumption 1(b) may or may not be true. In a more rigorous multiple time

analysis of Eq. (2) as given in Appendix H3, we see that the final kinetic

equation for the waves describing the evolution of Ek is true whether or not

1(b) is satisfied.
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APPENDIX I

Alternate Derivation of Hierarchy for Spatially Homogeneous Ensemble
of Vlasov Fluids

Consider the Vlasov Equation

D‘Fal + V. Q_‘FQ. = l o) . 3 o¢ Q
E)TE - X, ' Ma: IV, Z_—?QLX 5—25.\(‘ T_G\-FQ-;.de) .

1
We write
fa, = (fa,) +0QDfa, ,
where <faa) is the ensemble average of fa, and is independent of X,
Under the charge neutrality assumption
S
-S- nq,_ eq,_ = O B )
Qaz i
2

(1) becomes

%(F«A +(

Dt A'Fc“ ""V' Q ‘A-FQ| - _.L. 9—-.<F(h) Z:qu 0¢°-Q1A{: d(a))

X Mai Vi X

o

'Qz(A 'Feu A 'Fq,)d (2) \

mq‘ an Lo ’S

OVn J

Ix

With < A‘Fql> =0 , the ensemble average of (3) gives

2 (f) = L ¥ na 2 [ 3% (af, 85,3 da)
Jt Ma, g‘ ) V. jax\a ( )

2.
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The Fourier transform of (3) readily gives

\S(K_’] 2. (‘Fa.)
ot

- (g‘tA'FQ.“S'I‘!‘)t) L L‘.‘."\_,_' qul (E'l\_’_')t)
- 48 9 (fa) Zm,eq,jdvtm (ka,v)

Mar T2 QV.

= L@,
= LCa _ Z4an;eq1 dk k K Sd\b AF«,.('S';\.’_') A'{'h(ls-ls')\’_'-)'

Ma, QV:
Qg l\< -¢')’? 5

We write as in Chapter V for a spatially homogeneous ensemble ,

(Bfa U v 8 N far (0, 0n,8)) = Ho o, Gy v, ve 1) Starks), 6

< qu, (i :\!.'x't)A'FQ-L(“.*:V})t) a 'F'&s (%s,vs,t) > 7

= S(lil"\{_t""s_)) %CI-Q1."43('5')K—1J\!-l,‘l-1"\{-,)t)‘,

< A'F..('f_'.\_f_c,t) A ‘FQ‘L.(K_"-l\’J-]-t) Af‘ﬁa (s Vi ,t) A'F‘Q.4 (K_AJ\{A ‘t) >

= Z_ ﬂﬂuﬁt (I_(_.,\J_. ;V_})'t'))jc\' Q4 ( ‘9,\_/_1,\{_4 )‘t)S(‘ﬁl‘i‘l{});S(lS_g +l§_1)
{"2)3)1}

+ l‘(q.cu_aac\q ()2 K5 5 Vi, V2V, Va i) SR A #1653 +Ka )

8
which is consistent with { Afq, (X, Vs, ¢ ) > =0 .
Equation 4 or the ensemble average of Equation 5 readily gives
2 (Folet)) = L& 5 4mng e, (dudva k2 Mo, .
Jt Maq, T v 10
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Introducing the operator

L"H (K-"\L"t) = LKV - 4_9—:§°" L_'_ﬁ_ '?.(‘Fo.> Zﬂq.Eq-S\d\_{- >

Ma, K* aV_.
, 11
we construct from Egq. (5) the following equation for (A ‘FQ,(\{_- Vi, t) A‘f'q,_ (ka,Va ,t))’

(;?_ + La lie,v ) + Las tu_i,v_z.t)) (Afaite,vt) Afalicn,ve,1) )
Jt

+ g(‘ﬁ:) A-FQQ_(‘S‘l)\L‘L)t) P__ ('F‘h> T S(\iz)A‘Fq, Uﬁ':v.‘;t) .?_- <'FQ-;>
It It

{ Le"‘ Z 47 ﬂageqa z Sék d\!,“' -k’ A‘Fq.(li', Vs ,t) A‘Fq;“ﬁ"“_".\lj,t) A'FG-(“,U\L‘I'{‘)

Ma, ey - |

+ (14>2) } -

Averaging (12) according to (6), (7) and (9) yields

(3¢ T Lalewd) +Lc.z.(‘f_t'V_Ht))ﬂa.q;('i'v".':‘[”t)S(‘.‘.'*E‘)

S(kl‘l"( ) 4“ Le"‘l Z r‘qseqs :.)__ . S‘d‘fld\h k‘ '_ yq.u‘q,(s,*“l,v”\ll,\,! t)
mql IV I, -K‘\

+ L1 2) } - 13
Similarly for the product of 3 Afk's, we have ‘

(a3 1' L—q (K ,\’I.’t) r LQI.(.((L,V: ,t) +L_C\3 (K! ,V‘!,t))(A‘Fq. A'FG; A‘Fq;)
t

+ 5 8) B lio e t) A (v t) 2 (Fuvr)
{hq 3]

Z (4_ 'n" nqq eq+) Z- L eQ| d ‘S.‘ d!_q 'S.' - !il AFQ. (K.‘V|) A{.Q‘L( KI.,V!)
mq, b -w' ™
£||2 33 14

X Afas (k303) A, (0% va)
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Averaging (14), utilizing (6), (7), (8) and Eq.(10) to eliminate for example
( Afan tvest) Afas G, v 1) (6

from the left side of the average of Eq. (14), gives

( %: + La e,V t) + baslia,va, ) + Las (1¢3,v3,1) )

X/ arGags (K 14a,Vi,va Vi ) SO 4 ia +16) 15
X
= -"S(l_(-l 4+ Ke +K_‘5) z_nq‘ eq1 Z 4” LCaqy { d\/* z
- " ' _ mqu \\<.’|"
3! Tua,3}

DV;

L

""" Gq‘q,_e'\(p\h,\/-..‘t) Gq-_:,gq (\CS:V?)VA)t) *‘(1&-)3)} 5

where we have truncated the system of equations by neglecting the
K-correlations. Equations (10), (13) and (15) are identical to the system
of equations ] -25, I[1-26 and I[-28, obtained from the B- B-G-K-Y

hierarchy provided the source term Sk is neglected.
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DIAGRAM 1: Electron velocity distribution function for

slightly unstable one-dimensional plasma
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WEAK TURBULENCE IN A HOMOGENEOUS PLASMA

ABSTRACT
The problem of weak plasma turbulence is considered within the framework
of the B-B-G-K-Y hierarchy of equations for a fully ionized, magnetic field-
free, spatially homogeneous, ensemble of slightly unstable (in velocity space),
multispecies, plasmag. The hierarchy equations, utilizing the Bogoliubov--
Krylov multiple time.scale technique , are expanded in the small parameter &

where

l‘bk Y

15> €. o2 e >> €
4 nmua “ P

The quantity l,bk is the wave energy density associated with the unstable modes;

NM7Va, represents the particle kinetic energy density; Y. is a linear growth

k

—

rate typical of the unstable modes ar.1d, wk the associated oscillation frequency.
The quantity € p is the usual plasfna parameter (l/ep\" the number of
particles in a Debye sphere). In the analysis, which is carried out to order eqz,
closure of the hiera;'chy equations is obtained by ordering out the irreducible
four-part-icle correlations.

The final equations advance in time, the one -i)article distribution function
f(1), and the wave energy density tpk . Included are the nonlinear effects of
wave-wave interactions as well as ;e linear and nonlinear effects of wave-
particle scattering. The effect of particle-particle encounters is considered
in reference to the kinetic equations for l‘bk .

Various properties of the final kinetic_equations for £(1) and l,bk are

considered. These include a demonstration of particle momentum conservation,

wave energy plus particle kinetic energy conservation, and also that if the

spectrum l,li( is initially positive, it never turns negative (a result necessary
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for any stabilization arguments). The properties of the wave-wave terms

and conditions for their validity are discussed in some detail. In the special
case of a one-dimensional electron plasma the concept of quasi-partic1e§ is
introduced and quasi-particle conservation laws associated with the wave-wave
terms are demonstrated; in addition, stabilization ( Yk-—> 0) of the distribution
function is shown. The rapidity of decay of velocity moments of functions over
typical free-st?ea.ming, e-iE'Xt , terms is also investigated. A lower bound
on the k-values allowed in the theory and a condition for neglecf of particle
trapping are obtained.

In a separate example a simple model equation exhibiting solely wa;ve-
wave interactions, is considered. . The determining equation is of such a form
that in the lowest~o;'der, linearized version, waves of different wave numbers
propagate independently.' To next order, the nonlinear wave interactions act
as perturbations which slowly transfer energy between modes. Two rigorous
techniques of solution are developed. In one approach the coherent problem of
solving for the wave amplitude order by order is treated; then, by performing
a suitable statistical average over a spatially homogeneous/ensemble, a kinetic
equation for the wave energy density is obtained. In the other approach, equa-
tions for wave correlatisrs characterizing the ensemble are constructed at the
outset from the original dynamical equation. From these, a kinetic equaﬁon
describing the evolution of the wave ehergy density is obtained. The latter
approach is a very direct way to do the problem and results in major algebraic

and conceptional simplifications compared to the former approach. This is a

manifestation of the fact that the coherent problem entails much more
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information (and hence algebra) than is necessary for describing the ensemble. “
The principle of ensemble averaging at an early stage (in lieu of solving

the coherent problem order by order and then averaging) is considered in

reference to the Vlasov-Poisson e.quations in the problem of weak turbulence

in a plasma. It is shown that this approach leads to equations for correlations,

identiqal to the B-B-G-K-Y hierarchy if the particle-particle terms associated

with the discreteness of matter are omitted from the latter formalism. This

result gives strong motivation for using the hierarchy equations in the problem

of plasma turbulence instead of usiﬁg the technique prevalent in the literature

of solving the coherent Vlasov problem order by order and then averaging.

Ronald C. Davidson ,

Department of Astrophysical
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