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Abstract

New observations of sub-cyclotron frequency instability in low aspect ratio plasma

in National Spherical Torus experiments (NSTX) are reported. The frequencies of ob-

served instabilities correlate with the characteristic Alfvén velocity of the plasma. A

theory of localized Compressional Alfvén Eigenmodes (CAE) and Global shear Alfvén

Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed

high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of

energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of

the main damping mechanisms of GAE's, the continuum damping, is treated pertur-

batively within the framework of ideal MHD. Properties of these cyclotron instabilities

ions are presented.

PACS numbers: 52.35.Bj, 52.35.Qz, 52.40.Mj, 52.50.Gj, 52.55.Fa.

∗This work supported by DoE contract No. DE-AC02-76CH03073

1



1. Introduction

Magnetic �eld activity measured by edge Mirnov coils during the NBI injection in

NSTX shows a broad and complicated frequency spectrum of coherent modes between

400kHz and up to 2.5MHz, with the fundamental cyclotron frequency of background

deuterium ions fcD = ωcD/2π = 2.3MHz, calculated using the vacuum magnetic �eld

at the geometrical axis of the plasma Bg0 = 0.3T [1, 2, 3]. The instability frequency

spectrum has discrete peaks as shown in Figure 1. Spectrum peak frequencies correlate

with the characteristic Alfvén velocity as magnetic �eld and plasma density are varied.

The NSTX is a low aspect ratio toroidal device with major and minor radii Rg0 =

0.85m and a = 0.65m respectively. In NSTX the Alfvén speed is low compared to the

injection velocity of Eb0 ' 80keV NBI deuterium ions, with vA/vb0 ' 1/4. The power

available to sustain these modes may be on the order of the total auxiliary heating

power, which is much larger than in conventional tokamaks and thus much stronger

Alfvén type instabilities are expected in NSTX. The excitation is sensitive to the NBI

injection angle. Particle losses were not seen during these instabilities.

The sub-cyclotron frequency instabilities under consideration are shear Alfvén and

compressional Alfvén (or magnetosonic) types of plasma oscillations. For the purpose

of application to the low aspect ratio plasma of Spherical Tokamaks (ST) we developed

a new theory of radially and poloidaly localized Compressional Alfvén Eigenmodes

(CAE)[3, 4]. Initially observed instabilities were identi�ed as CAEs driven by energetic

beam ions since the predicted CAE frequency spectra were in agreement with the

experiments, in which the magnetic signal peaks evolve parallel to each other. CAEs

are localized radially at the plasma edge and poloidaly on the low magnetic �eld side

of the torus. CAE frequencies are determined primarily by the Alfvén frequency at the

mode location and the poloidal wave vector: ωCAE = vAm/r, where m is the poloidal

mode number, and r is the minor radius.

In new observations such as shown in Fig. 1 the spectrum peak lines intersect

one another which indicates more complicated dispersion than reported earlier for

CAEs. We suggest that such modes are GAE's [5]. GAEs were found to be unstable

in a nonlinear Hybrid MHD (HYM) code [6, 7] modi�ed for the ST geometry (to be

reported elsewhere). In conventional tokamaks GAE's were shown to be stable against

the fast particle pressure driven instability as a result of strong continuum damping.

This is due to the toroidal coupling to the kinetic mode at the edge [11]. In this report
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we summarize the theory and observations of CAEs and GAE's in NSTX and derive

the perturbative expression of GAE continuum damping within the ideal MHD.

2. Compressional Alfvén Eigenmodes

For a typical low aspect ratio plasma of NSTX the dispersion of CAEs can be

presented in the form [4]

ω2
msn ' v2

A00

r2
0

{
4(m+1/2)2

κ2 (ε0 − α0) + κ4−1
κ4

m2+m+3/2
2

+ 2(2s+1)(2m+1)
κ

√
(ε0−α0)(1+σ)

2σ
+ n2

[
q2(r0)

κ2 +
R2

0+4r2
0

4R2
00

]}
.

(1)

where m, n, and s are the poloidal, toroidal and radial wave numbers, α0 ' B2
θ/2B

2
ϕ

measures the weakening of the magnetic �eld well due to the poloidal �eld, r0 =

a/
√

1 + σ, κ is the ellipticity, where the plasma density pro�le was chosen as ne =

ne0(1 − r2/a2)σ. Double subscript refers to the low �eld side point at r = r0. To

the lowest order in m � 1 the mode is localized at the low �eld side within poloidal

width Θ = 1/
√

ε0 − α0 . Radially the CAE is localized within the domain ∆2/r2
0 =

κ
√

2σ/(1 + σ) (ε0 − α0)/(2m + 1), and the mode structure is given by solutions in the

form

E = eφm(
√

2θ/Θ)φs(
√

2(r − r0)/∆), (2)

where φs(x) = e−x2/2Hs(x)/
√

n!2s
√

π and Hs are the s− th order Chebyshev-Hermit

functions and polynomials. To avoid the damping on the Alfvén continuum at the edge

CAEs must have low k‖ at the edge and thus low n's, so that k and the dispersion

are primarily determined by the poloidal mode numbers. Note that m in Eq.(2) is a

quantum number and becomes the cylindrical poloidal mode number in the limit of

high m's and high aspect ratio[4, 3]. Spacing between the discrete peaks of observed

CAE frequency spectra is in agreement with the theoretically obtained dispersion

expression. In discharges with pure CAEs the radial mode number corresponds to

the frequency spacing on the order of ∆fs ' 1MHz and is responsible for two bands

of CAE peaks at around f ' 0.9MHz and f ' 1.8MHz. Within each band the

peaks are typically separated by ∆fm ' 100 − 150kHz corresponding to neighboring

poloidal mode numbers m and m + 1. Toroidal mode numbers produce the �nest

splitting of each frequency peak by ∆fn ' 10− 20kHz.. These features were observed
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in experiments.

3. Global shear Alfvén Eigenmodes

GAE's are formed just below the minimumof the Alfvén continuum ω ' ±ωAmin =(
k‖(r)vA(r)

)
min

[5]. Here and below subscript min means that the value is taken at

the minimum ωAmin. The GAE eigenfrequency is slightly shifted downward from

ωAmin, and the shift depends on the q and density pro�les. GAE is localized radi-

ally near the minimum ωAmin and is dominated by one poloidal harmonic m. With

typically �at q pro�le the Alfvén continuum has a minimum at the plasma center,

so that ω ' ±vA0 (m/q0 − n) /Rax, where Rax is the major radius of the magnetic

axis. One can see that if q is evolving in time eigenfrequencies of GAE's with di�er-

ent combinations of (m, n) will have di�erent time dependencies. This can be seen

from �gure 1, where the instability peaks intersect. In this �gure we plotted several

simpli�ed GAE eigenfrequencies ω ' −ωAmin. The choice of the sign is made to

match the calculated frequency with the observed and to satisfy the resonance condi-

tion of co-injected beam ions with CAE/GAE's (see next section). Some discrepancy

with the measured frequencies is due to the uncertainties in the measurements of

the plasma parameters and in the reconstruction of the equilibrium with the EFIT

equilibrium code. We calculate the AE continuum and one of the GAE's using the

ideal MHD code NOVA [8] as shown in �gure 2. The frequency of this mode in

the laboratory frame is f = (1.18 + nfrot)MHz, where frot = 11kHz accounts for

the plasma rotation. This frequency closely (within 5%) matches the observed fre-

quency. The frequency separation between the di�erent modes is primarily due to

the changes in n or m, so that ∆f = fm,n+1 − fm,n = vA0/R − frot = 175kHz or

∆f = fm+1,n − fm,n = vA0/q0R = 150kHz.

The problem of �nding the eigenmode structure needs numerical solution for the

general plasma equilibrium and was studied in Ref. [5]. A proper eigenmode structure

is necessary to determine one of the main contribution to GAE damping, which is the

continuum damping due to the interaction with the m+1 harmonic Alfvén continuum

on the tail of the eigenfunction [11]. GAE approximate solution and dispersion were

found analytically in Refs.[9, 10] in the case when the Alfvén continuum minimum

is at r = rmin 6= 0. In spherical tokamak conditions with high beta (as one can see

from the example in Fig. 2) it is more practical to consider a case of rmin = 0, which
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we address in the remainder of this section. The shift of the minimum of the Alfvén

continuum to the plasma center is caused by such e�ects as strong Shafranov shift and

low aspect ratio.

3.1. GAE mode structure

To calculate the GAE eigenfunction we consider the ideal MHD equation for the

shear Alfvén plasma oscillations in the cylinder for a mode with (m, n) wave numbers

[9, 12]:

d

dr

[
u

d

dr
Em

]
− r−2

(
m2 − 1

)
uEm +

d

adr

(
ω2

v2
A

)
r2Em +

d

adr

[
r3ε̂

ω2

v2
A

d

dr
Em+1

]
= 0. (3)

where u = r3
(
ω2/v2

A − k2
‖m
)

/a, Em = Φm/r , Φm is themth harmonic of the perturbed

electrostatic potential, and the coupling parameter of the m and m+1 harmonics, ε̂ =

5r/2R0, is obtained in high aspect ratio and �at current pro�le limit. Approximately

ω/ωc < 1 corrections can be accounted for by re-normalizing the frequency of the

mode as follows ω2 → ω2/ (1− ω2/ω2
c ), but will be neglected in this paper for the

sake of simplicity. We restrict analysis to the case of interaction of only two poloidal

harmonics, so that the other equation required for the system is similar to Eq.(3) with

the subscript substitution m → m + 1 and m + 1 → m.

We will solve this system by the perturbation technique assuming ε̂ � 1 and

m � 1, so that unperturbed solution is obtained when two harmonics are considered

decoupled and E0
m+1(r) = 0. Note that since the GAE is expected to be localized near

the center [11] the quadratic form allows inclusion of weakly coupled m + 1 harmonic

perturbatively (see below section 3.2) and assumptions we use seem adequate. For

the zero order mth harmonic electric �eld we introduce the new function ξ = E0
m

√
u.

Then we obtain an eigenmode equation

d2

dx2
ξ − V ξ = 0, (4)

with the potential in the form V (x) = (m2 − 1) /x2+(lnu)′′ /2+(lnu)′2 /4−r2ω2 (lnn)′ /uv2
A,

f ′ ≡ df/dx, x = r/a. Let us consider the following pro�le of the Alfvén frequency

continuum ω2
A = ω2

A0 + Dxδ, D > 0, and density pro�le as speci�ed above. Note that

such form of the cylindrical continuum is more convenient to �t to the realistic Alfvén
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continuum. Then the potential equals

V (x) = m2−1/4
x2 − σ(1+x2)

(1−x2)2
− xδ−2((δ−1)g+xδ)

(g−xδ)
2 + 1

4

[
3
x
− 2σx

1−x2 − xδ−1δ
g−xδ

]2
− 9

4x2 +
2σ(g+ω2

A0/D)
(g−xδ)(1−x2)

,
(5)

where g = (ω2 − ω2
A0) /D. One can show that this potential is shaped near the cen-

ter mostly due to the �rst and the last terms in Eq.(5) V (x) ' (m2 − 1/4) /x2 +

2σω2
A0/D

(
g − xδ

)
+ C, where C equals the rest of terms in Eq.(5) evaluated at the

minimum, C ' const =
[
(lnu)′′ /2 + (lnu)′2 /4− 9/4x2

]
|x=x0

. The minor radius of

the minimum of the potential, x0, is determined by the equation V ′(g, x0) = 0,

which is transcendental in general: g − xδ
0 = x

δ/2+1
0

√
δσω2

A0/D (m2 − 1/4) . This

equation also determines the condition for the potential well minimum to exist in-

side 0 < x0 < 1. Analytical solution of this equation is allowed for δ = 2: x2
0 =

g/
(
1−

√
δσω2

A0/D (m2 − 1/4)
)
. One can see that low-m GAE's are easier to satisfy

this condition for a given ωA(r) dependence. Numerically one can also show that at

higher δ, i.e. at more �at continuum pro�le, the condition for the existence of the po-

tential well minimum, which is the necessary condition for GAE localization, is easier

to satisfy.

Within the framework of WKB the quantization condition for GAE localization is

∫ x2

x1

√−V dx = π
1 + s

2
, (6)

where s is the radial mode number and x1,2 are the turning points (V (x1) = V (x2) = 0)

bounding the region where V < 0. The solution in the WKB limit can be given by

ξs (x) = exp
{
[1− 2η(x− x2)]

∫ x
x1

√
V dx

}
, where η(x) is the Heaviside step function.

For δ = 2, however, and m � 1 there is no solution for x2, which means that if the

continuum is not �at enough near the center the GAE can propagate to the edge of

the plasma.

If δ > 2 we �nd the solution approximately and can write x0 ' x2 ' (−g)1/δ

and approximate V (x) ' (m2 − 1/4) /x2 if x > x2 and V (x) ' (m2 − 1/4) /x2 +

2σω2
A0/Dg + C if x < x2. In such a case the solution of the eigenmode equation for

x < x2 can be expressed through the Bessel functions of order m:

ξ(x) = e0

√
xJm

((
−2σω2

A0/Dg − C
)1/2

x
)

, (7)
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where we imposed the boundary condition at the center ξ(0) = 0. Outside of the poten-

tial well, x > x2, the solution is ξ(x) ∼ e1x1/2−m. The dispersion relation is obtained

by matching two parts of the solution and their �rst derivatives at x = x2. We obtain

e1 = e0Jmxm
2 and the dispersion equation Jm−1

(
(−2σω2

A0/Dg −C)
1/2

(−g)1/δ
)

= 0 or

(
−2σω2

A0/Dg − C
)1/2

(−g)
1/δ

= jm−1,s+1, (8)

where jm−1,s+1 is the standard notation for the zeros of the Bessel function. The

�rst zero, corresponding to the �rst radial eigenmode at s = 0 in the high m limit is

jm−1,1 ' m + 1.86m1/3 + m−1/3. Thus the eigenmode structure of the GAE with sth

radial number is determined by

ξs (x) =


 e0

√
xJm (jm−1,s+1x/x2) , x < x2

e0Jm (jm−1,s+1)xm
2 x1/2−m, x > x2,

(9)

where x2 is to be found by solving Eq.(8).

3.2. GAE continuum damping

To calculate the continuum damping we will follow the perturbative procedure

similar to one outlined in Refs.[12, 13] in application to toroidicity induced Alfvén

eigenmodes. For that we construct the quadratic form by multiplying Eq.(3) by E∗
m

and integrating it over the minor radius. To zero order in ε̂ the quadratic form is

G (ω0) ≡ ∫
dr
[
au
(
E0′2

m + m2−1
r2 E02

m

)
− d

dr

(
ω2

0

v2
A

)
r2E02

m

]
= 0, where E0

m = ξs/
√

u. The

�rst order correction to the quadratic form includes the m + 1th harmonic. One

can see from Eq.(3) written for m + 1 harmonic that u vanishes at the m + 1th

harmonic continuum, r = rs, so that E1
m+1has a discontinuity, but its contribution

to the quadratic form is small O (ε̂). In the corresponding equation for the m + 1

harmonic (see Eq.(3)) we will keep only the �rst and last terms near rs. In the limit

of high m one can estimate xδ
s ' 2ω2

A0/DRqk‖m(0)(1 − x2
s)

σ/2 ' 2ω2
A0/DRq0k‖m(0).

To treat the singularity near rs we apply the causality condition that the frequency is

formally in the upper half-plane, ω0 + iν, ν > 0 and take the limit of ν → 0, so that

near the singular point rs

d

dr

[
r3
(
(ω + iν)2 /v2

A − k2
‖m+1

) d

dr
E1

m+1

]
+

d

dr

[
r3ε̂

ω2
0

v2
A

d

dr
E0

m

]
= 0. (10)
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In this case the quadratic form can be again obtained from Eq.(3) similarly to the zero

order limit and results in the equation dG/dω0δω = − ∫ drr3 (E0
m)

′ (
E1

m+1

)′
ε̂ (ω2

0/v
2
A),

where we denoted the �rst order correction to the eigenfrequency as δω. Integrating

Eq.(10) by parts and keeping only the imaginary part of the frequency correction we

can write

=δω

[
dG

dω0

]
= lim

ν,δ→0
=
∫ rs+δ

rs−δ
dr

r3ε̂2 (E0
m)

′2
ω4

0v
−2
A

(ω0 + iν)2 − v2
Ak2

‖m+1

= −π
r3
s ε̂

2 (E0
m)

′2
ω3

0 |ω0|
v2

A

∣∣∣∂v2
Ak2

‖m+1/∂r
∣∣∣ ∣∣∣∣∣rs

. (11)

This is the general expression for GAE continuum damping, which we will simplify

in the following in the high-m limit and using the above parametrization. We then

�nd
∣∣∣∂v2

Ak2
‖m+1/∂r

∣∣∣ ' xδ−1
s Dδ/a and dG/dω0 ' 4e02ω0m

2Im,s/a (ω2
A0 − ω2

0), where

Im,s =
∫ x2
0 dxJ2

m/x. Thus with the help of Eq.(9) we obtain

= δω

|ω0| = −π

4

ε̂2
sω

2
0

δD

x2m+δ
2

x2m+2δ
s

J2
m(jm−1,s+1)

Im,s
. (12)

It is clear that this contribution is always stabilizing. For practical purposes we

compute numerically J2
m(jm−1,s+1)/Im,s ' 1.95m2/3/

(
m2/3 + 5/3

)
for 1 < m < 100

with better than 1% accuracy. One can notice that as long as x2 < xs, i.e. the

singularity is outside the mode localization, the high-m modes are slightly damped,

=δω/ |ω0| ∼ (x2/xs)
2m+δ.

Let us consider an example of the continuum damping of m = −4 GAE in NSTX,

R0/a = 1.3, and �x σ = 0.5, δ = 4, ω2
0/D = 1. The dispersion equation for s = 0

(Eq.(8)) gives g = −0.48×10−3 , and we also obtain x2 = 0.148, xs = 0.7. The damping

rate from Eq.(12) gives the very low value =δω/ |ω0| = −0.12× 10−7. The maximum

continuum damping (=δω/ |ω0|)max ∼ 1 is achieved when the singular surface is within

the mode localization, that is x2 = xs. In this case our perturbative technique is not

valid. Low value of the damping we calculated is due to the chosen large δ, which

makes the mode localized near the center and separated from the m + 1 continuum.

Low poloidal mode number GAE m ≤ 2 should su�er stronger damping from the

continuum due to a global structure extended enough to stabilize the beam ion drive.

This wlll be estimated in the next section. Stronger damping is expected for non-�at

Alfvén continuum such as δ = 2. For practical purposes Eq.(11) has to be applied

with the substitution of the numerical eigenmode structure.
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4. CAE/GAE cyclotron excitation by beam ions

Since CAE's are localized at the edge and GAE's are localized at the center we

consider a WKB approximation. A more general system of equations than considered

above for the perturbed electric �eld in a homogeneous plasma is

(
k2
⊥ − F

)
E1 −HE2 = 0 (13)

HE1 − FE2 = 0, (14)

where k⊥, k‖ are the perpendicular and parallel wavevectors, F = ω2ε11/c
2 − k2

‖ , H =

ω2ε12/c
2, dielectric tensor elements are ε11 = ε22 = ω2

pi/ (ω2
ci − ω2), ε12 = −ε21 =

iωω2
pi/ωci (ω

2
ci − ω2) and we ignored the parallel electric �eld. Here we have chosen

direction 1 to be perpendicular to the vector k⊥, and to the equilibrium magnetic

�eld. The dispersion equation for both branches is F (k2
⊥ − F )−H2 = 0. If |ω| � ωci

the two branches are decoupled and satisfy two equations: F = 0 for shear Alfvén and

k2
⊥−F = 0 for compressional Alfvén oscillations. Equation (14) gives the electric �eld

polarization in case of |ω| < ωci, E1 = E2H/k⊥ � E2 for GAE's and in the limit of

k‖ � k , E1 = E2F/H ' −iE2ωci/ω for CAEs.

The perturbation theory expression for the growth rate of the cyclotron instability

driven by fast beam ions is described in Ref. [14] and includes particle drift motion

which strongly modi�es the resonant interaction with the eigenmode:

γb = −ω
∫

drE∗=εA
b E/2

∫
drE∗εE, (15)

where subscript b refers to the beam ions, and εA
b is the anti-hermitian part of beam ion

dielectric tensor. For CAEs we obtain E∗εE = |E1|2 ω2
pi/ω

2
ci and for GAE's E∗εE =

|E2|2 ε11 (1 + 2ω4ε11/ω
2
cik

2
⊥c2). In the WKB approximation the contribution of the

anti-hermitian part of beam ion dielectric tensor is given by the formula

∫
drE∗=εA

b E = −2πZ2
b e

2

ωmbqR

∑
l

∫
drdEdE⊥δ(θ− θres)IG

′∗
l E∗GlE

[
∂

∂E +
lωcb

ω

∂

∂E⊥

]
fb,

(16)

where q is the safety factor, E = v2/2, and I is the resonance factor, Gl = {−iv⊥∂Jl/∂z; v⊥Jl/z},
G′

l = {−iv⊥∂Jl/∂z; v⊥lJl/z} and θres is determined by the resonance condition ω −
lωcb − k‖v‖ = 0. From Eq.(16) one can show that the strongest instability is the one
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with l 6= 0, for which we restrict our analysis in this paper. In such a case the variation

of the phase in the wave particle interaction comes from the lωcb term in the resonance

condition. The �rst term in the square brackets of Eq.(16) contributes to the damp-

ing or to the drive depending on the distribution function anisotropy. For estimates

it is useful to take the limit ω2/ω2
cb � 1 and introduce the function g according to

the following. For CAE G′∗
l E∗GlE ' E2

1v
2
⊥ (J0 − J2)

2
/4 ≡ gv2

⊥E2
1/4 and for GAE

G′∗
l E∗GlE ' E2

1v
2
⊥ (J0 + J2)

2 /4 ≡ gv2
⊥E2

2/4. In the case of co-injection we have to

chose l = −1 and ω < 0. Then the expression for the beam ion anti-hermitian part of

the dielectric tensor is

∫
drE∗=εA

b E =
πω2

pblωcb

ω2

∫
drdv‖dv⊥E2

i

[
∂ (v2

⊥g)

∂v⊥
− v3

⊥gω

v2lωcb

(
v∂

∂v
− λ∂

∂λ

)]
fbδ

(
ω − lωcb − k‖v‖

)
,

(17)

where λ ≡ v⊥/v. The NBI injection in NSTX is tangential. Typically the distri-

bution function can be separated into two parts: almost tangentially con�ned pass-

ing with narrow width in pitch angle fbp = 3B2βb(1 − η)e−λ/δλp/v3δλ2
p2

3πEb0 and

trapped bump-on-tail in v⊥ direction, which we assume as Gaussian with narrow

width fbt = 3B2βbη
√

1− λ2
0e

−(λ−λ0)
2/δλ2

t/v3δλtλ02
3π3/2Eb0, where η gives a fraction

of trapped ions. For the dense plasma η can be close to one, while for the low density

plasma it is much smaller than 1.

The integrand determines conditions for the instability. In particular we show

the dependence of the driving term in the integrand of Eq.(17), i.e. the quantity

(k⊥/ωcb) ∂ (v2
⊥g) /∂v⊥, in �gure 3. It can be shown that the contribution from passing

particles is small as O(δv⊥bp/v⊥b0) in comparison with the trapped ion contribution,

but may be large if passing particles are dominant, i.e. when η � 1. Comparing the

integrand of Eq.(17) from �gure 3 we conclude that at the low end for the instability

one should have 1 < k⊥ρ⊥b < 2 or 1 < (lω/ωcb) (v⊥b0/vA) < 2 for CAEs and 2 <

(lω/ωcb) (v⊥b0/vA)
(
k⊥/k‖

)
< 4 for GAE's. Both conditions can be met in NSTX. Note

that the �nite width of the distribution function in v⊥(denote it δv⊥bt) is stabilizing.

The requirement for such stabilization can be obtained from �gure 3 so that for CAEs

we need δv⊥bt > −vAωcb/ω, and for GAE's δv⊥bt > −2vAωcb/ω. If the distribution

function is narrower then the assumption of narrow pitch angle width of the trapped

particle distribution function we use is reasonable. After some algebra we arrive at
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the expression for GAE growth rate:

γbGAE

ω
=
−Tiβb

Eb0βi

3πωcb (lωci + ω)

2ω2

{
(1− η)

[
2− 6δλ2

p

ω

lωcb

]
+ η

[
∂ (v2

⊥gt)

v⊥∂v⊥
− ωλ2

0gt

lωcb

]}
,

where gt = g(λ = λ0). For CAEs the growth rate expression is similar γbCAE '
γbGAE , whereas gt function is to be taken according to CAE resonance condition. This

expression gives the growth rates on the order of γb/|ω| ' nbt/ni ≤ 1%, where nbt is the

characteristic density of trapped beam ions. The term due to passing particles in the

growth rate expression may be driving if the width of the passing particle distribution

function is bigger then δλ2
p > 1/3 (1− ω/ωcb). One can conclude from the obtained

expression that the instability favors low frequency provided the resonance condition

is satis�ed. Typically the distribution function of beam ions becomes isotropic below

the critical energy so that the drive is possible within the energy range Eb∗ < E < Eb0

or in NSTX 20keV < E < 80keV , i.e. vb0/2 < v < vb0. Trapped particles can be

in a resonance if their parallel velocity satis�es v‖/vA > (1 + ωcb/ω) for GAE's and

v‖/vA > k⊥(1 + ωcb/ω)/k‖ for CAEs.

5. Thermal ion stochastic heating due to high frequency Alfvén

Eigenmodes

A very important aspect of CAE instability in STs is their nonlinear evolution

and saturation. CAEs are considered as candidates to explain the high thermal ion

temperature in NSTX through stochastic heating mechanism [15]. Experimentally

more evidence of the correlation of the CAE instability with the increase in the back-

ground ion temperature is needed to con�rm this idea [2]. We simulated this e�ect

in more complex toroidal geometry (see Fig. 4) than was reported previously[15].

Stochastic domain at low energy corresponding to the plasma background ions occurs

at lower amplitude than in the slab plasma. Initial temperature pro�le of thermal

ions is shown as a solid parabolic curve in Fig.4. We used 21 CAEs to simulate mea-

sured CAE spectrum by edge Mirnov probes in NSTX. Internal measurements of rms

amplitude of the perturbations is not available and was �xed δB/B = 0.5× 10−3 in

calculations with the collisional frequency ν = 0.01ωc. Mode frequencies were in the

range 0.2 < ω/ωcb(R = Rax + a) < 0.8. Calculations indicate that the heating is

proportional to the mode numbers if the amplitude is �xed. Stochastic multimode
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heating by CAEs could provide a way of direct energy channeling from beam ions to

the thermal plasma ions.

6. Conclusions

High frequency modes with frequencies below the fundamental cyclotron frequency

of thermal ions were observed in NSTX. Based on the measured spectrum of high

frequency modes we identi�ed them as CAEs and GAE's. CAE frequency peaks have

similar time evolution as plasma parameters change, while GAE peaks may intersect

due to q-pro�le relaxation. Theory is presented to study properties of these modes.

Both types of instabilities are driven by the NBI tangential injection in NSTX. Beam

ions excite CAE/GAE's through the Doppler shifted cyclotron resonance. The main

source for the drive is the velocity space anisotropy of the beam ion distribution

function. One of the major damping mechanisms of GAE's is the continuum damping

and is derived and shown to be small for high poloidal mode numbers and non-�at

Alfvén continuum near the center.

Our simulation of the e�ect CAE/GAE's may have on plasma ions indicate that

these modes may provide a channel for e�cient energy transfer from NBI directly to

thermal ions.
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Figure 1: Time evolution of the Mirnov signal (a), and its frequency spectrum (b) in NSTX

shot #108236.
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Initial profile

After 2msec

Figure 4: Modeling of thermal ions heating due to multiple CAE modes during 2msec.
Also shown is the initial parabolic ion temperature pro�le.
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