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Abstract

Effects of elliptically polarized Alfvén waves on thermal ions are inves-

tigated. Both regular oscillations and stochastic motion of the particles

are observed. It is found that during regular oscillations the energy of the

thermal ions can reach magnitudes well exceeding the plasma tempera-

ture, the effect being largest in low-β plasmas (β is the ratio of the plasma

pressure to the magnetic field pressure). Conditions of a low stochasticity

threshold are obtained. It is shown that stochasticity can arise even for

waves propagating along the magnetic field provided that the frequency

spectrum is non-monochromatic. The analysis carried out is based on

equations derived by using a Lagrangian formalism. A code solving these

equations is developed. Steady-state perturbations and perturbations with

the amplitude slowly varying in time are considered.

I. INTRODUCTION

The interaction of Alfvén waves and ions plays an important role in both space

and laboratory plasmas. In particular, the acceleration of the ions by Alfvén waves

is a possible source of the energetic particles in solar-terrestrial environment, various

mechanisms of such an acceleration being proposed, see, e.g., Ref. 1–3. Recently it was

shown that non-linear resonances on sub-harmonics of the ion gyrofrequency, ωBi, can

lead to the particle stochastic motion and concomitant plasma heating.4 It was found

that the increase of the transverse energy dominates the increase of the longitudinal

energy. Therefore, it was concluded that the sub-harmonic heating can be responsible for
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the fact, that the plasma temperature across the magnetic field exceeds the longitudinal

temperature in the lower Solar corona. In addition, this mechanism can contribute to the

plasma heating during an instability caused by the injected ions in the National Spherical

Torus Experiment (NSTX)5, in which case, however, fast magnetoacousic waves, rather

then Alfvén waves, were generated by the injected ions.6 Note that non-linear resonances

on sub-harmonics of the particle gyrofrequency has been known for as long as 45 years.7

However, it was not known till 20014 that they can lead to stochasticity of the particle

motion.

In this work, we consider the particle motion influenced by Alfvén waves with the fre-

quencies comparable to the ion cyclotron frequency, ωBi (the subscript ”i” will be omitted

below when it will not lead to misunderstanding). For these waves, the mentioned non-

linear resonances are especially important. On the other hand, the dispersion relation of

these waves considerably differs from the linear one ( it is known that ω = k‖vA, where

k‖ is the longitudinal wave number and vA is the Alfvén velocity, only for ω ¿ ωB). Fur-

thermore, for finite ratio of the wave frequency to the particle gyrofrequency the waves

are essentially non-linearly polarized. These facts were disregarded in previous studies

although they affect the particle motion and the stochasticity threshold. They are taken

into account in the present work.

The structure of the work is as follows. In Sec. II, using Lagrangian formalism,

we derive equations of the particle motion affected by Alfvén waves. The structure of

the derived equations considerably differs from the structure of the previously studied

equations. In Sec. III, we solve the obtained equations numerically. We build Poincare

maps for the case of a monochromatic wave and investigate temporal evolution for the

case when several waves are present. In addition to the previously studied case of a

steady-state perturbation, we study the particle behavior in the presence of the waves

with slowly varying amplitudes. In Sec. IV we summarize the results obtained. In the

Appendix the features of Alfvén waves with finite ω/ωB are considered.

II. BASIC EQUATIONS AND NON-LINEAR RESONANCES

We begin with a derivation of equations of the particle motion in the electromagnetic

field. With this purpose, we use a Lagrange equation, with the Langrangean

L =
mṙ2

j

2
+

e

c
ṙjAj − eΦ(r), (1)

where r = (x, y, z), A is the vector potential of the electromagnetic field, Φ is the field
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scalar potential, two repeating subscripts (j) in a product mean the summation, ṙ2
j = ṙ·ṙ,

and ṙj = drj/dt. The Lagrange equation with L given by Eq. (1) can be written as

mr̈i +
e

c
Ȧi =

e

c
ṙj

∂Aj

∂ri

− e
∂Φ

∂ri

. (2)

We assume that the electromagnetic field consists of an equilibrium homogeneous straight

magnetic field, B0 = (0, 0, B0) and waves propagating in the (x, z) plane. In this

case A0 = (−B0y, 0, 0) and Φ0 = 0, where the subscript ”0” denotes the equilib-

rium (unperturbed) quantities and the waves are described by the perturbed vector

potential Ã and scalar potential Φ̃. We take a perturbed quantity, X̃, in the form

X̃ =
∑

k Xk =
∑

k X̂kexp(iΨk) with Ψk = kxx + kzz − ωkt, where k is the wave vector

and ωk is the corresponding wave frequency. Then Eq. (2) yields:

mẍ− eB0

c
ẏ +

e

c
˙̃Ax =

∑

k

e

c
ikx(ẋAkx + ẏAky

+żAkz)−
∑

k

eikxΦk, (3)

mÿ +
e

c
˙̃Ay = −eB0

c
ẋ, (4)

mz̈ +
e

c
˙̃Az =

∑

k

e

c
ikz(ẋAkx + ẏAky + żAkz)−

∑

k

eikzΦk. (5)

Alfvén waves are known to be linearly polarized, Ẽ = (Ẽx, 0, 0) for B̃z = 0, ky = 0,

in the ideal MHD approximation. Vanishing B̃z impies that the terms of the order ω/ωB

are neglected in the dispersion relation and polarization. For these waves one can take

Ã⊥ = 0 and use the equation

Ẽz = −1

c

∂Ãz

∂t
−∇zΦ̃ = 0

to connect Ãz and Φ̃. On the other hand, when Ã⊥ = 0, Eqs. (3)-(5) lead to Eq. (12) of

Ref. 4. However, we are interested in waves with finite ω/ωB. For these waves, B̃‖ 6= 0.

Therefore, only one component of the perturbed vector potential (or Φ̃) is arbitrary.

We use the gauge Ãx = 0 in order to describe elliptically polarized Alfvén waves. The

longitudinal component of the electric field of these waves is vanishing in ideal MHD. In

kinetic MHD, it is small, Ekz/Ekx ∼ βω2/ω2
B for k⊥ ∼ k‖ (see Appendix), where β is the

ratio of the plasma pressure to the magnetic field pressure, and will be neglected in our

analysis.

Let us express all the perturbed quantities through the y component of the wave

magnetic field. This can be done by using the following equations (see Appendix):
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Aky = −αkBky/kz, with αk = iEky/Ekx, Akz = −Bky/(ikx), Φk = iωBky/(ckzkx). Then

integrating Eq. (4) once and taking into account that Ȧkz = iψ̇kAkz = i(kxẋ+kz ż−ω)Akz

we obtain:

d2x̂

dτ 2
+ x̂− x̂0 − dŷ

dτ

∣∣∣∣∣
τ0

=
∑

k

[
ω̂ + αk

kzρ∗
− dẑ

dτ

]
b̂k sin Ψk

+

{
x̂− x̂0 − dŷ

dτ

∣∣∣∣∣
τ0

−∑

k

αkb̂k

kzρ∗
(sin Ψk − sin Ψk0)

}

×∑

k

kx

kz

αkb̂k cos Ψk −
∑

k

αk

kzρ∗
b̂k sin Ψk0, (6)

dŷ

dτ
≡ vy

v∗
= x̂0 − x̂ +

∑

k

αk

kzρ∗
b̂k(sin Ψk − sin Ψk0) +

dŷ

dτ

∣∣∣∣∣
τ0

, (7)

d2ẑ

dτ 2
≡ 1

v∗

dvz

dτ
=

dx̂

dτ

∑

k

b̂k sin Ψk − dŷ

dτ

∑

k

αkb̂k cos Ψk. (8)

Here

k2
‖ρ

2
∗ =

ω̂2
k

(1− ω̂2
k)

N2
ε

v̂2
A

, (9)

N2
ε =

1 + k2
⊥/(2k2

z) +
√

D

1 + k2
⊥/k2

z

with D =
k4
⊥

4k4
z

+ ω̂2
k

(
1 +

k2
⊥

k2
z

)
, (10)

αk = i
Eky

Ekx

= − ω̂k

1−N2
ε (1 + k2

⊥/k2
z)

, (11)

the normalized quantities are introduced: x̂ = x/ρ∗, ŷ = y/ρ∗, ẑ = z/ρ∗, ω̂k = ωk/ωB,

ρ∗ = v∗/ωB is a characteristic Larmor radius, v∗ is a characteristic particle velocity,

τ = ωBt, v̂A = vA/v∗, b̂k = B̂ky/B0, Ψk = kxρ∗x̂ + kzρ∗ẑ − ω̂kτ . Three last equations

determine the Alfvén wave dispersion relation and polarization shown in Fig. 1.

These equations differ from the corresponding equations of Refs. 4, 8, where the same

problem was studied. In particular, it was assumed in Ref. 8 that ω = k‖vA, which is not

true for ω̂ >∼ 1/2, see Fig. 1. The derived equations differs from those of Ref. 4 not only

by the presence of additional terms proportional to the wave amplitude but also by the

presence of a term proportional to the square of the wave amplitude. The latter term

affects the wave-particle interaction. To see it we linearize Eqs. (6)-(8) by following the

procedure of Ref. 4. First of all, we note that due to the fact that vz ≈ const, the phase

of the wave-particle interaction can be written as Ψk ≡ kxx + kzz − ωkt ≈ s + 2t̂, with
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s = kx(x− x0), 2t̂ = kxx0 + kzz0−ω′kt, ω′k = ωk − kzvz. Then assuming s ¿ 1 we obtain

an equation of the following type:

d2s

dt̂2
+

[
a + ε exp(2it̂)

]
s = pε exp(2it̂) + qε2 exp(4it̂), (12)

where ε ∝ b̂k, a, p, q are constant coefficients. We solve Eq. (12) perturbatively by using

a small parameter ε. Writing s =
∑

i si, with si ∝ εi and i = 0, 1, 2...N.., we obtain

the resonances a
(1)
N = N2, which corresponds to the Mathieu equation resonances4 and,

in addition, the resonances a
(2)
N = 2N2. Taking into account that a = 4ω2

B/ω′2 we

have the following resonance frequencies: ω′(1)/ωB = 2/N (Mathieu resonances) and

ω′(2)/ωB = 1/N . We conclude that the presence of the quadratic term provides additional

resonances for given N . This term, however, does not produce new resonant frequencies

because ω′(1) for even N coincides with ω′(2).

When k⊥ = 0, Eq. (6) is reduced to

ẍ + ω2
Bx = ε exp

[
−i

∫
(ω − kzvz)dt

]
. (13)

Equation (13) contains only Cherenkov resonance, ω = kzvz, which selects the resonant

particles with a special magnitude of the longitudinal velocity v‖/v∗ = v̂A

√
1− ω̂. For

this reason, the waves propagating along the magnetic field do not lead to stochasticity of

the particle motion.4 However, this conclusion is relevant only to monochromatic waves.

The situation changes in the presence of non-monochromatic waves. To see it we write

the following equation obtained from Eqs. (3)-(5) for the case of k⊥ = 0, x0 = z0 = 0 :

dv2
⊥

dτ
= −2ivy

∑

k

(
ω

kz

− vz

)
b̂k exp(iΨk), (14)

where v⊥ =
√

v2
x + v2

y. Taking into account that vy can be written as vy = v⊥ cos τ + v(1)
x

with v(1)
y ∝ ∑

k b̂k exp(iΨk) we can conclude that when there are two waves with the

frequencies ω1 and ω2 and the longitudinal wave numbers k1 and k2, a particle can

interact with the waves through the non-linear resonance

ω2 − ω1 = (k2 ± k1)v
res
‖ , (15)

where k1,2ρ∗v̂A = ±ω̂1,2/
√

1− ω1,2 according to Eq. (A11). Depending on ω2/ω1, this

resonance can provide a wave-particle interaction for various magnitudes of the ratio

vres
‖ /vA, see Fig. 2. When there are many waves with the frequencies close to each other,

the particle motion can become stochastic. Our calculations in the next section confirm

this possibility. It is clear that these resonances exist for any k⊥ rather than for k⊥ = 0

only and can decrease the stochasticity threshold when k⊥ 6= 0.
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III. ANALYSIS OF THE PARTICLE MOTION

Below we investigate the particle motion by solving numerically Eqs. (6)-(8). The

parameters of the mentioned equations are the wave amplitudes (b̂k), the normalized

wave frequencies (ω̂k), the direction of the wave propagation (k⊥/k‖), the normalized

Alfvén velocity (v̂A), and the wave spectrum. Alfvén velocity is normalized to v∗. We

take v∗ = vTi, where vTi =
√

2Ti/Mi and Ti is the ion temperature, in which case

v/v∗ = 1 for the thermal particles, whereas v/v∗ À 1 for the superthermal particles.

Let us consider first the ion motion in the presence of a monochromatic wave. In

this case, a Poincaré map can be used to show the character of the particle motion.

We build Poincaré sections of v2
⊥/v2

∗, ψk and v2
‖/v

2
∗, ψk, by taking points where vy = 0,

v̇y > 0 during the particle Larmor rotation. Note that, in contrast to the case of the

linearly polarized waves, the x-coordinate is not conserved after a cyclotron period, i.e.,

in general, xj+1 6= xj 6= x0 with j the integer. This follows from Eq. (7).

We take ω̂ = 1/2, k⊥ = k‖, v̂A = 10 (this corresponds to βi ≡ 8πpi/B
2 = 1%)

and vary the wave amplitude in order to observe the transition from regular motion to

the stochastic motion. The results for the elliptically polarized waves [with α given by

Eq. (11)] are shown in Figs. 3, 4. We observe that the particle motion is regular for

b̂ = 0.1, whereas it becomes stochastic for b̂k = 0.2.

This result implies that when v̂A = 10, plasma heating by a monochromatic wave

with ω̂ = 1/2 and k⊥ = k‖ is possible provided that b̂k exceeds 0.1. To demonstrate this

effect, we consider the same wave but assume that its amplitude slowly varies in time as

b̂(t) = b̂0 exp

[
−(t− 3t∗)2

t2∗

]
, (16)

where t∗ À ω−1, i.e., the perturbation is slowly switched on and then, after its amplitude

reached a maximum, it is slowly switched off. Note that although Eqs. (6)-(8) are derived

for the steady-state perturbation amplitude, they are valid also for sufficiently slowly

varied amplitudes. Under regular motion (b̂0 = 0.1) particle energy is conserved by the

perturbation because the process is adiabatic, see Fig. 5a. In contrast to this chaotic

motion changes the energy irreversibly, as shown in Fig. 5b for b̂0 = 0.2.

One can expect that the stochasticity will be possible for lower wave amplitudes when

the wave spectrum is non-monochromatic, in which case the resonance given by Eq. (15)

will work. Let us see how strongly the stochasticity threshold can be reduced. Because

different waves have different Ψk, we investigate the temporal evolution of the particle

energy instead of building Poincaré maps. We decrease wave amplitudes by a factor of
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ten in comparison to the amplitude considered in Fig. 5. We find that adding one wave

with ω̂ = 2/3 is sufficient to produce stochasticity, but the particle energy increases by

less than by a factor of two for the considered time t∗ = 100tB, with tB = 2π/ωB (the

wave amplitude is about its maximum value for t∗ ∼ 300tB), Fig. 6a. Adding waves

with 1/2 < ω < 2/3 strongly enhances the effect. Figure 6b shows that the energy

of a thermal particle increases by a factor of forty when there are many waves in the

considered frequency interval, i.e., when ∆ω = ωn+1 − ωn, with n integer, is very small.

On the other hand, calculations show that the heating rate does not necessarily grow

with the number of waves. The rate grows provided that the increase of the number of

waves is accompanied by the decrease of ∆ω.

The elliptically polarized wave can be considered as a superposition of two linearly

polarized waves. Therefore, one can expect that the stochasticity threshold will be higher

for the linearly polarized waves. The calculation confirms this, see Fig. 7.

A peculiarity of the regular motion is that the particle energy can strongly oscillate.

According to Fig. 2, the transverse energy of a thermal particle reaches the magnitude

E⊥ >∼ 10T during its motion. The maximum energy should grow with v̂A because the

term proportional to the wave amplitude in Eq. (6) is proportional to v̂A, [1/k‖ ∝ vA, see

Eq. (9)]. On the other hand, taking larger v̂A we decrease k⊥ for given ω̂ and k⊥ = k‖.

This fact in unfavorable for stochasticity. For instance, let us consider a monochromatic

wave with b̂ = 0.2, k⊥ = k‖ and take v̂A = 50. We obtain a picture with the regular

motion (in contrast to the results shown in Figs. 4, 5b for b̂k = 0.2) and a very strong

enlargement, by a factor of 250, of the wave amplitude.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have derived equations of the particle motion in the presence of

elliptically polarized Alfvén waves. The equations are valid for arbitrary frequencies of

Alfvén waves, which is of importance because non-linear resonances are most efficient

when ω is comparable to ωBi. It is found that, in addition to the Mathieu resonances

ω̂ = 2/N determining the interaction of the ions and linearly polarized waves, there exist

the resonances ω̂ = 1/N when the waves are elliptically polarized. Although this does

not lead to new resonance frequencies as compared to Mathieu resonances, it provides

some additional interaction leading to additional frequencies in a given order of the

perturbation theory (i.e., for given N).

Solving the obtained equations numerically we obtained the following results. First,
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we showed that the stochasticity threshold is lower by a factor of two in comparison to

the case of the linearly polarized weaves. Second, we confirmed the result of Ref.9 that

the stochasticity threshold can be strongly reduced (by several orders of magnitude) in

the presence of many waves, ωn with n = 1, 2, 3...nmax À 1. However, we found that

this will be the case only when ∆ω ≡ |ωn+1 − ωn| ¿ ωn, the heating efficiency growing

with (∆ω)−1. Third, we found that the oscillation of the particle energy when the wave

amplitude is below threshold value can be significant, especially in low-β plasmas. In

particular, in the considered case of b̂k = 0.2 the amplitude of the energy oscillations of

thermal ions reached Emax
⊥ /T = 300 for v̂A = 50 (βi = 0.04%).
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APPENDIX A: FEATURES OF ALFVÉN WAVES WITH FINITE ω/ωBI

The dispersion relation and polarization of Alfvén waves are well known, but typically

the approximation ω ¿ ωBi is used. Below we consider Alfvén waves without making

this approximation. We consider the waves in the frame with ky = 0 assuming that the

following conditions are satisfied:

k⊥ρi ¿ 1, k‖ρi ¿ 1, ω À k‖vTi, (A1)

where ρi = vTi/ωBi, vT i =
√

2Ti/Mi. Eliminating the magnetic field from the equations

ωB = c[k× E] and c[k×B]α = −ωεαβEβ, where εαβ the dielectric permeability tensor,

and taking into account that εxz ≈ 0 due to Eq. (A1) we have:

(
εxx − k2

zc
2

ω2

)
Ekx + εxyEky +

kzkx

ω2
c2Ekz = 0, (A2)

−εxyEkx +

(
εyy − k2c2

ω2

)
Eky + εyzEkz = 0, (A3)

kxkz

ω2
c2Ekx − εyzEky +

(
εzz − k2

xc
2

ω2

)
Ekz = 0. (A4)

Here the components of εαβ are as follows:
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εxx = − ω2
pi

ω2 − ω2
Bi

, εxy = −εyx ≈ i
ω

ωBi

εxx, εxz = εzx = O(k4
⊥ρ4

i ),

εyy ≈ εxx for k2
⊥ρ2

i ¿ ω2/ω2
Bi, (A5)

εyz = −εzy =





i
ω2

pi

ωωBi

kx

kz

Zi

2
for ω À kzvTe

i
ω2

pi

ωωBi

kx

kz
for ω ¿ kzvTe

εzz =




−ω2

pe

ω2 for ω À kzvTe

2ω2
pe

k2
zv2

Te
(1 + i

√
π ω

kzvTe
) for ω ¿ kzvTe

where Zi is the ion charge number.

Using Eq. (A5) and combining Eqs. (A3), (A4) we obtain:

Ekz

Ekx

= −kxkzv
2
Ts

2ω2
Bi

[
k2

zv
2
A

ω2
+

1

1− (k2v2
A/ω2)(1− ω2/ω2

Bi)

]
, (A6)

where vTs =
√

2Te/Mi. Due to Eq. (A1), Ekz/Ekx ¿ 1. The terms propotional to Ekz in

Eqs. (A2), (A3) are small provided that k2
zk

2
xρ

4
i ¿ βi. Assuming that this is the case we

obtain from Eqs. (A2), (A3) the ratio of Eky/Ekx and the dispersion relation as follows:

Eky

Ekx

=
εxy

εyy − c2k2/ω2
, (A7)

(1−N2
ε )


1−N2

ε


1 +

k2
⊥

k2
‖





− ω2

ω2
Bi

= 0, (A8)

where Nε is defined as

N2
ε ≡ c2k2

‖/(ω
2εxx). (A9)

The last equation leads to Eq. (9). Equations (A7), (A8) lead to Eqs. (11), (10), respec-

tively. Note that if we select another root of Eq. (A8) we would obtain the dispersion

relation of the fast magnetoacoustc waves [instead of Eq. (10)]. In the limited case of

ω/ωB ¿ 1, Eqs. (A6)-(A9) yield:

ω = k‖vA,
Eky

Ekx

= −i
ω̂k2

z

k2
⊥

,
Ekz

Ekx

= −kxkzv
2
Ts

2ω2
Bi

[
1− 1

k2
⊥/k2

z − k2v2
A/ω2

Bi

]
. (A10)

For the waves propagating along the magnetic field we obtain:

k2
‖v

2
A =

ω2

1− ω/ωBi

,
Eky

Ekx

= i, Ekz = 0. (A11)

Because the equations of the particle motion [Eqs. (6)-(8)] are written in terms of the

vector potential Ã and scalar potential Φ̃, let us express Ã and Φ̃ through a component
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of the perturbed magnetic field. Using x, y- components of the equations B = ik × Ã

and ck× Ẽ = ωB̃ and taking iẼy/Ẽx ≡ αk, we find:

Ãy = − α

kz

B̃y, Ãz = − 1

ikx

B̃y. (A12)

Then taking into account that Ẽz ≈ 0 and Ẽz = −ikzΦ̃ + iωÃz and using Eq. (A12) we

obtain

Φ̃ =
iω

kzkx

B̃y. (A13)

Other useful relationships are

B̃x = −ckz

ω
Ẽy, B̃y =

ckz

ω
Ẽx, B̃z =

ckx

ω
Ẽy. (A14)
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FIG. 1. Effect of the finite ratio of ω/ωB on features of Alfvén waves: a, wave dispersion for

k⊥/k‖ = 0, 1, 3 (curves 1, 2, 3, respectively; the dotted line corresponds to linear dispersion);

b, wave polarization for k⊥/k‖ = 0, 1/3, 1, 3 (curves 1, 2, 3, 4, respectively).
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FIG. 2. Velocities of particles interacting with two waves through the non-linear resonance

given by Eq. (15).
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FIG. 5. Temporal evolution of the transverse particle energy when the perturbation is

slowly varying as b̂(t) = b̂0 exp[(t − 3t∗)2/t2∗] with t∗ = 100tB, τB = 2π/ωB, for the same

parameters as in Fig. 3. The perturbation is maximum at τ ≈ 1880: a, b̂0 = 0.1; b, b̂0 = 0.2.
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FIG. 6. The same as in Fig. 5, but for several waves with b0 = 0.02: a, ω1 = 1/2, ω2 = 2/3;

b, ωj = 0.5 + 0.004j, j = 0, 1, 2..50;
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FIG. 8. Strong acceleration of a thermal particle [v⊥(τ = 0) = v∗] below stochasticity

threshold in the presence of a monochromatic wave with b̂k = 0.2, k⊥ = k‖, v̂A = 50.
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