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ABSTRACT- Recent NSTX high power divertor experiments have shown significant and 

recurring benefits of solid lithium coatings on PFC’s to the performance of divertor 

plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. 

The next step in this work is installation of a liquid lithium divertor (LLD) to achieve 

density control for inductionless current drive capability (e.g., about a 15-25% ne decrease 

from present highest non-inductionless fraction discharges which often evolve toward the 

density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability 

to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 

0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with long-

pulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired 

plasma requirements, the experimental capabilities and conditions, power handling, radial 

location, pumping capability, operating temperature, lithium filling, MHD forces, and 

diagnostics for control and characterization. 

 

Keywords: lithium, divertors, lithium wall fusion regime  

* Presenting and Corresponding author:  

H. W. Kugel, PPPL, P. O. Box 451, Princeton NJ 08543,USA. hkugel@pppl.gov. 

 



2 

1. INTRODUCTION 

 Liquid lithium deposited on plasma-facing components (PFCs) shows promise for  

removing incident tritium and controlling impurities, providing a self-healing plasma facing 

surface in a diverted high power DT reactor [1-3], and enabling a lithium wall fusion 

regime [4]. National Spherical Torus Experiment (NSTX) research with solid lithium is 

aimed initially towards using liquid lithium to control density, edge collisionality, impurity 

influxes, ELM reduction and elimination, and eventually power handling. In current NSTX 

research on sustained non-inductive current drive in H-mode plasmas, lithium has the 

potential for control of secular density (ne) rises, due to its ability to pump the atomic and 

ionic deuterium eflux by the formation of lithium deuteride. This formation of lithium 

deuteride effectively sequesters deuterium, thereby making it unavailable for recycling.  

Solid lithium does provide short pulse pumping capability, but the formation of lithium 

deuteride can saturate in the near surface layer (~250 µm [5]). Liquid lithium has much 

higher lithium deuteride capacity [6], and has potential for reactor applications [1-4]. Over 

the longer term, NSTX will investigate if liquid lithium can help integrate four important 

potential benefits for fusion, a) divertor  pumping over large surface area compatible with 

high flux expansion solutions for power exhaust and low collisionality, b) improved 

confinement [7, 8], c) reduction and elimination of Edge Localized Modes (ELMs) [7, 8, 

9], and d) high-heat flux handling. Motivated by the long range potential of lithium PFCs, 

NSTX has been investigating lithium pellet injection and lithium evaporation for density 

control and impurity control as part of a phased, three-part approach to lithium PFCs: first 

(i) lithium pellet injection [10], then (ii) lithium evaporators [7, 8, 9], and finally (iii) a 

liquid lithium divertor. This gradual approach is allowing NSTX control systems, 

diagnostics, and research to be adapted to the lithium wall fusion regime. NSTX has 

completed the first two parts of this program, and is moving aggressively toward the third 

phase, the Liquid Lithium Divertor (LLD). The first step in the LLD program (LLD-1) is a 

design that uses lithium evaporated on thin porous molybdenum, vacuum flame-sprayed on  

a thin stainless-steel liner, brazed to a copper base-plate. The next step (LLD-2) may use 

capillary flow of lithium contained in a molybdenum mesh or foam layer to load a wider 

divertor area from a higher capacity reservoir near the divertor.  This would enable ne scan 

capability in long pulse H-mode (e.g.,~ x2) by varying lithium thickness and fueling.  
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Testing the ability for sustained operation at significantly lower density (ne/nGW ~0.25- 0.5) 

is of interest for the design of next step devices requiring bootstrap current drive (e.g., ST-

CTF). The last step (LLD-3) will be designed for long pulse (5s) power handling with a 

capillary fed surface and active cooling (e.g., capillary flowing lithium, high flow tubes, 

hypervaportrons, or evaporative cooling) for 16 MW high power (10 MW NBI + 6 MW 

RF) operation. Installation of the LLD-1 is in progress. This paper describes the LLD-1 

design that addresses the desired plasma performance, and experimental program 

requirements. 

 

2. EXPERIMENT DESCRIPTION 

 The parameters achievable on NSTX include R0 < 0.85 m, a < 0.67 m, R/a > 1.26, k 

< 2.7, δ < 0.8, Ip < 1.5 MA, BT < 0.55 T, and 1.5 s maximum pulse length [11].  Copper 

passive stabilizer plates, graphite power handling surfaces, 6 MW of deuterium Neutral 

Beam Injection (NBI) heating, 6 MW of 30 MHz High Harmonic Fast Wave (HHFW) for 

rf heating and current drive provide additional experimental versatility.  The 0.2 m radius 

center stack (CS) is clad with alternating vertical columns of 1.3 cm thick graphite (Union 

Carbide, Type ATJ) tiles between columns of 2-D Carbon Fiber Composite (Allied Signal, 

Type 865-19-4) tiles. The inner divertor tiles are 5.1 cm thick Type ATJ graphite; the outer 

divertor and passive stabilizer plate tiles are 2.5 cm thick Type ATJ graphite. The PFCs are 

conditioned as required using vacuum bakeout at 350°C, Helium Glow Discharge Cleaning 

(HeGDC) between discharges, and boronization. A sabot-style Lithium Pellet Injector (LPI) 

can inject lithium, other low-Z pellets, or powders into edge plasmas. The NSTX 

configuration enables experiments with ohmic, NBI, and HHFW rf heating in CS limiter 

start-up, lower single-null diverted (LSND), and double null diverted (DND) discharges, 

with Coaxial Helicity Injection (CHI).  

  Fig. 1 shows a schematic diagram of the poloidal cross section of NSTX, the 

locations of the two LIThium EvaporatoRs (LITERs) at toroidal angles 165° and 315°, and 

the LITER central-axis aimed at the lower divertor, with dashed lines indicating the 

gaussian half-angles at 1/e intensity of the measured evaporated Li angular distributions.  

Fig. 2 shows a schematic of the LLD-1 installed near the inner edge of the outer divertor.  It 

will consist of four 90° sections, each 20 cm wide in the radial direction. The plasma facing 
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surface is a thin porous layer of 0.01 cm molybdenum, flame-sprayed on a 0.02 cm 

stainless steel liner, brazed to a 1.9 cm copper baseplate.  Resistive heaters and cooling 

lines maintain a temperature range from room temperature to 400 °C. A row of ATJ 

diagnostic tiles separates each 90° LLD-1 segment. The diagnostic tiles contain 2D 

magnetic sensors, Langmuir Probes, edge biasing electrodes, and thermocouples. The 

LITER evaporators (Fig.1) will be used initially to load LLD-1. Additional information on 

the engineering design and thermal control of LLD-1 is given in a companion paper [12]. 

 

3. PHYSICS DESIGN 

 The NSTX LLD-1 physics design encompasses both the desired plasma physics 

requirements, and the experimental capabilities and conditions for achieving them. 

3.1  NSTX LLD-1 Physics Plasma Requirements 

 In the present experiments, the highest non-inductive fraction discharges presently 

often evolve toward the density limit  (ne/nGW ~1 ).  The goal of the LLD-1design is to 

achieve density (ne) control for increased neutral beam current drive capability in the range 

ne ~ 5 x1019 m-3 at Ip = 700 kA [13]. This represents about a 15-25% decrease in ne from 

present experiments. 

3.2 Experimental Physics Capability Requirements 

3.2.1 Power Handling  

 The power handling ability of  LLD-1 is important for vessel protection during the 

initial testing, and allowing a sufficient range of input powers for characterization of future 

designs. Extensive initial modeling of various candidate LLD-1 lithium surfaces 

configurations was performed (http://w3.pppl.gov/~zakharov/). Based on these initial 

results, and additional engineering analysis [12], the first tests of the LLD-1 design limits 

power handling to low power (1.5 MW), short pulse (500 ms) deuterium NBI discharges to 

minimize lithium front face temperature rises above 400°C. Higher powers and longer 

discharge durations may be tested by sweeping the outer strike-point over the LLD-1 to 

minimize local heat transfer [12].  

3.2.2 Radial Location 

 An important physics program issue addressed in the specification of the radial 

location was to minimize impact to the planned NSTX experimental research campaign, if 
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the initial LLD-1 installation encountered a malfunction, or any operational difficulties 

during the early stages of testing.  Since most NSTX, low aspect ratio (R/a), high 

elongation, high triangularity discharges have divertor strike-points on the inner divertor 

close to the center stack, the placement of LLD-1 farther out on the outer divertor was 

adopted, as the initial lowest risk location for extended experimental research campaigns 

involving a range of plasma conditions.  

  In addition, there is a secondary technical issue involving LLD-1 radial location that 

minimizes experimental physics operating risk. In particular, the LLD-1 outer divertor 

location avoids perturbing, or reinstalling, the complex inner divertor region with its high 

density of well-characterized magnetic sensors used for plasma control. 

 The outer divertor location is sloped 21.5° downward toward the inner divertor and 

CHI gap. Preliminary NSTX laboratory tests indicate that for the initial LLD-1 lithium 

thicknesses that will be deposited (2-20 µm)  capillary forces from the vacuum flame-

sprayed molybdenum plasma facing surface will be sufficient to overcome gravitational 

induced flow over the lower edge. 

3.2.3 Pumping Capability  

 Preliminary estimates of LLD-1 pumping projections and sensitivities were 

performed for the outer divertor location and various widths using a 0-D model. The 

calculations were parameterized as a ratio of pump to core fueling probabilities, and an 

initial incident deuterium sticking probability of 0.85. The pumping efficiency was 

obtained as a ratio of the integral of the incident flux over LLD-1 to the incident flux over 

the entire divertor. Actual NSTX discharges were used to obtain the radial dependence of 

the flux for various discharge shapes, the inner-to-outer strike point ratios, and the up/down 

particle flux ratios. Fig. 3 shows equilibrium flux plots for 2 different discharges incident 

on a 20 cm wide LLD-1 located on the outer divertor. The 0-D pumping simulation gives 

an estimated 50% density reduction for a low triangularity discharge with an outer strike 

point on LLD-1 (Fig. 3a). The same simulation gives an estimated 25% density reduction 

for a high triangularity discharge with the outer strike point located on the inner edge of the 

inner divertor (Fig. 3b) due to the high flux expansion between the midplane and the 

divertor (e.g., x15-20). These results indicate that a 20 cm wide LLD-1 on the inner edge of 

the outboard divertor should provide sufficient density reduction to accommodate the 
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physics plasma requirements  (cf Section 3.1). The actual density reduction factor will 

depend strongly on how quickly core fueling efficiency increases with decreasing density. 

Detailed comparisons of the 0-D model with UEDGE calculations are in progress [14].  

3.2.4 Operating Temperature 

 Fig.4 shows the lithium evaporation rate (mg/min) from the LLD-1 surface versus 

temperature. The nominal LLD-1 initial temperature range prior to a discharge will be in 

the range from ambient temperature to 400°C.  Prior to each discharge, the LLD-1 design 

allows the initial temperature to be selected for the desired experimental conditions, and 

then established by resistive heating and/or helium gas cooling of the copper substrate. In 

the case of discharges starting from liquid lithium conditions, the initial operating 

temperature range will be from slightly above the melting point of 180.5°C to below 

400°C.  This will minimize surface evaporation from its 2.3x103 cm2 plasma facing surface 

area, and avoid the high temperature liquid lithium regime (>450°C) where the 

decomposition of LiD results in the subsequent emission of deuterium [6].   

 

3.2.5 Lithium-filling  

 The lithium loading and replenishment of LLD-1 needs to be done under vacuum 

conditions. LLD-1 for the initial experiments will be loaded with lithium using the existing 

dual LIThium EvaporatoRs (LITERs) aimed as shown in Fig.1. Shown in Fig.5 is a 

simulation of the lithium deposition [15] over the lower divrtor region and the LLD-1. A 

typical NSTX deuterium discharge contains 2.4 x 1020 deuterium particles. If the LLD-1 

were required to pump all deuterium efflux from the plasma, over every particle 

confinement time (assume conservatively ~ 50 ms),  for a discharge of length 1000 ms, then 

a total of 4.8 x 1021 deuterium particles would be absorbed. Laboratory experiments have 

shown that ionic and atomic deuterium can be absorbed to a stoichiometric ratio of 1 (i.e., 

1:1 Li/D), and that the resultant LiD has a saturation limit of 10% in liquid lithium [6].  If 

the LLD-1  absorbed deuterium atoms until this ratio is reached,  this would consume 

5.5x10-2 g of lithium (2 µm thickness on LLD-1). The present LITER deposition efficiency 

on to LLD is ~ 7% of it total output, and hence, the total lithium need is 0.79 g. Using 2 

LITER evaporators (Fig.1)  at 30 mg /min (typical LITER evaporation rates) will require 

about 13 min to coat the LLD-1. This is comparable to the time between NSTX discharges, 
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and comparable to typical LITER deposition times used previously [8]. If for some 

experiments, a lower D/Li concentration ratio of 0.1 is tested, this would require 7.9 g of 

lithium (20 µm thickness on LLD-1), or 4 g per LITER, operating at 100 mg/min for 40 

min.  This is an acceptable deposition time for special tests. 

3.2.6 MHD Forces and the Number of Segments 

 The LLD-1 design requirements for experimental physics operation must 

accommodate the effects of induced halo currents from plasma current (Ip) disruptions and 

other off-normal MHD events. While the copper baseplate of LLD-1 requires at least 1 

toroidal break to interrupt induced toroidal current flows, additional segmenting of LLD-1 

has installation, maintenance, and diagnostic instrumentation advantages. Actual discharge 

data and simulations were used to determine that an LLD-1 designed in 4 segments is 

optimal for NSTX installation, and can accommodate the estimated induced forces. In 

particular, disrupted plasma current quench rates up to 1GA/s have been measured in 

NSTX, and  maximum instantaneous quench rates can significantly exceed average quench 

rates. The field variation at the inboard edge of the outer divertor is faster than any other 

location on the outboard divertor, due to its proximity to the X-point of diverted plasmas. 

The field variation time-scale is set by both the Ip quench rate and the plasma position 

evolution, which includes vertical motion. These observations indicate that at the LLD-1 

outer divertor location, an average field time-derivative during Ip quench of up to 25 T/s for 

the normal field, and 200 T/s for the tangent field, and even larger instantaneous rates of 

change need to be accommodated in the LLD-1 design.  Simulations indicate that the 

vertical force (Fz) on each LLD-1 curved edge is ~ 1.25 kN and Fz on each straight edge is 

~ 2.18 kN. Each LLD-1 segment is supported at each of its four corners [12] to 

accommodate these forces, as well as, allow for thermal expansion, and electrical isolation. 

Electrical contact to the NSTX divertor structure is performed at one center grounding 

point so as to channel all induced halo currents through this point, and eliminate induced 

current loops. In addition, the installation of a Rogowski coil around this grounding point 

on each segment allows for characterizing these halo currents which will be essential data 

for the design of future embodiments of the LLD. 
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3.2.7 Diagnostics for Control and Characterization 

  The LLD-1 design requirements for experimental physics operation include the 

special diagnostics for controlling, and monitoring LLD-1 operation, and a thorough 

characterization for the design of future embodiments. Each 90° segment of LLD-1 has 12 

thermocouples embedded in each of the 12 heaters [12] for monitoring heater limits, 12 

thermocouples embedded in copper baseplate for monitoring heat transfer, 2 strips of 4 

thermocouples each for torodial and radial temperature variations, and 1 center post halo 

current Rogowski coil for monitoring induced currents.  In addition, each set of the 4 inter-

segment graphite tiles has diagnostic sensors. Set-1 contains the existing 2D magnetic 

sensor array presently used for control and equilibrium analysis, and thermocouples for IR 

camera calibrations.  Set-2 contains a 120 element Langmuir Probe  array for single and  

triple probe measurements. Set-3 has 2 biased electrodes for edge biasing studies, 5 

Langmuir Probes, and a thermocouple. Set-4, at  toroidally 180° opposite this location,  has 

the same configuration, i.e., 2 biased electrodes for edge biasing studies, 5 Langmuir 

Probes, and a thermocouple. 

 The design requirements for experimental physics operation specify special external 

diagnostics.  A slow IR camera (33 Hz) will monitor slow changes in thermal conditions 

before, during and after discharges. A Fast IR camera (20 KHz) will be used to measure 

power deposition during ELMs and off-normal events. Since the IR emissivity of the bright 

liquid lithium surface may be change as the lithium absorbs increasing amounts of fuel gas 

and residual components of the vacuum partial pressure (H2O, D2O, CO, CO2), IR camera 

calibration for absolute measurements may be challenging.  Thermocouples under LLD-1 

and in the inter-segment graphite diagnostic tiles will facilitate recalibration under changing 

conditions. In addition, 2-color IR camera measurements will be investigated to allow 

absolute measurements, independent of lithium surface emissivity.  Reflections from the 

bright liquid lithium surface and lithium on vessel structures will interfere with recycling 

measurements based on visible luminosity.  This will be addressed by installing a Lyman-α 

Diode Array for recycling measurements at the LLD-1, since the reflectivity of liquid 

lithium is far less at this wavelength. The LLD-1 lithium thickness and reflectivity will be 

monitored using a LASER reflectometer.  
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4.0 Discussion and Conclusions 

The NSTX LLD-1 physics design encompasses both the desired plasma 

requirements, and the experimental capabilities and conditions for operating in this regime. 

Extensive analysis indicates that for comparable pumping speeds, the lowest  risk location 

for LLD-1 to high performance,  low aspect ratio (R/a) discharges is the outer divertor. 

LLD-1 with a 20 cm width pumping on outer divertor will provide reduction in density for 

both high performance  discharges and inductionless current drive experiments. LLD-1 

operation will be restricted to below about 400°C to avoid excessive lithium evaporation 

and disassociation, and emission of deuterium bound in LiD.  The LLD-1 located on the 

outer divertor allows easiest access to feedthrus and allows easiest modification of 

instrumentation. The existing dual unit LITER lithium evaporation system will be used for 

the initial lithium fill and replenishment. Later embodiments may use a capillary flow 

system. NSTX LLD-1 is the first step toward testing the potential benefits of liquid lithium 

divertor with high power  ST plasmas in the lithium wall fusion regime [4] , and over the 

longer term, investigating if liquid lithium can help demonstrate its promising potential 

benefits for fusion. 
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Figure Captions 

 

Fig. 1. Schematic diagram of the poloidal cross section of NSTX, the locations of the two 

LIThium EvaporatoRs (LITERs) at toroidal angles 165° and 315°, and the LITER central-

axis aimed at the lower divertor, and dashed lines indicating the gaussian half-angles at 1/e 

intensity of the measured evaporated Li angular distributions.  

 

Fig. 2. Schematic of the LLD-1 installed near the inner edge of the outer divertor.  It will 

consist of four 90° sections, each 20 cm wide in the radial direction. The plasma facing 

surface is a thin porous layer of 0.1 cm molybdenum flame-sprayed on 0.02 cm stainless 

steel liner , brazed to a 1.9 copper baseplate. Resistive heaters and cooling lines maintain a 

temperature range of 200-400 °C.  

 

Fig. 3. Shown are equilibrium flux plots for 2 different discharges incident on a 20 cm wide 

LLD-1 located on the outer divertor. The 0-D pumping simulation gives an estimated 50% 

density reduction for a low triangularity discharge with an outer strike point on LLD-1 (Fig. 

3a). The same simulation gives an estimated 25% density reduction for a high triangularity 

discharge with the outer strike point located on the inner edge of the inner divertor (Fig. 3b) 

due to the high flux expansion between the midplane and the divertor (e.g., x15-20). 

 

Fig. 4. The lithium evaporation rate (mg/min) from the LLD-1 surface versus temperature. 

 

Fig. 5. Simulated lithium deposition over the NSTX lower divertor region and the LLD-1. 
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Fig.2. Schematic of the LLD-1 installed near the inner edge of the outer divertor.  It will 

consist of four 90° sections, each 20 cm wide in the radial direction. The plasma facing 

surface is a thin porous layer of 0.1 cm molybdenum flame-sprayed on 0.02 cm stainless 

steel liner, brazed to a 1.9 copper baseplate. Resistive heaters and cooling lines maintain a 

temperature range of 200-400 °C. 
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Fig.3. Shown are equilibrium flux plots for 2 different discharges incident on a 20 cm wide LLD-1 

located on the outer divertor. The 0-D pumping simulation gives an estimated 50% density 

reduction for a low triangularity discharge with an outer strike point on LLD-1 (Fig. 3a). The same 

simulation gives an estimated 25% density reduction for a high triangularity discharge with the 

outer strike point located on the inner edge of the inner divertor (Fig. 3b) due to the high flux 

expansion between the midplane and the divertor (e.g., x15-20). 
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Fig.4. The lithium evaporation rate (mg/min) from the LLD-1 surface versus temperature. 
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Fig. 5. Simulated lithium deposition over the NSTX lower divertor region and the LLD-1. 
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