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The cylindrical ideal magnetohydrodynamic (MHD) stability problem, including flow and a resis-
tive wall, is cast in the standard mathematical form, ωA·x = B ·x, without discretizing the vacuum
regions surrounding the plasma. This is accomplished by means of a finite element expansion for
the plasma perturbations, by coupling the plasma surface perturbations to the resistive wall using
a Green’s function approach, and by expanding the unknown vector, x, to include the perturbed
current in the resistive wall as an additional degree of freedom. The ideal MHD resistive wall mode
(RWM) can be stabilized when the plasma has a uniform equilibrium flow such that the RWM
frequency resonates with the plasma’s Doppler-shifted sound continuum modes. The resonance in-
duces a singularity in the parallel component of the plasma perturbations, which must be adequately
resolved. Complete stabilization within the ideal MHD model (i.e. without parallel damping being
added) is achieved as the grid spacing in the region of the resonance is extrapolated to 0 step size.

PACS numbers: 52.35.-g,52.35.Bj,52.35.Dm

One of the main goals of the tokamak plasma commu-
nity is to establish the physics principles which are the
fundamental building blocks for realizing a nuclear fu-
sion power plant based on a magnetic confinement con-
figuration. Self sustained fusion reactions require high
pressure plasmas, which are subject to instabilities. One
such instability is the resistive wall mode (RWM) - an
external kink mode that would be stable if the resistivity
of a nearby wall were zero. A proven method to stabilize
the RWM is for the plasma to have equilibrium flow [1].
This method has also been explored theoretically [2] and
numerically [3, 4].

In this Letter, we demonstrate a new approach [5] for
modeling the plasma-wall system in the simplified geom-
etry of a cylindrical plasma, and apply the resulting code
to find a window of wall locations where the RWM is sta-
bilized by flow. In contrast to previous studies [3, 4], this
complete stabilization is obtained without adding paral-
lel damping to the ideal magnetohydrodynamic (MHD)
model. Our approach couples the plasma, which has an
equilibrium flow, to the resistive wall by using a Green’s
function, so that the vacuum region is not discretized.
The final form of the stability problem is in the standard
mathematical form ωA · x = B · x, such that standard
eigenvalue solvers can be used. We present numerical
results showing that the RWM is stabilized by uniform
equilibrium plasma flow for a range of wall positions.
This stabilization occurs in the limit of infinite resolu-
tion around the RWM-sound resonant surface.

The plasma has an equilibrium state characterized by

the usual ideal MHD quantities ρ, p, B, J, and γ, as
well as an equilibrium flow V. In a circular cylindrical
geometry (r, θ, z) the MHD equilibrium equation is

µ0p
′ +

(
B2

)′
/2 + B2

θ/r = µ0rρΩ2,

where {}′ ≡ d
dr{}, Ω ≡ V · θ̂/r, and all equilibrium quan-

tities are only a function of r. The plasma exists in the
region 0 < r < a.

Perturbations about the equilibrium obey the equa-
tions

ωρξ = ρu − iρV · ∇ξ (1)

ωρu = −J̃×B−J×B̃+∇p̃−∇· [ξ(ρV ·∇V)]−iρV ·∇u.
(2)

Here B̃ = ∇ × (ξ × B), J̃ = ∇ × B̃/µ0, p̃ = −ξ ·
∇p − γp∇ · ξ, ξ is the usual Lagrangian displacement,
u has been introduced so that the eigenvalue, ω, only
appears linearly, and the components of ξ and u vary as
ei(mθ+kz−ωt). The dependence on ω is such that a mode
with Im(ω)(≡ Γ) > 0 is an instability.

An appropriate set of projections, based on Chance
et al. [6], decouples the parallel displacements from the
perpendicular displacements and allows for ∇·ξ⊥ = 0 or
∇ · ξ = 0, if an appropriate finite element decomposition
is also used. The projections are

ξr = (ξ1 + mξ2)/r ξθ = i

(
dξ2

dr
+ Bθξ3

)

ξz = i

(
−

Bθ

Bz

dξ2

dr
+ ξ3Bz

)
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or

ξ =
ξ1

r
r̂ + i

B

Bz
× ∇̃⊥ξ2 + iξ3B,

with similar projections for u, where ∇̃⊥ ≡
d

dr
r̂+

1

r

d

dθ
θ̂.

Each of the unknown eigenfunctions, ξ1(r) . . . u3(r), is
expanded as a sum of N expansion functions,

ξ1(r) =
∑

ξ1jφ1j(r), ξ2(r) =
∑

ξ2jφ2j(r),

ξ3(r) =
∑

ξ3jφ3j(r), etc.

The finite elements used are defined by

φ1j =





∫ r

rj−1
Bθr/Bz dr

∫ rj

rj−1
Bθr/Bz dr

if rj−1 < r < rj

∫ rj+1

r
Bθr/Bz dr∫ rj+1

rj
Bθr/Bz dr

if rj < r < rj+1

0 otherwise

,

φ2j =






r − rj−1

rj − rj−1
if rj−1 < r < rj

rj+1 − r

rj+1 − rj
if rj < r < rj+1

0 otherwise

,

φ3j =

{
1 if rj−1 < r < rj

0 otherwise
.

The particular form of φ1j stems from the need to allow

∇ · ξ⊥ =
1

r

dξ1

dr
+ k

Bθ

Bz

dξ2

dr
= 0,

to machine precision, to avoid spectral pollution [6].
The traditional Galerkin approach is to multiply some

projection of the starting equations [in our case Eqs. (1)
and (2)] by a test function then integrate over all space.
The necessary projections, test functions, and integrals
are

∫ a

0

r dr
φ1i

r
e−i(mθ+kz−ωt)r̂·, (3)

{
−i

∫ a

0

r drφ2ie
−i(mθ+kz−ωt)∇̃⊥ ·

1

Bz
B×

}

+

{
iφ2ie

−i(mθ+kz−ωt)rr̂ ·
1

Bz
B×

}

r=a

, (4)

and

−i

∫ a

0

r drφ3ie
−i(mθ+kz−ωt)B·, (5)

where

∇̃⊥· =
1

r

d

dr

(
rr̂ ·

)
+

im

r
θ̂ · .

Note that the surface projection in Eq. (4) is needed as
a boundary condition for the differential operator.

The method for coupling the plasma surface perturba-
tions to the resistive wall by means of a Green’s function
extends the method in Smith and Jardin [7] to a plasma
with flow. The thin resistive wall located at r = b, has
a conductivity, σ, and a thickness, d(� b), such that
τw = µ0σdb is the characteristic diffusion time of the per-
turbed magnetic field through the wall. The perturbed
current in the wall is jrw = ∇[jse

i(mθ+kz−ωt)]× r̂, where
js is a new unknown constant. The jump condition on
the perturbed magnetic field across the wall can then be
expressed as

ωτwbK̇b

(m2 + k2b2)K̇a

[
ξ1(a)α − µ0jsik

İaK̇b − İbK̇a

İbKb − IbK̇b

]
= −µ0js.

(6)
The vacuum perturbed pressure at the plasma surface,

[
B · B̃/µ0

]

vac
= jsiα

IaK̇a − İaKa

IbK̇b − İbKb

K̇b

K̇a

− ξ1(a)α2 Ka

µ0kK̇a

,

replaces the plasma perturbed pressure at the plasma
surface through the jump condition

[
p̃ + B · B̃/µ0

]

plasma
=

[
B · B̃/µ0

]

vac
.

The notation used is α ≡ mBθ(a)/a + kBz(a), Ka ≡

Km(ka), K̇a ≡
[

d
d(kr)Km(kr)

]

r=a
, etc, where Km and

Im are modified Bessel functions.
We now have 6N + 1 equations [3N operators of

Eqs. (3)-(5) × 2 equations of Eqs. (1) and (2)
+ 1 equation from Eq. (6)] and 6N + 1 unknowns,
x = (ξ1j , ξ2j , ξ3j , u1j , u2j , u3j , js), whose relationship
can be expressed in the standard mathematical form,
ωA · x = B · x. Once in this form, the generalized eigen-
value equation can be solved by any standard matrix
eigensolver; we have used the lapack routine zggevx

[8].
We examine the stability of an equilibrium having the

form

Bz =
[
B2

zaa2 + 2(B2
θa − p0)(a

2 − r2)
]1/2

/a, Vz = Vz0

ρ = ρ0, p = p0

(
1 − r2/a2

)
/µ0, Bθ = Bθar/a.

(7)
The effect on the RWM of adding uniform axial flow can
be seen in Fig. 1, which shows the sound modes and
RWMs of the stability spectra in the complex plane for
various flow rates. As expected, the main effect of the
flow is to Doppler shift the normal sound frquencies by
the amount kVz0. For clarity, the damped RWMs are
marked as label 1 in Fig. 1a and the RWM as label 2.
Several interesting features need to be pointed out in Fig.
1. First, the damped RWM at label 1 occurs at the same
frequency, ωI , as would the stabilized kink mode for an
ideal wall at the same location [7]. Next, the RWM is
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FIG. 1: Sound and RWM region of the ideal MHD stability
spectrum in the complex ω plane for a system [see Eq. (7)]
specified by a = 1, p0 = 0.7981111245µ0 , ρ0 = 1, Bza = 10,
Bθa = 1.6307189542, b = 1.625, τw = 4× 105, m = 3 and k =
1/3 for various flow rates, Vz0, using N = 40 finite elements
in the plasma. The inverse hyberbolic sine scale for Γ behaves
like a logarithmic scale far from 0 and a linear scale close to
zero. The labels are described in the text.

not damped by the sound modes until the Doppler-shift
is sufficient to cause a resonance of the RWM with the
sound modes located around ωI (i.e. kVz0 > ωI). Fi-
nally, the RWM resonates at the Doppler shifted ideal
wall frequency for higher flow rates (ωRWM = ωI +kVz0).
From these three observations, one could determine the
absolute minimum amount of flow needed to start damp-
ing the RWM, the resonant frequency of the RWM, and
the location in the plasma of the resonance, all from the
stationary plasma spectrum for a given wall location.

For Vz0 = 0.6 the Doppler shift is sufficient for the
RWM to resonate with any of the sound modes, so this
value will be chosen for the remainder of the results. It
is worthwhile to examine the nature of the RWM as we
increase the number of finite elements used. In Fig. 2, we
see that the RWM growth rate decreases as the number
of elements increases. By looking at the ξ3(= ξ‖) eigen-
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FIG. 2: Convergence of the growth and damping rates with
the number of uniformly spaced finite elements used for the
system specified in Fig. 1 and Vz0 = 0.6. The dotted line is
proportional to 1/N . Note that the points indicated by the
arrow are plotted in Fig. 1 (Vz0 = 0.6).
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FIG. 3: The real part of the ξ3 eigenfunction of the RWM
for a grid packed around the resonant surface, where Neff

would be the number of equally spaced grid points spread
across the whole plasma. The displacement is normalized
such that ξr|r=a

= 1 + 0i. Parameters are given in Fig. 1,
with Vz0 = 0.6.

functions in Fig. 3 for a grid that is localized around the
resonant surface, we see that there is a singular structure
which is not resolved even by a grid with an equivalent of
N ∼ 5000 points. Fig. 4 indicates that the amplitude of
the eigenfunctions (+) is approaching ∞ as the grid spac-
ing around the singular location, hmin, vanishes. Because
the true singular nature of the eigenfunction is only ap-
proached as hmin → 0, then it can be expected that the
growth rate will have a similar behavior. Thus, although
the RWM is not completely stabilized for any finite grid
spacing, the growth rate (× in Fig. 4) is extrapolated to
a slightly negative (damped) value for hmin → 0.

Looking at the growth rate extrapolated to hmin → 0
for various wall locations reveals that there is a window
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FIG. 4: The inverse of the amplitude (+) of the real part
of the ξ3 eigenfunction (see Fig. 3) converges to zero as
the grid spacing, hmin, around the singular location vanishes
(hmin → 0). The growth rate of the RWM (×) converges to
a slightly damped value for hmin → 0. The lines are extrap-
olations from the two smallest hmin.

-1e-06

0

1e-06

0.0001

0.01

 1.61  1.62  1.63  1.64  1.65

Γ

b

Vz0=0
Vz0=0.6

FIG. 5: The RWM extrapolated growth rate for various wall
locations, b, and flow rates, Vz0 for the system specificed in
Fig. 1. The inverse hyperbolic sine scale is used again for Γ.

of wall locations for completely stabilizing the RWM with
flow (see Fig. 5). A similar analytic limit had been solved
for previously [2], but has not been shown numerically
without adding explicit damping terms to Eq. (2). The
level to which the RWM is damped in Fig. 5 is less
than the level of damping given by the analytic limit
of Ref. 2; this difference may be due to the difference
between the perturbative approach taken to arrive at the
analytic limit (where the eigenfunctions from the RWM
without flow are used to calculate the growth rate), and
the self-consistent approach taken here.

The extrapolation to zero step size flow stabilization
has been shown explicitly for Vz0 = 0.6. This stabiliza-
tion also occurs, though it is not shown here, for the same
range of wall locations for Vz0 = 0.8 and for a narrower
range of wall locations for Vz0 = 0.45.

To summarize, we have demonstrated numerically that
the ideal MHD RWM can be stabilized by uniform flow
without additional dissipation. However, great care must
be taken to represent the plasma displacements with a
field-aligned projection and appropriate finite elements
to avoid spectral pollution. Furthermore, the resonance
between the sound modes and the RWM induces a singu-
larity in the field aligned displacement, which can only be
adequately resolved in the limit hmin → 0. Future inves-
tigations will focus on the effects of flow shear localized
around the resonant surface. Finally, some insight can be
gained by looking at the entire spectrum of the plasma-
wall system, which is made possible by casting the entire
stability problem as a standard eigenvalue problem.
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