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Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic
thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system,
this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this
process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work
is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray X1E.

Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency
and preservation of solution’s symmetric structure arising from periodic boundary condition: refining meshes in different coordinate
directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear
stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the
solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally,
the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal

conductivity.
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2 J Chen

1. Introduction

In fusion plasma physics simulation [1], the steady state of nonlinear anisotropic thermal conduction can

be modeled by the following nonlinear elliptic equation

0 oT 0 oT
. 4+ —(ky—) = 1
oz (x aa:) oy (,ﬁy ay) 8 (1)

on a 2D rectangular domain ABCD: [0, L] x [0, L,] with four vertexes at A(0,0), B(0,L;), C(Lg, Ly), and
D(0, Ly). The coordinate is given in Cartesian (z,y) system and discretized as mesh (z;, ;). The magnetic
field is directed in the y direction, and accordingly we can set x; = 1 and s, as an nonlinear function
of the temperature 7', parallel to magnetic field line. Therefore we can omit r; and denote sy by £ to
make its meaning more clear. The periodic boundary condition is set on edges AD and BC, and Dirichlet
boundary conditions are set on edges AB and CD. This setup allows us to separate the effects of grid
misalignment from the boundary effects. The upper boundary, CD, represent the material surface where
the temperature is low, and the boundary condition there is Tcp = 1. At the lower boundary, AB, the
z—La/2[)

inflow boundary condition is Ty g(x) = 10 4 40~ .

Finite element discretization [2] generates the following nonlinear system

(Saz + Syy(T))T = Ms. (2)
M is the mass matrix. Sz, and Sy, (") are the stiffness matrices contributed by operator %ZTZ and %(K/” %—5),

respectively. T' is the temperature profile to be solved. When £ is linear, Sy, (T') reduced to K||Syy- Newton-
Krylov method can be used to solve system (2). But usually it is quite expensive to update Jacobian at
each iteration. Although the Jacobian-free variation [3,4] is more efficient, information of the Jacobian is
still needed to form the preconditioner.

In this work we present an alternative way, Variable Relaxation [5, 6], to solve the nonlinear system

(1). This is a class of iterative methods which solve the elliptic equations by adding first and/or second
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order time derivative terms to eq.(1) to convert it to nonlinear parabolic or hyperbolic equation and then
marching the system to steady state. In this marching process, only the nonlinear stiffness matrix S, (T')
itself is involved and needs to be updated regularly.

We have been using this type of idea on Cray X1E to design efficient linear elliptic solvers for M3D
code [6]. Although It takes longer to converge, each iteration is much cheaper than other iterative solvers [7]
so that it still wins on vector architectured machines.

Two versions of Variable Relaxation are implemented. one is first order variable relaxation by adding
first order time derivative term; the other is second order variable relaxation by adding one more second
order time derivative term. The nonlinear iteration can be completed in two steps:

Step 1: solve eq.(1) with linear conductivity 10° < K| < 10°.

Step 2: solve eq.(1) with nonlinear conductivity x| = T5/2,

The solution from ’Step 1’ is used as an initial guess for 'Step 2’. Experiments will show that this is a
very powerful strategy to accelerate convergence. We will also demonstrate how to choose artificial time
step from CFL condition and relaxation factor from dispersion relation to achieve optimization. These
parameters differ in each timestep and individual grid point as well. An efficient way to generate the
stiffness matrix is also to be discussed in order to preserve the symmetry structure of the solution as a

result of periodic boundary condition.

2. First order relaxation and numerical schemes

The so called first order relaxation is obtained by adding a first order time derivative term to eq. (1)

ou  *T d oT

Discretizing it in temporal direction by finite difference and spatial directions as in system (2), we have

1 1
—M — 6S,,,,)TF = [=
( ) [

5 M + (1 = 0)Spon)|T* — M. (4)
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0 <0 < 1. When 0 = 0, the system is fully explicit; when € = 1, the system is fully implicit; when 6§ = %,
the system is stable and has smallest truncation error as well. Sy, = Sz + Syy(T'). The system marches
from kth timestep to next (k + 1)th timestep. d¢ is the artificial time step which should be chosen to be
small enough to make the scheme stable and big enough to allow the system approach steady state quickly.

According to CFL condition, d¢ is related to mesh scales dz in = direction and Jy in y direction by

1 1 oxd 2 0xdy -
5t§§ T 1~ x4y 3y oz x4y5t ®)
5z 157 5z T RISy
for explicit case (6 = 0). Obviously, when ) = 1 and Jz and dy are taken to be identical, the above

formulae is reduced to the very familiar expression for 2D heat conduction equation. More can be derived

if we different ¢ with respect to dz and dy

_ 5 1 S
a(st__Q—%—l—F&”@_Qi %_K”

- [ 5 - 5 5 ’

Oz (FHmF)?  W(F )
< 1 d. Sy
Wt _ w0 R~ e

o & - 2,6 :

R L T

When x| > 1, most likely we will have % < 0 and % > 0. This suggests that dz should be taken as
large as possible, while dy as small as possible.
The convergence of scheme (4) can be analyzed in the following way. Given the form of transient solution
~ _ . . 2 . 2 2
of eq.(3) as @ = e "' sin "7 sin "L—?, the operator % + %(F&”a%) has eigenvalues A\, = 7T2(T£—i + H”z_i)'

m and n are the mode numbers in z and y directions, respectively. Then the decaying rate is —A;; and

the corresponding decaying time can be found by
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The number of iterations needed for convergence can be predicted by

1 1 N2 Ny
Npo= Lo 282 T Rns 2 I TR
its = o0 T 91 1~ 21 1 -
ot s E+K||L—i m E—{-KHL—i
When K|| = 00
2 , 1N, 3
Nits — ﬁNy ~ EE(NwNy) = C(NwNy)

(NgzNy) is the number of unknowns. After some experiments, we found the optimized coefficient should
be ¢ = 0.64 for the problem we are studying. Also from the following expression we found the number of

iterations increases as || gets larger

dNys _ 2 (Ny — Ng)
drj (g 22

>0

as long as dy < dz. This is illustrated in the red curve of Fig.1.

‘[Insert figure 1 about here)’

3. Second order relaxation and numerical schemes

In addition to supply a first order derivative term in eq. (3), the second order relaxation is obtained by

adding a relaxation factor, 7, and a second order time derivative term to eq. (1)

9w  20u 9T o, OT

o Tror - o oy gy ©)
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Again it can be discretized

MT/C-I—l _ 2Tk 4 Tk:—l N M 1 T/c—l—l o Tk:—l
a2 T ot

= 0Snon T + (1 — 0)S,0nTF — Mss,

or rearranged as

[(1+ %)M — 08,00 TH =

—(1 = YMT* ! + [2M + 6t2(1 — 0)S 0 T* — 6¢>Ms.

We need the solutions at both kth and (k — 1)th time steps to update the solution at (k + 1)th time step.

The CFL condition can be expressed as (5t2(5i2 + H,HJ%) < 1. Therefore,

st < 1 _ Wzoy  Wozdy V2

T it Jw . V2 [w,
\/azz TR oz T Koy 5z T Bl oy

for explicit case ( = 0). Again, the above expression is reduced to the familiar stability condition for 2D
convection equation when s = 1 and dx and Jy are taken to be identical, The relaxation factor can be

found by looking for the transient solution of eq.(6) as well. The decay rates satisfy v? — %’y + A = (),

ory=14+ (L — \mn 1/2 For optimal damping, we choose 72 = L =1 % + K ”—2 i.e.
v T T P pmg, A L2 I Lzh ’

-
Nits—ﬁ

T 1 /N2, N 25 Na | . Ny
B l«/am_f““”% _1V# +Kj A 1‘/%N3+“I|Ny2 _ 1V N TRIRE NN
T o - - o'y

T 1 T 1 T 25 T 25
\/fg+'€llfg \/fg‘i'"ﬂllfg V2 HE VK
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When Kj| = 00

1

| N,
Nits — (; Fy)\/NzNy = C\/NJ;Ny
T

Experiments show that the optimal coefficient would be ¢ = 0.6. The number of iteration increases as the
conductivity | increases. This can be understood from the following expression and the black curve of

Fig.1:

dNits
dnH

\/3Ny2 + I<6HNy2 — \/3N3 + I<6||Ny2

> 0.
3+l€||

1
T

4. Variable relaxations

When £ is an nonlinear function of 7', 5| changes as TZ; changes at every grid point (4,7) and every time
step k. Therefore, time step and relaxation factor changes as well. This is why the name ”Variable” is
given. From now on, schemes (4) is called VR(4), scheme (7) VR(7), and £, is rewritten as mfj in nonlinear

case. From the analysis given in the previous two sections, we have

1 1 oxdy 2
Stk <= = (10)
j=9 1 k1 5
25 tEmE 4 SRS
for VR(4) and
stk < 1 _ Woxdy /0Ty V2 (11)
U= T /s N 5
Ve g JResk V2
L,L 2
k= Y V2 (12)
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for VR(7). The characteristics of 5;4“] = 52— for VR(4) and Stk = — Y2 for VR(7) with respect
T TR 5y " \/m

to dz and dy are given as contour plots in Fig. 2. For the case when x| = 1, 6t_fj is symmetric with respect
to (dz,dy) and get maximized at dx = dy. This is obvious in the upper two plots. For the case with large
K|, such as k|| = 10* in the bottom two plots, T changes more rapidly in y direction other than z direction.

Therefore large dz and relatively small dy will optimize the convergence.

‘[Insert figure 2 about here)’

A little extra work will help to understand VR(4) and VR(7) better. In fact, if we define residual

% = SponT* — Ms

at k the timestep, these two schemes can be rewritten equivalently to

THHL = Tk 4 stM 17k

=Tk 4+ oM~ 17k
k41 _ 2 mk W30t g o2 np—1.k
" = 25T — gD M

=aT* + (1 — )T+ ! 4+ M 17k,

Depending on how to choose a and 3, they converge differently.

For linear case (K)H = constant), §t and 7 are constant so that « and 3 are constant. They are equivalent
to first and second order stationary iterations. For optimal choices of dt and 7, second order method
converges with an order of magnitude faster than the first order method.

For the nonlinear case discussed here, 6t and 7 vary as iterations proceed. Therefore, they correspond
to nonstationary first and second order methods. Different choices of optimal sequences of §t* and 7% can
reproduce Chebyshev iteration, Conjugate Gradient, Richardson iteration, or the one shown in this work.

Nevertheless, the asymptotic rate of convergence are the same as for the stationary ones [8].
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5. Numerical issues

In practical application we are going to take the equal sign (=) in the two expressions given for ¢ by (10)
and (11). Due to nonuniform meshes and nonlinearity of the problem, d¢ and the damping factor 7 are
modified by scaling factors tscq1e and Tgeqre- The optimal 6t and 7 in both cases can be found by tuning

these two parameters. This is summarized in table 1.

‘[Insert table 1 about here]’

% is the stability criterion for VR(4) when x| = 1. 5 +i s OT 7 +ik 5 is the extra term if 5| is nonlinear
5o TV sy 5o T Vij 5y
or a scalar which is larger than one. Y°2% s the stability criterion for VR(7) when K| = 1. V2 o

V2

G sz
ﬁ"‘h}”@
V2

\/ﬁ is the extra term if x| is nonlinear or a scalar which is larger than one. For the relaxation factor
Y oz

VI.L, . N .
T, * is the criterion for VR(7) when ) = 1 and V2 or V2 is the extra term when &,
Vr L—y‘|'l<,||L—’g L—y+nl-“<L—”
Lo Ly Lo 15 Ly

is larger than one or nonlinear.

In order to maximize dt, @ = 1 is chosen in this work. Mesh scales dx and dy are chosen based on
the guidelines discussed in the previous sections. As an example, we have N, = (16 — 1)x2 4+ 1 and
Ny = (51 —1)x2 + 1 so that dz is 3 times greater than éy. N, and Ny are the number of corresponding
grid points in x and y directions. In this case VR(4) converged in 29, 708 number of iterations at optimal
tscate = 0.174; while VR(7) converged in 1,308 number of iterations at optimal ts.qe = 0.41, Tseqre = 0.87.
From here we can say that VR(7) is much faster (here 20 times) than VR(4). This is always true for the
choices of 6t and 7 sequences in this work if we check the expressions of N;;s for both cases. Actually it
is easy to understand that the difference of their asympotic convergence rates is an order of magnitude.
Hence from now on we will only use VR(7). Although iteration numbers seems to be large, each iteration
is very cheap even compared to JFNK which requires preconditioning.

Next let’s study the impact of initializing on convergence. As mentioned before, the nonlinear process
can be initialized by the solution from the linear system with constant ). This solution has a symmetric

structure as demonstrated in Fig.3 in (z,y) coordinate system.

‘[Insert figure 3 about here)’
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The size of k|| changes from 10° to 10°. Given the linear solution with different size of K|, the number
of iterations for the nonlinear system to reach steady state is given in the table 2. We found the nonlinear
convergence doesn’t have much difference as long as the linear solution has x| > 2. It only diverges when

a guess is given by x| = 1.
‘[Insert table 2 about here]’

The marching process is even accelerated by varying d¢ and 7 at each grid point (7,) and every time
step k. We found the iteration won’t even converge if §¢ and 7 are chosen uniformly in either temporal or
spatial directions.

Finally we give an efficient approach to update the nonlinear stiffness matrix Sy, (T") at each time step.
The numerical integration has to be carefully chosen in order to keep the symmetric structure as a result

of periodic boundary condition. Generally there exists

ON; ON;
S, (T) = —//H” Lo

with N; and Nj the ith and jth base functions in finite element space. On each triangle, assuming n is the
index running through all of the collocation points, then one way to formulate S,,(T') at kth time step

would be

ON;, N,
3 Moy

$5,(T) = 3 w(n)s* (n) (n)J(n)

where w(n), x*(n), and J(n) are the corresponding weight, conductivity, and Jacobian at nth point. aa—];"(n)

and aé\; i(n) are valued at these points as well. As a function of T, x*(n) can be found by

Z(T'lk)S/ZNl(n) or Z[,leNl(n)]S/Q

l l

where [ is the index running through all of the Cartesian grid points on each triangle. But experiments
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show that the symmetric structure is destroyed by the above two formulations. Then we designed the

following formula

S (T) = wly 3w S ) S () )

dy

which leads to

Snon = Sww + Bksyy

where B* is a vector with component B;; = mé“j at each grid point given by (4, 7). Therefore, we conclude
that the nonlinear stiffness matrix S,, can be updated by just scaling the linear stiffness matrix Sy, using
nonlinear vector B. This approach not only significantly reduces the computation complexity, but also
preserves the symmetric structure of the periodic solution. The nonlinear solution is shown in Fig. 4 again

in (z,y) coordinate system. The linear initial guess with x| =2 x 10* given in the left plot is applied.

‘[Insert figure 4 about here)’

6. Conclusions

As an extension of developing efficient elliptic solvers for fusion simulation on Cray X1E, Variable Re-
laxation is constructed by by adding first and/or second order time derivative to the nonlinear elliptic
equation and marching the resulting time-dependent PDEs to steady state. Instead of Jacobian, Only the
stiffness matrix itself is involved and needs to be updated at each iteration.

Two schemes has been given, first and second order Variable Relaxations. Four numerical issues has
been discussed: The mesh scale ratio, nonlinear process initialization, variable time step and relaxation
factor, efficient calculation of the nonlinear stiffness matrix. In summary, the mesh needs to be finer in

direction with strong conductivity; convergence can be sped up by using the solution from corresponding
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linear system as an initial guess; time step and relaxation factor has to be varied at each grid point and
every time step as well; only the nonlinear vector, used to update the nonlinear stiffness matrix, needs

to be updated regularly. Therefore, the only computation consists of renewing 6tfj, Tz-kj, and B* at each

iteration, and apparently these approaches results in a flexible, efficient, and robust algorithm to solve

nonlinear systems. The second order scheme is an order of magnitude faster than the first order one due

to the speedup of slowest mode decaying.
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Table 1. nonlinear iterations

VR(4) for linear problem VR(7) for linear problem
_ /ozdy V2
ot = “tscale
V2 8y 4, %z
Sxdy Py Er) Il 5y
0t = 4 Fu e “tscale _ VLaLy V2
Tz TF| 5y T = o Ty Ta * Tscale
T, TR T,
VR(4) for nonlinear problem VR(7) for nonlinear problem
th. = W—ﬁ . t
ij V2 3y k0o scale
5tk — Szdy 2 .t Fa TG 5y
ij T T4 3k ba scale k _ VLaLy V2
Er) ij 8y Tij = o T - Tscale
LJ +rk =
= TR Ly
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Table 2. nonlinear iterations
K| 1 2 3 4 5 6 7,8,9,10T — —10°
N;ts  diverge 1313 1310 1309 1309 1309 1308
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Figure captions

Figure 1. The coefficient c is bounded and related to .
Figure 2. 4t is related to dz and dy.

Figure 3. Linear solution at Nx=31, Ny=101.

Figure 4. Nonlinear solution at Nx=31, Ny=101, tscq;e = 0.41, T5ca1e = 0.87.

VR(7) is stable when t4.4. < 0.41 ; VR(4) is stable when #;.4 < 0.174.

15
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Figure 1. The coeflicient c is bounded and related to .
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Figure 2. 4t is related to dz and dy.
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Figure 3. Linear solution at Nx=31, Ny=101.
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Figure 4. Nonlinear solution at Nx=31, Ny=101, tscqie = 0.41,Tscqie = 0.87. VR(7) is stable when ty.q;. < 0.41 ; VR(4) is stable
when tseqze < 0.174.
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