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Abstract

The implementation of essential boundary conditions in C* finite element anal-
ysis requires proper treatment of both the boundary conditions on second-order
differentials of the solution and the curvature of the domain boundary. A
method for the imposition of essential boundary conditions using straight el-
ements (where the elements are not deformed to approximate a curved domain)
is described. It is shown that pre-multiplication of the matrix equation by the
local rotation matrix at each boundary node is not the optimal transformation.
The uniquely optimal transformation is found, which does not take the form of
a similarity transformation due to the non-orthogonality of the transformation
to curved coordinates.

Key words: Numerical Methods
PACS: 02.60.Cb, 02.70.Dh

1. Introduction

Finite elements having the C'' property, for which the second-order deriva-
tives of the discretized field are well-defined everywhere (including at element
boundaries), admit the imposition of boundary conditions on the second-order
derivatives. Even for the application of pure Dirichlet conditions, both the first
and second derivatives in the direction tangential to the boundary should be
specified at each node in order to constrain the value of the solution on the
boundary between nodes. The application of essential boundary conditions in
the coordinates local to the boundary (as opposed to global coordinates) re-
quires taking the curvature of the boundary into account. This difficulty does
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not exist with C% elements, for which boundary conditions need only account
for the normal (or tangential) directions at each boundary node.

One method of handling curved boundaries is to deform the elements in
order to approximately align the element edge with the boundary. [1, 2] (We
use the term “edge” to denote the extent of the element, and “boundary” to
denote the boundary of the non-discretized domain.) We focus here instead
on using non-conforming elements which avoids nonlinear transformations of
basis functions and integration quadrature sampling points and, in our opinion,
simplifies the implementation.

The standard method for imposing essential boundary conditions in a coor-
dinate system local to the boundary is to perform local rotations of the stiffness
matrix at each node on the boundary. (See, for example, the overview in refer-
ence [3].) Thus the matrix equation

Ku=b (1)

is transformed to
TKu=Tb (2)

where T transforms to the appropriate boundary-oriented coordinates at each
node. Ideally the transformation is such that the rows of equation (2) are
either fully constrained or fully unconstrained by the boundary conditions, so
that the constrained rows may then be replaced with the appropriate boundary
conditions without reducing the solution space orthogonal to these constraints.
What is meant here by a row being fully constrained by a boundary condition
is discussed below.

2. Obtaining the optimal transformation

For concreteness we consider two-dimensional, triangular, reduced quintic
finite elements [4], also known as the Bell triangle [5, 6] and the TUBA 3 ele-
ment [7]. For these elements, the basis functions v are orthogonal in the sense
that

Ei(l/w”v = 5ij6vw- (3)

J

where

L=0 8, 8, 9 8,0, ). (4)

The indices i and j range from 1 to 6; v and w range over all nodes. Here |,
means “evaluated at node v,” and ¢ is the Kronecker delta. In other words, for
a given operation £; there is exactly one basis function which evaluates to unity
at node v; all others evaluate to zero. Thus u|, = UPv} with U = £;(u)],. One
generally does not wants to impose boundary conditions in the global coordinate
system (L;(u)|, = b), but rather in the coordinate system local to the boundary
(LL(u) =b). Here

=0 0, 8, 0 90, 92, (5)
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Figure 1: Contour plots of two functions are shown within a finite element having two vertices,
ve and vp, lying on a curved boundary (green arc). Left: the basis function V§b7 which is
constructed such that 0z (v5")|v, = 1. Right: the trial function us®, which is constructed such
that On(ks?)|e, = 1.

where n and t are coordinates normal and tangential to the boundary at the
given node. Note that 9;(9,u) is generally not equal to 9, (d;u) when the
boundary is curved; usually one wants to constrain the former rather than the
latter.

For a node v, lying on a boundary, it can easily be shown that £'(u)l,, =
r’ L(u)ly,, where

1 0 0 0 0 0
0 ng Ny 0 0 0
0 —n n, 0 0 0
Vp Yy x
= 1o 0 0 n2 2ngny 77’12/ (6)
0 —kny Kng —ngny ni — ni NgTy
0 —rKng —kKNy ni —2ngn, n?

The curvature x = # - dt/dl, where 7 is the outward normal unit vector to
the boundary, t is the tangent unit vector, and {d¢ = dx for a differential
displacement dx along the boundary. For nodes v; not lying on the boundary
no transformation needs to be made, so we may set r’s = |, the identity matrix.
It is tempting at this point to assume that T in equation (2) should simply be
R = diag(r”), the block-diagonal matrix with block-elements r”. This procedure,
while stable, will not yield the optimal results. What one wants, in order that
the residual be constrained as much as possible when imposing an essential
boundary condition on £(u)|,,, is a new set of trial functions u?, such that

E;(M})”Ub = 0;0u,v- (7)

Let us stipulate that these new trial functions are a linear combination of the
old basis functions,

/‘;} = sfj ’ V;v (8)



so as to preserve the important property of the Ritz-Galerkin method that the
residual is orthogonal to the basis functions (in the inner-product sense). By
using equations (5) and (8) to eliminate £ and p in equation (7), and then

using equation (3), it is found that s* = [(r*)~}]T:
1 0 0 0 0 0
0 ny ny f<m§ —KNgMy Kn2
o 0 —ny ng 26ngn, —k(ni—n2) —2kngn, )
0 0 0 ni NzTy nfj
0 0 0 —2ngny ni — nfj 2ngny
0 0 0 n72! NNy ni

for boundary nodes v,. Let S = diag(s¥). If equation (1) is the result of
constructing the discretized system via the Ritz-Galerkin procedure with trial
functions v, then equation (2) is obtained by using p as trial functions instead
of v, with T = S. It can be seen in figure 2 that taking T = S results in
significantly less error than T = R.

One may still want to transform u to boundary-oriented coordinates at the
boundary nodes to facilitate the construction of the stiffness matrix, for example.
Letting u’ = Ru (which is the correct transformation of u) and T=S = (R1) "
(which is the correct transformation of K) yields

TKT v’ = Th. (10)

Note that this is not equivalent to performing a similarity transformation of K
since T is not an orthogonal matrix unless x = 0. In the case of C° elements
where the second derivatives are not constrained by boundary conditions, only
the upper-left 3 x 3 sub-matrices of R and S are relevant, the transformation
becomes a similarity transformation.

3. Surface terms

For C' elements the trial functions are twice differentiable, and therefore
two integrations by parts may be performed when constructing the weak-form
equations. Thus there are two types of surface terms which must be considered:

1. terms of the form

]{ dé n-F pf; and (11)
o9

2. terms of the form

jé -GV, (12)
o0

where F and G are arbitrary functions of space. All surface terms arising a single
integration by parts will be of the first form. Those arising from terms which
have been integrated by parts twice can in general be written as a combination
of both types.



For any reduced quintic finite element having an edge on a straight boundary,
only six trial functions are nonzero anywhere on that edge: ui*, us®, pe®, 11,
ps®, and pe® where v, and vy, are the two vertices of the edge. The surface terms
are therefore nonzero only in the weak-form equations formed using these trial
functions. Essential Dirichlet boundary conditions are imposed by replacing
precisely these equations with the boundary condition equation. Therefore,
surface terms of the first type make no contribution when Dirichlet boundary
conditions are imposed.

Terms of the second type may be re-written

7{ dl iv- [Gpi+ Gyt] - Vi, (13)
o0

where f is the unit vector tangent to the domain boundary. Again, there are
only six trial functions for which 0,u? is nonzero anywhere on the edge (the
same six g which are nonzero on the edge); therefore, the term involving G
will vanish when Dirichlet boundary conditions are imposed. There are four
trial functions for which 9, u? are nonzero on the edge: ps®, us®, ps®, and pz’.
The weak-form equations obtained with these trial functions are precisely the
ones which are replaced when imposing Neumann boundary conditions.

To summarize, when the domain boundaries are straight, all surface terms
vanish under the imposition of Cauchy conditions (both Dirichlet and Neu-
mann conditions together). Of course, this is only appropriate when considering
fourth-order differential equations; otherwise, two integrations by parts should
never be performed. When considering second-order differential equations, for
which only one integration by parts should be performed, all surface terms van-
ish under the imposition of Dirichlet conditions. This is not surprising, as the
application of additional boundary conditions (as natural boundary conditions,
for example) would be expected to over-determine the system.

The preceding arguments fail in the case of curved boundaries because in
that case there is generally no curve between v, and v, along which more than
one of the trial functions associated with v, or v, vanishes. Therefore the sur-
face terms must be retained, even with the imposition of Cauchy boundary
conditions. Put differently, the basis {v} cannot satisfy essential homogeneous
Dirichlet or Neumann conditions along the entire curved boundary, only at the
nodes. Curved C! elements that do satisfy essential homogeneous Dirichlet and
Neumann conditions along an approximate boundary have been developed by
Qing and Li [2]. Exact satisfaction of essential conditions along an approxi-
mate boundary is likely not a significant advantage over the method discussed
here except for applications that are both particularly sensitive to boundary
conditions and in which strictly homogeneous boundary conditions are being
applied.
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Figure 2: Illustrated here is the toroidal current density of the solution to the Grad-Shafranov
equation in a circular domain, using three different methods of applying homogeneous Dirichlet
conditions on . Left: The boundary conditions are applied without applying any transfor-
mation to the matrix equation; Center: the transformation is applied assuming T = R; Right:
the transformation is applied assuming T = S.

4. Numerical Examples

As examples, we present numerical solutions to the Grad-Shafranov equa-

tion,

v (Sy) o, Ear )

R? dy  R? dy

with various treatments of boundary conditions, in cylindrical coordinates (R, Z).
This equation describes pressure balance in a magnetized plasma in toroidal ge-
ometry, where p is the thermal pressure, F//R is the toroidal component of the
magnetic field, and J, = —RV - (V4/R?) is the toroidal component of the elec-
trical current density. The solution ¢ is uniquely determined by the profiles p
and F, together with boundary conditions on 1. We obtain a solution with an
iterative method described in detail in reference [8] using the M3D-C' code [9].
Although this second-order differential equation does not require integration by
parts, we integrate by parts once for the purpose of illustration, to obtain

1 1
A — 2p —Vu; - Vv — —sVi -V, 1
v /de =iV, jgmdé Vi -V, (15)
dp F dF
BY = 2 P —+ == ). 1
' /de <Vz d¢+R2d¢> 1)

Equation 14 is specific to toroidal geometry, so d’2 = RdR dZ here.

First, we show that the method we have proposed (with T = S) yields
better results than two other choices: T = | (the identity matrix) and T =
R. Here, a circular boundary having radius Rc = 2 and centered at (3,0)
is used, so Kk = 1/Rc = 1/2. Homogeneous essential Dirichlet conditions are
imposed on 1. Both p’ and FF’ are taken to approach zero smoothly at the
boundaries, so the analytic solution will have J, also smoothly approaching
zero. The numerical solutions of J,, for the various cases are shown in figure 2.
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Figure 3: Left: The toroidal current density of the solution to the Grad-Shafranov equation
in a circular domain; Center: the same case, but with the surface term omitted; Right: the
same case, with the surface term omitted, in a (rotated) rectangular domain. In each case
inhomogeneous Dirichlet conditions have been imposed on . Given these conditions, omitting
surface terms only results in errors for curved boundaries.

Forgoing the transformation leads to visible errors in the numerical solution
near the boundary, but the choice T = R leads to even greater errors, perhaps
surprisingly. The third case presented in figure 2, and clearly the most accurate,
is that in which the transformation T =S is used.

Next, we show that the surface term in equation (15) may be neglected
when Dirichlet conditions are applied to 1 if the boundaries are straight, but
not if they are curved. For the curved configuration we again use a circular
boundary of radius 2 centered at (3,0). For the straight configuration we use a
square boundary that has been rotated by 30° to show that the orientation of
the boundary is not relevant. The boundary conditions in this case are inho-
mogeneous in order to show that the homogeneity of the boundary conditions
is not relevant either. Specifically, the boundary value of 1 is calculated to be
consistent with an externally applied vertical field, as would be present in a
tokamak. In figure 3 it is shown that significant errors in the numerical solution
arise in the circular case when the surface term is neglected, but not in the
straight case. This is consistent with the analysis of section 3.

5. Summary

The basis functions v of the reduced quintic finite element are constructed to
obey an orthogonality condition on their derivatives with respect to the global
coordinate system (z,y). When applying essential boundary conditions, it is
important to transform the matrix equations so that each row is either fully
constrained or unconstrained by the boundary condition. We have shown that
the appropriate transformation of the stiffness matrix is not R, the transforma-
tion matrix from global coordinates to boundary-oriented coordinates. Instead,
it is preferable to use the transformation S, which transforms the trial func-
tions v to a new set u so as to satisfy the orthogonality condition equation (7).
These trial functions are optimal in the sense that the application of essential



boundary conditions constrains the non-orthogonal part of the residual to the
maximum extent possible given boundary conditions of the form £}(u) = b. In
the case of CY elements for which only first-order derivatives may be constrained
with boundary conditions, R and S obtain the same form, and therefore the two
approaches yield the same result. Only in the C° case, or when £ = 0, does
the appropriate transformation of the stiffness and the solution vector take the
form of a similarity transform.

In the special case of straight boundaries, the surface terms arising from
integrating the weak-form equations by parts will not contribute to the final set
of equations when certain essential boundary conditions are applied. Specifi-
cally, surface terms arising from a single integration by parts will not contribute
when Dirichlet boundary conditions are applied; and surface terms arising from
two integrations by parts will not contribute when Cauchy conditions are ap-
plied (and depending on the form of the term, only one of these conditions may
need to be applied). These boundary conditions need not be homogeneous. For
curved boundaries, surface terms must always be retained (except for particular
natural boundary conditions), as the method described here does not permit
the satisfaction of essential homogeneous Dirichlet or Neumann boundary con-
ditions along the curved boundary. However, these conditions will be satisfied
within the accuracy of the finite element.
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