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Abstract

Global gyrokinetic simulations have revealed an important nonlinear flow generation process due

to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes

and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual

stress generation by both the fluctuation intensity and the intensity gradient in the presence of

broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning

the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear

has been identified to be a key, universal mechanism in various turbulence regimes. Simulations

reported here also indicate the existence of other mechanisms beyond E × B shear. The ITG

turbulence driven “intrinsic” torque associated with residual stress is shown to increase close to

linearly with the ion temperature gradient, in qualitative agreement with experimental observations

in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the co-

current direction by “intrinsic” torque, consistent with the experimental trend of observed intrinsic

rotation. The finding of a “flow pinch” in CTEM turbulence may offer an interesting new insight

into the underlying dynamics governing the radial penetration of modulated flows in perturbation

experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM

and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant

and non-resonant particles.

PACS numbers: 52.25Fi, 52.35Ra, 52.65Tt
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I. INTRODUCTION

Momentum transport and plasma flow generation are complex transport phenomena of

great importance in magnetic confinement fusion. An optimized plasma flow is believed

to play a critical role in both controlling large-scale (macroscopic) plasma stability and in

reducing energy loss due to plasma microturbulence and thereby achieving high quality per-

formance in plasma confinement. The toroidal momentum transport has been observed to

be highly anomalous in various magnetic fusion experiments, not only for its high level com-

pared to the neoclassical value due to Coulomb collisions,1 but also for its highly pronounced

non-diffusive and non-local nature. A striking finding is the observation of automatic toroidal

rotation spin up in nearly all tokamaks, the so called intrinsic or spontaneous rotation,2–4

i.e., toroidal plasmas can self-organize and develop rotation without an external momentum

input. Nondiffusive phenomena can also exist in other transport channels such as energy

and particle; however evidences so far in experiments appear not as intriguing as the in-

trinsic rotation. This phenomenon may play a critical role in determining plasma flows

and, consequently, confinement performance, particularly in the International Thermonu-

clear Experimental Reactor (ITER). Note that intrinsic rotation in tokamaks is an example

of a “negative viscosity phenomenon” in which an up-gradient component of the momentum

flux organizes a structured mean flow. Negative viscosity phenomena are of broad interest

in the context of atmospheres, oceans, stellar interiors, and other rotating fluids.

Understanding the momentum transport and flow generation is one of the highlighted

issues of current fusion research. Out of various possible physical mechanisms governing

plasma flow dynamics, the strong coupling between toroidal momentum and energy transport

universally observed in fusion experiments suggests that micro-turbulence is a key player in

determining plasma rotation, as well. The strong momentum-energy transport coupling via

microturbulence as a “medium” was predicted by theory5 and observed in experiments6

about two decades ago. The strong coupling was also obtained by gyrokinetic simulations

of ion temperature gradient turbulence over wide range of plasma parameters.7

For turbulence driven toroidal momentum flux, a generic structure can be expressed as

follows:

Γφ ∝ −χφ
∂Uφ

∂r
+ VpUφ + Πrs

r,φ.

In addition to diffusion (first term), there are two nondiffusive components, momentum
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pinch (second term) and residual stress (third term). The three components in the momen-

tum flux are highly distinctive not only formally but also physically. Besides their different

physical origins under turbulence circumstances, they have qualitatively distinct effects on

the toroidal flow formation. The diffusive transport is well known in the direction opposite

to the rotation gradient, leading to the relaxation of the rotation profile and the release of

associated free energy. The momentum pinch term is a convective flux which is directly

proportional to the rotation velocity Uφ with Vp as the pinch velocity. Both momentum dif-

fusion and pinch can move plasma mechanical momentum (i.e., toroidal momentum carried

by particles), and then rearrange the rotation profile, radially. A qualitative distinction is

that momentum pinch can transport momentum in either direction, up-gradient or down-

gradient.

The residual stress is defined as a specific part of the Reynolds stress, which depends

directly on neither the rotation velocity nor its gradient. The residual stress has a funda-

mentally distinct effect on rotation profiles, and is shown to drive intrinsic rotation as a type

of wave-driven flow phenomenon which operates via wave-particle momentum exchange.8

Obviously, it has no counterpart in the turbulence driven particle flux which, under the

constraint of particle number conservation, consists of only diffusive (including sub- and

super-diffusive) and convective components. On the other hand, the energy flux may con-

tain a residual-stress-like component due to energy exchange between particles and waves.

The residual stress Πrs
r,φ can be shown in the momentum transport equation to be isomorphic

in mathematical form to the integrated external momentum source9 which acts as a torque

to drive the rotation. Thus, the residual stress can act as an internal local torque to spin

up a plasma, offering an ideal mechanism to drive intrinsic rotation. For this reason, the

quantity ∇·Πrs
r,φ is widely referred to as the intrinsic torque in experimental and theoretical

investigations. Note that all three components have been observed in tokamak experiments.

Searching for nondiffusive elements and understanding underlying mechanisms have been

the focus of recent intensive theoretical and experimental efforts.

In this paper, new results of non-diffusive toroidal momentum transport found from our

global gyrokinetic simulations are reported. We focus our study on understanding the non-

linear residual stress generation and its effect on toroidal flow formation in electrostatic

turbulence regimes of ion temperature gradient (ITG) modes and trapped electron modes

(TEM). This study concerns a few critical issues which are highly relevant to experimental
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observations and theoretical studies. These include: i) mechanisms for turbulence driving

residual stress; ii) mechanisms for breaking symmetry in the parallel wavenumber k‖ spec-

trum; The symmetry breaking is shown to be a critical ingredient for turbulence to generate

net acceleration of parallel (and toroidal) flows;9–15 iii) impacts of trapped electrons and

electron turbulence on residual stress; iv) characteristic dependences of intrinsic rotation on

plasma parameters and directional tendency of the rotation; and vi) the fraction of residual

stress in the momentum flux. Remarkable results also include the finding of an interest-

ing meso-scale phenomenon, “flow pinch”, in collisionless TEM turbulence, which appears

to phenomenologically reproduce the radial penetration of modulated flows demonstrated

by perturbation experiments.16 Also presented are highly distinct phase space structures

between TEM and ITG turbulence driven fluxes to elucidate the roles of resonant and non-

resonant particles.

The remainder of this paper is organized as follows. In Sec. II, gyrokinetic simulation

models employed in this work are described, and a benchmark study of a CTEM case is

presented. In Sec. III, we discuss generic pictures of turbulence driven toroidal momentum

flux obtained in our global simulations. We attempt to partition the momentum flux and

calculate the fraction due to residual stress. We also examine the relationship between the

momentum and the energy transport, calculating the intrinsic Prandtl number. In Sec. IV,

we address the mechanism of nonlinear residual generation in ITG turbulence with focus

on the effect of zonal flow shear on k‖ symmetry breaking. The parametric dependence

of ITG driven intrinsic torque on the ion temperature gradient is explored in order to

understand empirical trends observed in experiments. The key results of nonlinear residual

stress and flow generation in CTEM turbulence and trapped electron effects in the ITG

regime are presented in Sec. V. The role of both the turbulence intensity and the intensity

gradient in driving residual stress is explored. Also discussed are highlighted meso-scale

phenomena, particularly the flow pinch effect, in CTEM dominated regimes. In Sec. VI,

the phase structures of momentum, energy and particle fluxes are presented with a lot of

interesting details with regard to which and how particles contribute to plasma transport

due to turbulence. Section VII presents conclusions.
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II. GYROKINETIC SIMULATION MODELS OF ROTATING PLASMA AND

TREATMENT OF KINETIC ELECTRONS

In this work, our global turbulence simulation is carried out using the Gyrokinetic Toka-

mak Simulation (GTS) code.17 The GTS code is based on a generalized gyrokinetic simula-

tion model using a δf particle-in-cell approach, and incorporates the comprehensive influence

of non-circular cross section, realistic plasma profiles, plasma rotation, neoclassical (equi-

librium) electric field, Coulomb collisions, and other features. It can directly read plasma

profiles of temperature, density and toroidal angular velocity, from the TRANSP18 experi-

mental database, and a numerical magnetohydrodynamic (MHD) equilibrium reconstructed

by MHD codes using TRANSP radial profiles of the total pressure and the parallel current

(or safety factor), along with the plasma boundary shape.

First, we give a brief description on our gyrokinetic simulation model for rotating plas-

mas in this section. In a δf simulation, the turbulence fluctuations are considered as per-

turbations on the top of the neoclassical equilibrium. The gyrokinetic particle distribution

function is expressed as f = f0 + δf . The equilibrium distribution function f0 of ions, with

magnetic moment μ and parallel velocity v‖ as independent velocity variables, is determined

by the neoclassical dynamics and obeys

∂f0

∂t
+ (v‖b̂ + vE0 + vd) · ∇f0 − b̂∗ · ∇(μB +

e

mi

Φ0)
∂f0

∂v‖
= Ci(f0, f0). (1)

Here, vE0 is the magnetic drift velocity corresponding to the equilibrium potential Φ0. vd is

the ∇B drift velocity, b̂∗ = b̂ + ρ‖b̂ × (b̂ · ∇b̂) with b̂ = B/B, Ci is the Coulomb collision

operator, and e and mi are the ion charge and mass, respectively. The lowest order solution

of Eq. (1) is a shifted Maxwellian consistent with (large) plasma rotation:19

f0 = fSM = n(r, θ)(
mi

2πTi

)3/2e
−mi

Ti
[ 1
2
(v‖−Ui)

2+μB]
, (2)

where the parallel flow velocity Ui is associated with the toroidal rotation by Ui = Iωφ/B

with ωφ the toroidal angular velocity and I the toroidal current, and ni(r, θ) is the ion

density, ni(r, θ) = N(r)e
miU2

i
2Ti

− eeΦ0
Ti , with poloidal variation associated with plasma rotation.1

The total equilibrium potential consists of two parts, Φ0 = 〈Φ0〉+Φ̃0. Here, 〈〉 denotes a flux

surface average. The poloidally varying component Φ̃0 can be generated by the centrifugal

force which drives charge separation on a magnetic surface in strongly rotating plasmas.1
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Generally the radial potential 〈Φ0〉 is dominant. The equilibrium radial electric field can

be calculated from a first-principles based particle simulation of neoclassical dynamics with

important finite orbit effects,19 or obtained by direct experimental measurement if available.

Instead of using a true neoclassical equilibrium distribution function, which is unknown

analytically, we use this lowest order solution for equilibrium toroidal plasmas in the present

simulations. A shifted Maxwellian with either model or experimental profiles of 〈n(r, θ)〉,
Ti(r) and ωφ(r) is prescribed for the ions. In the electrostatic limit, the ion gyrokinetic

equation for the turbulence perturbed distribution δfi of ion guiding centers is

∂δfi

∂t
+ (v‖b̂ + vE0 + vE + vd) · ∇δfi − b̂∗ · ∇(μB +

e

mi

Φ0 +
e

mi

Φ̄)
∂δfi

∂v‖
=

{
−

[
m

Ti

(
1

2
(v‖ − Ui)

2 + μB

)
− 3

2

]
vE · ∇ ln T −vE · ∇ ln n(r, θ)− m(v‖ − Ui)

Ti

vE · ∇Ui(r, θ)

+
mUi

Tiv‖
vE · μ∇B − 1

Ti

(v‖b̂ + vd) · ∇(eΦ̄)(1 − Ui

v‖
)

}
f0 + C l

i(δfi). (3)

Here, vE is the E × B velocity corresponding to the fluctuation potential Φ̄(R) at the ion

guiding center coordinates R, and C l
i is the linearized Coulomb collision operator. On the

right hand side, the third term proportional to ∇Ui is the Kelvin-Helmholtz-type drive term.

The other terms containing Ui are also retained, which can be important when the Mach

number of plasma flow is high.

The GTS code solves the gyrokinetic Poisson equation in configuration space for the

turbulence potential Φ(x) at the particle coordinates x. Unlike in flux-tube or wedge codes,

the real space, global Poisson solver, in principle, retains all toroidal modes from (m/n =

0/0) all the way to a limit which is set by grid resolution, and therefore retains full-channel

nonlinear energy couplings. There are two largely different Poisson solvers implemented in

the GTS simulation. In a simple geometry limit, i.e, large aspect ratio and circular cross

section, turbulence fluctuations δΦ on small spatial and fast time scales and axisymmetric

zonal flow 〈Φ〉 on larger (meso-scale) spatial and slow time scales can be decoupled using i)

a Pade approximation, i.e, Γ0(b) ≡ I0(b)e
−b ≈ 1/(1+ b) with I0 the modified Bessel function

and b = (k⊥ρi)
2, and ii)

〈
Φ̃

〉
≈ 〈̃Φ〉, i.e., operations between the flux surface average 〈Φ〉 and

the gyrokinetic double average Φ̃ can commute. This results in two decoupled equations:17

e

Ti

(
δΦ − δ̃Φ

)
=

δn̄i − 〈δn̄i〉
n0

− δne − 〈δne〉
n0

, (4)
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1

V ′
r

d

dr

[
d〈Φ〉
dr

V ′
r〈grr〉

]
=

1

V ′
r

d

dr

{
d

dr

[
Ti

e

(〈δn̄i〉
n0

− 〈δne〉
n0

)]
V ′

r〈grr〉
}

−〈 1

ρ2
i

〉Ti

e

(〈δn̄i〉
n0

− 〈δne〉
n0

)
, (5)

where δn̄i(x) and δne(x) are the ion and electron density fluctuations, respectively, V ′
r ≡

dV/dr, with V the volume enclosed by magnetic surface r, and grr ≡ ∇r · ∇r. Because

turbulence dynamics on different spatio-temporal scales are separated in solving the Poisson

equation, the advantages are apparent. However, the above approximations, particular the

second one, are not well justified in general toroidal geometry. This has motivated us to

develop a generalized Poisson solver which solves an integral equation for the total potential

Φ = δΦ + 〈Φ〉,
e

Ti

(
Φ − Φ̃

)
=

δn̄i

n0

− δne

n0

. (6)

While the adiabatic electron model has been widely used for simplicity in many earlier

numerical and theoretical studies of ITG driven turbulence, non-adiabatic electron physics

is in general irreducible in turbulence dynamics of toroidal systems. For ITG and TEM

turbulence with k⊥ρe � 1, we use a drift kinetic description for electrons, neglecting the

finite gyroradius effect. However, for electron gyroradius scale turbulence, such as electron

temperature gradient driven turbulence, electrons are treated as fully gyrokinetic. Similarly

as for ions, the δf method can be used to solve for the total perturbed electron guiding

center distribution function, δfe = fe − fe0, corresponding to turbulence fluctuations. The

equilibrium distribution fe0 satisfies the electron version of Eq. (1) and can be approximated

by a shifted Maxwellian containing a parallel flow similar to that for the ions. Apparently,

δfe contains both adiabatic and non-adiabatic electron response. Another simulation model

to treat kinetic electrons is to separate the non-adiabatic electron response δhe using fe =

fe0 + (eδΦ/Te)fe0 + δhe, and to solve for the non-adiabatic part δhe according to Eq. (16)

of Ref. 17. In this case, Eq. (4) becomes(
1 +

Ti

Te

)
eδΦ

Ti

− eδ̃Φ

Ti

=
δn̄i − 〈δn̄i〉

n0

− δnh
e − 〈δnh

e 〉
n0

, (4b)

and Eq. (6) becomes (
1 +

Ti

Te

)
eΦ

Ti

− eΦ̃

Ti

− e〈Φ〉
Te

=
δn̄i

n0

− δnh
e

n0

, (6b)

where δnh
e ≡ ∫

d3vδhe is the non-adiabatic electron density fluctuation.
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The left-hand side of the δhe equation (Eq. (16) of Ref. 17) contains a time derivative

term, ∂δΦ
∂t

, which can easily give rise to numerical instability if it is calculated using direct

finite differences. To avoid the numerical problem, a split-weight scheme20 was proposed,

which uses a separate equation for calculating ∂Φ
∂t

. The ∂Φ
∂t

equation, which is not a new

equation, is obtained by taking the time derivative of the gyrokinetic Poisson equation and

using the ion and electron continuity equations. In a toroidal system, the equation for

calculating ∂Φ
∂t

is obtained as follows:

e

Ti

(
∂Φ

∂t
− ∂̃Φ

∂t

)
=

1

n0

(∇ · Γe −∇ · Γi) +
cB ×∇δΦ

B2
·
(

2
∇B

B
− e

Te

∇Φ0

)
, (7)

where wide-tilde denotes the gyrokinetic double average over ∂Φ
∂t

, electron particle flux Γe ≡∫
d3v(v‖b + vE0 + vE + vd)δhe and ion particle flux Γi ≡ (1/2π)

∫
d3vdRdΘ(v‖b + vE0 +

vE + vd)δfiδ(R − x + ρ), with ρ the gyroradius vector and Θ the gyrophase. Then ∂δΦ
∂t

is

calculated directly using ∂δΦ
∂t

≡ ∂Φ
∂t

− 〈∂Φ
∂t
〉.

It is noticed that many previous simulations include only trapped electrons for the non-

adiabatic electron response. Numerically, the fast parallel streaming of passing electrons

gives rise to a strict constraint on the time step size, which adds to the computational chal-

lenge. While the trapped electrons are the primary origin of non-adiabatic response, some

passing electrons can be non-adiabatic too. In fact, dynamical division between trapped and

passing electrons is, though not impossible, highly non-trivial during simulations because of

the dependence of the trapping-passing boundary on the electric potential which evolves in

time, and of the collisional trapping-detrapping process. Nevertheless, thanks to the avail-

ability of supercomputing capabilities, we retain full electron dynamics by including both

trapped and untrapped electrons in the simulations.

The GTS simulation has been benchmarked against other gyrokinetic codes in the elec-

trostatic regime and the large aspect ratio circular concentric geometry limit. Presented

here are benchmark results of the trapped electron mode instability against the FULL

code.21 The FULL code is a linear eigenvalue code, which calculates linear growth rates

and real frequencies; it is radially local (corresponding to flux tube geometry), using the

so-called ballooning representation. For this benchmark, an analytical equilibrium based

on the so-called “s − α” model with α = 0 is used in the FULL local calculations, and a

corresponding numerical equilibrium is produced for GTS. The numerical equilibrium in-

cludes a small Shafranov shift due to non-zero plasma beta and higher order (in the small
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inverse aspect ratio) corrections, which are neglected in the analytical equilibrium. The

representative parameters used in the benchmark are: inverse aspect ratio a/R0 = 0.35,

density and electron temperature profiles R0/Ln = R0/LTe = 6.0 exp{−[(r − 0.5)/0.28]6},
ion temperature profiles R0/LTi

= 1.0 exp{−[(r − 0.5)/1.0]2}, Te/Ti = 3, and safety fac-

tor q = 0.854 + 2.184r2. For local FULL simulations, the corresponding parameters used

are: r/R0 = 0.175, R0/Ln = R0/LTe = 6.0, R0/LTi
= 1.0, q = 1.4 and magnetic shear

ŝ = (r/q)dq/dr = 0.78. For the benchmark, the GTS simulation, which is always global, is

carried out in a radial domain from 0.1 to 0.9 (in terms of normalized minor radius), and

the TEM instabilities are measured at r = 0.5. Note that the magnetic axis is not included

in the simulation domain in this study based on considerations from both physical and nu-

merical aspect. First, numerical MHD equilibria expressed in magnetic coordinates, which

is currently used by GTS, usually have insufficient resolution near the magnetic axis due to

mapping from the original cylindrical coordinates. This may cause numerical problem when

simulation particles get into the region. Furthermore, plasma profiles are usually flat in the

region near magnetic axis, which make the region not essential for turbulence physics.

The linear benchmark results are presented in Fig. 1. The growth rates γ and the real

frequencies ωr from the global GTS calculation are slightly higher than the local eigenvalue

FULL calculation. The overall difference is less than 10%. There are a few effects which

may contribute to the difference. First, in particular, FULL is radially local, whereas GTS

is radially global. Further, as a subtle detail in this benchmark simulation, GTS includes

multiple (all) toroidal modes which start at very low level initially (eδΦ/T ∼ 10−15) so

that interactions between the modes are negligible during the linear phase, whereas FULL

calculates a single-n mode at each time. Finally, as previously reported, differences in

magnetic geometry between the “s − α” model and an MHD equilibrium may contribute

to discrepancies in gyrokinetic turbulence calculation results.22 It is also often observed in

local linear calculations using the FULL code that the linear frequency and growth rate are

rather sensitive to subtle differences of Shafranov shift and finite aspect ratio corrections in

equilibrium. Taking into account all these distinctions between the two simulation models,

the overall agreement is reasonable. As a nonlinear benchmark effort, GTS global and

GEM23 local simulations were carried out for ∇Te-driven CTEM turbulence in specific,

experimentally relevant parameter regime.24 The purpose of these simulations is to verify

the nonlinear generation of blob-like, large fluctuation structures with toroidal mode number
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n <∼ 10 via dramatic inverse toroidal energy cascades, and they are beyond the scope of this

paper and will be discussed elsewhere in a future publication.
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FIG. 1: (Color online) Growth rate γ and real frequency ωr for TEM instability versus poloidal

wave number kθ, compared with the FULL code calculation.

Unlike ITG turbulence with adiabatic electrons, non-adiabatic electron dynamics can

drive particle transport for turbulence such as TEM. It is well known that turbulence driven

particle transport across the magnetic field lines is ambipolar, i.e, flux-surface-averaged

radial particle fluxes for electrons and ions are equal, so as to maintain the overall quasineu-

trality in a toroidal system. The ambipolarity property of TEM driven cross-field particle

transport is tested in the GTS simulation. The time history of particle fluxes (at r/a = 0.54)

is plotted in Fig. 2, showing that electron and ion fluxes very closely track with each other

all the time during the simulation. Moreover, the ambipolarity of turbulence driven particle

transport is obtained locally over the entire radial domain (0.1 ≤ r ≤ 0.9) of the global

simulation, as is seen in the right panel of Fig. 2 which plots the steady state particle fluxes

versus minor radius. This guarantees that quasineutrality is satisfied radially locally.

Global gyrokinetic turbulence is characterized by distinguishable dynamical phases in

both coordinate space and wavenumber space.25 Ideally, the dynamics of gyrokinetic tur-

bulence should be robust to numerical techniques. The robustness of turbulence dynamics

with respect to different approaches for solving the gyrokinetic Poisson equation, the size of

the simulation grids and the number of simulation particles, was carefully examined for ITG

simulations previously.7 A further convergence study for CTEM turbulence is presented in

Fig. 3. Two simulations using 50 and 100 particles/cell·species, respectively, are shown to

produce well converged results for electron particle transport that displays no noticeable dif-
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FIG. 2: (Color online) Time history of ion and electron particle fluxes (left), and steady state ion

and electron particle fluxes versus minor radius r (right). Time unit is Ln/cs.

This is from the same simulation as that of Fig. 1.
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FIG. 3: (Color online) Time history of electron particle fluxes (left), and average weight squares of

electrons (right) from two simulations using different number of simulation particle. Time unit is

LTe/cs. The major parameters used are: R0/LTe = R0/Ln = 6.5, R0/LTi = 2.4. A shaped DIII-D

type MHD equilibrium is used.

ference in statistical sense (left panel). In other words, the difference in the simulated fluxes

between the two cases using 50 and 100 particles/cell·species is within the same range of sta-

tistical error of different simulation runs with the same number of particles but with different

initial conditions. At the mean time, the time evolution of corresponding average electron

weight square, 〈w2〉, of the two simulations is shown to be almost identical (right panel).

This result indicates that the observed weight growing does not depend on whether 50 or

100 particles/cell·species are used in these simulations, and is driven by physics, correspond-

ing to the increase of amplitude of δf associated with plasma profile evolution induced by
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turbulence-driven fluxes during transport time scale. Furthermore, while the particle weight

is physically growing during the simulations, there is no observable correlation between the

weight evolution and the dynamics of electron particle flux, as is shown in Fig. 3. The par-

ticle weight remains at a low level (〈w2〉 < 0.09) at the end of the simulations, which does

not impact the results of simulated transport. These convergence studies clearly indicate

that the noise-induced transport in our simulations is negligible with respect to turbulence

driven transport.

For the most simulations in this studies, we use 100 particles/cell·species.

III. MOMENTUM FLUX PARTITION AND PRANDTL NUMBER

In this section, we first present generic pictures of turbulence driven toroidal momentum

transport based on global gyrokinetic simulation results. We then discuss the relationship

between the momentum and the energy transport. The critical quantity in the discussion is

the Prandtl number, i.e., the ratio of ion momentum and thermal diffusivities, χφ/χi, which

has attracted a lot of attention of experimental and theoretical studies. It is also highly

interesting to examine the partition of the turbulence driven momentum flux, particularly

the percentage of the non-diffusive component.

As we mentioned before, a generic structure for turbulence-driven toroidal momentum

flux can be expressed as follows:

Γφ ∝ −χφ
∂Uφ

∂r
+ VpUφ + Πrs

r,φ. (8)

The three components, diffusion, momentum pinch and the residual stress, are highly dis-

tinctive not only formally but also physically, and have different effects on toroidal flow

formation. The distinction among the three components, however, is a highly nontrivial

task in practice, particularly in experiments. This formulaic difference can be used to design

simulations and experiments for the identification and partition of the three components, as

in our following numerical studies.

The relationship between turbulence-driven toroidal momentum and energy transport has

long been an issue of interest in both experimental and theoretical investigations. Experi-

ments on various machines have established a fairly comprehensive data base over various

regimes, including L-mode and H-mode plasmas, for the ratio of effective momentum and
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thermal diffusivity, χeff
φ /χi, also referred to as the raw Prandtl number. As a general valida-

tion against the experimental database, systematic simulations have been carried out, over

a wide range of experimentally relevant plasma parameters, to investigate this issue with a

focus on the Prandtl number. The results of this simulation study are summarized below.

At first, it is helpful to write down precisely definitions used to calculate the relevant

quantities in the simulations. The effective momentum diffusivity χeff
φ and the associated

total (net) radial flux of toroidal momentum Γφ are calculated according to the following

expression which is suitable for general geometry:

Γφ ≡ 〈
∫

d3vmiRvφvE · ∇ρ/|∇ρ|δfi〉 ≡ −miniχ
eff
φ (ρ)〈R2|∇ρ|〉dωφ

dρ
, (9)

where ρ is a radial coordinate denoting magnetic flux surface.

In ion-dynamics-dominated regimes, our simulations verify that there exists strong cou-

pling between ion momentum and heat transport for ITG driven turbulence, and the effective

χeff
φ /χi is on the order of unity. This is in broad agreement with a theoretically predicted

trend5 and experimental observations6 in conventional tokamaks where low-k fluctuations

are believed to be responsible for a high level of plasma transport. A typical simulation result

is shown in Fig. 4 where χeff
φ /χi ∼ 1 is obtained in the long-time steady-state. On the other

hand, global gyrokinetic turbulence is characterized by distinguishable dynamical phases in

both configuration space and wave-number space, and correspondingly the turbulence driven

momentum transport can display different behavior over different dynamical phases of tur-

bulence evolution and the Prandtl number varies. Particularly in the ITG turbulence regime

with adiabatic electrons, a significant inward, non-diffusive momentum flux associated with

residual stress is robustly observed in the post saturation phase26 which is after the non-

linear saturation of the ITG instability, but before a long term steady state. As is seen in

Fig. 4, there is an up-gradient momentum flux generated in the post saturation phase. This

non-diffusive flux can result in a great departure of the Prandtl number from unity. More-

over, the Prandtl number in the long-time steady state is also shown to vary over a certain

range around unity, showing fairly sensitive dependence on plasma parameters. Finally, as a

further validation effort, GTS simulation predictions of toroidal momentum and ion thermal

transport have been directly compared with experimental measurements on DIII-D. Results

for an ion-transport-dominated DIII-D discharge with relatively high toroidal rotation are

presented in Fig. 5. Reasonably good agreement between the simulation of ITG turbulence
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and the experiment is obtained not only for the Prandtl number, but also for the individual

values of χφ and χi.
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FIG. 4: (Color online) Time evolution of effective toroidal momentum and heat diffusivity (left)

and initial toroidal rotation profile (right). Time unit is LTi/vth.
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FIG. 5: (Color online) Time history of ITG turbulence driven effective χeff
φ and χi from a simulation

of a DIII-D discharge and comparison with experimental results from TRANSP analysis. Time

unit is LTi/vth.

The calculation of the raw Prandtl number in experiments is relatively straightforward

(many experimental results reported are raw Prandtl number). While it is useful to look

at the raw Prandtl number, a more meaningful physics quantity to examine is the ratio of

pure momentum diffusivity and thermal diffusivity, χφ/χi which is referred as the intrinsic

Prandtl number Pr, though it is harder to calculate. Obviously, Pr = P raw
r if there is no

non-diffusive contribution to the momentum flux, and the difference between the two reflects
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the fraction of non-diffusive contributions. Specifically, the ratio of non-diffusive and total

momentum flux Γnd
φ /Γφ = 1 − Pr/P

raw
r .

An intrinsic Prandtl number of unity was theoretically predicted for drift wave

turbulence.5 Recent studies indicate departures of Pr from unity.12,27 To obtain the in-

trinsic Pr, one has to separate out the nondiffusive components from the total momentum

flux, which is a highly non-trivial task, particularly in experimental measurements. To this

end, a set of numerical experiments have been carefully designed and carried out. In these

simulations, toroidal rotation profiles are set to have zero rotation velocity at normalized

minor radius ρc = 0.5, and to have a step-type profile of the following form for the rotation

gradient:
dωφ

dρ
= κωφ

exp

[
−

(
ρ − ρc

Δρ

)α]
,

with α = 6 and Δρ = 0.28. Here we use ITG turbulence with adiabatic electrons. We are

first look at the marginally unstable ITG regime using two simulations with R0/LTi
= 5.5

and Te/Ti = 1. For both simulations, only one parameter κωφ
varies, which corresponds to

the use of different initial rotation gradients. The simulation domain is from ρ = 0.1 to 0.9,

and we focus on a narrow radial annulus centered at ρc where the rotation velocity and the

momentum pinch vanish. The remaining nondiffusive component of momentum flux in the

region is the residual stress which is independent of the variation of the rotation gradient.

From Eqs. (8) and (9), we have

P raw
r = Pr −

Πrs
r,φ

cgχi

1

dωφ/dρ
,

where cg = mini〈R2|∇ρ|〉 is a geometry factor. The key idea for these simulations to allow

for separation of the diffusive and non-diffusive components is based on the fact that the

shear flow instability is very hard to drive unstable in a toroidal system because of the strong

stabilization effect of the magnetic shear. However, the equilibrium (mean) E × B shear

flow, which is determined by neoclassical dynamics to relate to the toroidal rotation via the

radial force balance relation, can influence both turbulence and residual stress generation.

For simplicity, we exclude the equilibrium electric field in these simulations. In this case, we

expect that rotation, particularly with relatively low gradient, has negligible effect on ITG

driven turbulence, i.e, fairly similar turbulence fields can be produced in the two cases with

different rotations. Hence, it is reasonable to argue that Pr and Πrs
r,φ/χi are held constant in

these simulations. (Note that turbulence intensity may slightly vary from one simulation to
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another. While both χφ and χi are each roughly proportional to the intensity, the ratio Pr

is less sensitive to the intensity variation. So is the quantity Πrs
r,φ/χi.) Therefore, from two

aforementioned simulations I and II, we can estimate the intrinsic Prandtl number using

Pr =
P raw,I

r (dωI
φ/dρ) − P raw,II

r (dωII
φ /dρ)

dωI
φ/dρ − dωII

φ /dρ
. (10)

Figure 6 (top panel) shows the time history of P raw
r , from linear phase to saturated steady

state, of two simulations with dωII
φ /dρ = 2 × dωI

φ/dρ. Note that a semi-quantitative defini-

tion should be used for ”steady state”, relative to linear growth and post-saturation phases,

particularly in a global simulation. Specifically, the time averaged growth rate of the turbu-

lence intensity vanishes, relative to the linear growth rate, though the instantaneous growth

rate fluctuates. On the other hand, the toroidal spectra of fluctuations in the ”steady state”

turbulence regime, which can be used for comparison with experimental measurements in

validation studies, are typically characterized by a significant down-shift from linearly un-

stable modes due to nonlinear toroidal energy cascades.25 However, a ”steady state” may

still exhibit considerable temporal variations in various transport quantities, particularly in

a global simulation, due to meso-scale dynamics such as turbulence spreading, self-consistent

plasma profile evolution, turbulence avalanches etc. As generally done for calculating trans-

port fluxes in this type of turbulence simulation studies, an averaged raw Prandtl number

in the saturated turbulence steady state is calculated by time average. Generally, the in-

terval of time averaging should be some time scale between the correlation time and the

profile evolution time. In this case, an averaged raw Prandtl number is calculated over a

period from t = 1000 to 2400, which spans many turbulence growth times. The obtained

values are P raw,I
r = 0.961 ± σ and P raw,II

r = 0.703 ± σ in the two cases with the standard

deviation σ = 0.19 and 0.14, respectively. These results, in terms of Eq. (10), give an esti-

mate Pr = 0.445 for the intrinsic Prandtl number in the marginal ITG regime. This result

appears to be consistent with a recent theoretical prediction of Pr ∼ 0.2− 0.5 in stiff profile

regimes.12

Plotted in the middle of Fig. 6 is a scan of Pr versus R0/LTi
, showing that the intrinsic

Prandtl number increases with the temperature gradient. The ratio between the residual

stress component and the total momentum flux is plotted at the bottom of Fig. 6, which

shows that the residual stress contribution to the total momentum flux is significant (more

than 50% for case I), and is increased with the decrease of the rotation gradient. This
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is readily understandable because the residual stress, unlike the diffusive component, is

independent of rotation gradient. On the other hand, the fraction of residual stress does not

show a clear, conclusive scaling trend with R0/LTi
.
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IV. NONLINEAR RESIDUAL STRESS GENERATION AND THE SCALING OF

INTRINSIC TORQUE

We have shown that the residual stress component can be a substantial portion of the

total momentum flux driven by ITG turbulence. As discussed in the previous section,

residual stress, acting as an internal torque, may play a critical role in driving intrinsic

rotation. The micro-picture of this mechanism is that the net parallel (toroidal) flow is

accelerated by turbulence, which critically depends on the details of the parallel wavenumber

spectrum. For most drift wave instabilities, both signs of k‖ are equally excited, resulting

in a reflection symmetry in the k‖ spectrum. Perfect local k‖ symmetry means perfectly

balanced population density between co- and counter-propagating acoustic waves and thus

a vanishing net local momentum torque. Therefore, a critical, generic piece of physics behind

the residual stress spinning up the plasma is the breaking of the k‖ → −k‖ symmetry.

Out of various theoretical possibilities, one of the leading candidates is a mean E×B flow

shear, which shifts the eigenmode to one side radially, and thus produces a non-vanishing

spectrum-averaged k‖.10,11,28–30 Another symmetry breaking mechanism, which leads to an

inward pinch, can come from the interplay of magnetic field curvature and ballooning mode

structure in toroidal geometry.31,32 See Table I of Ref. 31 for a unified illustration of these

two symmetry breaking mechanisms from a gyrokinetic theory viewpoint.

Recently, using global gyrokinetic simulation, an universal mechanism for k‖ symmetry

breaking has been identified due to turbulence self-generated zonal flow shear,26 and an

associated residual stress has been robustly observed in ITG simulations over a wide range

of experimentally relevant parameters. From the viewpoint of local analysis and simulation,

the turbulence self-generated zonal flow shear has no preferred direction in a long time

statistical sense, and therefore was expected to have little direct effect on the k‖ spectrum.

However, for global simulations, the zonal flow dynamics is found to be significantly different

from the local picture. Specifically, zonal flow is shown to be slowly varying in time and of

large scale in space.17 This is also an indication of the existence of toroidal zonal flow. A

slowly varying large scale zonal flow structure has been clearly identified recently in drift

wave turbulence in a linear machine.33 The observed low frequency, large scale zonal flow

structure is shown to have a remarkable effect on the parallel spectrum of potential and

density fluctuations.
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The most straightforward way to examine turbulence driven residual stress is to set the

initial rotation to be zero in simulations. Thus, only the residual stress component remains

in the momentum flux. To elucidate the critical role of zonal flows in the nonlinear flow

generation, unless explicitly specified, equilibrium E×B flows are excluded in the following

simulations. This may correspond to typical core turbulence apart from internal transport

barriers and in L-mode plasmas, where equilibrium shear is not dominant. The quantity used

to characterize the k‖ symmetry breaking in our study is the average parallel wavenumber

of the turbulence spectrum defined as

〈k‖〉(r) ≡ 1

qR0

∑
(n/|n|)(nq − m)δΦ2

mn∑
δΦ2

mn

, (11)

where δΦmn is a mode amplitude, with m and n the poloidal and toroidal mode numbers,

respectively, q is the safety factor and R0 is the major radius. Figure 7 illustrates the simu-

lation results of ITG turbulence with adiabatic electrons. For this case, the ITG instability

is quite marginal with R0/LTi
= 4.9 and Ti = Te. First, the upper-left panel of Fig. 7 shows

that significant inward flux of toroidal momentum is driven in the whole radial range with

ITG turbulence present. Particularly, a large inward momentum flux emerges in the post

saturation phase, which is after the nonlinear saturation of the ITG instability, but before a

long term steady state (t ∼ 1000− 1800). Because of the zero initial toroidal rotation used,

the momentum flux is, by definition, essentially residual stress. Plotted in the lower-left

panel is
∑

k‖δΦ2
mn which is a quantity resembling the residual stress expression. One can

see that
∑

k‖δΦ2
mn indeed reproduces a similar spatio-temporal behavior to the directly cal-

culated momentum flux. Further, in the upper-right panel, the spectrum-averaged k‖ shows

an apparent spatio-temporal correlation with Γφ, indicating the importance of nonvanishing

〈k‖〉. The whole picture for the residual stress generation is completed by finding out what

causes k‖ symmetry breaking, giving rise to the non-zero 〈k‖〉. This is in the lower-right

panel which plots the shearing rate of turbulence self-generated zonal flows according to a

formula in the shape tokamak geometry34

ωZF
E =

R2B2
p

B

∂

∂Ψp

(
EZF

RBp

), (12)

where B and Bp are the total and poloidal magnetic field strengths, and Ψp is the poloidal

magnetic flux. A clear correlation between the zonal flow shearing rate ωZF
E and 〈k‖〉 indi-

cates that the breaking of k‖ symmetry and the yielding of nonvanishing 〈k‖〉 are caused by
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FIG. 7: (Color online) Spatio-temporal evolution of radial flux of toroidal momentum (upper-

left), 〈k‖〉
∑

δΦ2
mn (lower-left), spectrum-averaged 〈k‖〉 (upper-right) and zonal flow shearing rate

(lower-right).

the zonal flow shear. Since zonal flows are turbulence self-generated, this process represents

a universal, nonlinear mechanism for residual generation. It is expected to play an impor-

tant role in flow generation, particularly in L-mode plasmas where the E × B shear of the

equilibrium electric field is weak.

As discussed previously, residual stress, acting like an intrinsic (internal) torque, is the

only way to spin up a plasma from rest. The observation that an external torque in the

counter-current direction is required to hold the plasma from rotating is another direct evi-

dence of the existence of intrinsic torque.35 Recently, intensive experimental studies carried

out on various machines attempted to identify the role of residual stress, and to characterize

the dependence of the intrinsic rotation and intrinsic torque on plasma parameters. The

empirical tendency obtained in H-mode plasmas shows that the offset value of the toroidal

rotation typically scales with the increment in stored energy, and the rotation is usually

in the co-current direction.36 Intrinsic rotations are observed to increase with increasing
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pressure gradient in various JT-60 plasmas.37
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and total intrinsic torque (spatially averaged) versus ion temperature gradient R0/LTi (bottom).

The characteristic dependence of intrinsic torque driven by ITG turbulence is investigated

using a set of systematic simulations. The radial profiles of ion temperature are given by

specifying a temperature gradient profile according to the following form:

R0/LTi
= −κTi

exp

[
−

(
ρ − ρc

Δρ

)α]
,

along with a fixed temperature Ti = 1 KeV at ρc = 0.5. This gives a fairly uniform ITG
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drive in a region centered at ρc, as shown in the top panel of Fig. 8. The temperature

gradient varies from κTi
= 4.9 to 8.2 for these simulations, covering a wide range from near

to well beyond ITG marginality. The rest of the input parameters are the same for all six

simulations.

The intrinsic momentum torque appearing in the toroidal momentum balance (transport)

equation takes the form ∇ · ΠRS
r,φ. Instead of calculating the local torque ∇ · ΠRS

r,φ, we

examine the rate of toroidal momentum generation due to ITG turbulence. The residual

stress is the only one responsible for the momentum build-up in this case. The mid-panel of

Fig. 8 illustrates the spatio-temporal evolution of flux-surfaced averaged toroidal momentum

density 〈pφ〉 with pφ defined as pφ ≡ ∫
d3vmiRvφδfi. The quantity calculated here is the

rate of total toroidal momentum generation dPφ/dt, where Pφ ≡ ∫
d3r|pφ|. Apparently, the

quantity dPφ/dt is a measure of total (or spatially averaged) torque driven by turbulence,

which has better correspondence to the intrinsic torque inferred from experiments. As

illustrated in Fig. 8 (bottom), the ITG driven intrinsic torque is shown to increase with

the temperature gradient. A slightly stronger than linear scan of torque versus R0/LTi

(and equivalently, torque vs. R0/Lp, because of the fixed density profile used in all these

simulations) is obtained. This result is consistent with experimental trends observed in

various devices,37–39 including Alcator C-MOD where the central flow velocity scales linearly

with the edge pressure gradient.

The dominant underlying physics governing this characteristic dependence is that the

residual stress is proportional to the turbulence intensity which, in turn, is increased with the

strength of the ITG drive R0/LTi
. However, this does not explicitly give a linear dependence

from a simple argument. The zonal flows and their effect on k‖ symmetry breaking, on the

other hand, are also expected to increase with the increase of turbulence intensity. Therefore,

we may expect a stronger than linear scan of torque vs. R0/LTi
for the nonlinearly driven

residual stress. It is noticed that the dependence on pressure gradient can also be introduced

via the equilibrium radial electric field (not included in these simulations) which relates to

the pressure gradient through the well known radial force balance relation. However, this

connection is less transparent. First of all, the equilibrium E × B flow shear effects are

twofold: reducing fluctuation intensity and breaking up k‖ symmetry. Its overall effect on

residual stress generation depends on the balance between the two. Secondly, the mean

E × B shear is proportional to both d2p/dr2 and (dn/dr)(dp/dr). It should be pointed out
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that the scaling of the torque vs ∇p does not hold locally. For instance, one can have zero

local torque, i.e, the divergence of the residual stress is zero, at a location of strong ∇T and

maximal residual stress.

The nonlinear residual stress generation is also observed for electron driven turbulence

such as CTEM. We will present these results in the next section. The characteristic de-

pendence of associated residual stress driven torque on gradients of electron profiles, such

as ∇Te, ∇ne and ∇pe, can be established through electron driven turbulence. Even more

complex connections are expected between the intrinsic torque and plasma profiles in the

presence of hybrid ITG/TEM turbulence, which is more likely to be the case in experiments.

However, all these are beyond the scope of this paper and will be discussed elsewhere in fu-

ture publications.

V. NONLINEAR RESIDUAL STRESS GENERATION IN CTEM TURBULENCE

AND TRAPPED ELECTRON EFFECTS IN ITG REGIME

In this section, we discuss the effects of trapped electrons, focusing on nonlinear residual

stress generation by TEM turbulence and ITG turbulence with non-adiabatic electrons. For

simulations with kinetic electrons presented in this section and hereafter, unless explicitly

specified, the working gas is hydrogen, i.e., the ion-electron mass ratio is mi/me = 1836.

We first examine ITG turbulence. The major parameters used are: R0/LTi
= 5.3,

R0/LTe = 1.6, R0/Ln
<∼ 1 and initial rotation ωφ = 0. For these parameters, the ITG

modes are marginally unstable, as found in many experiments,6, and TEM modes are sta-

ble. This allows us to investigate the same turbulence (i.e., ITG) when we switch the

electron response in the simulations from adiabatic to non-adiabatic. Figure 9 shows the

results of ITG turbulence with adiabatic electrons. Similar to Fig. 7, close spatio-temporal

correlations among the momentum flux Γφ,
∑

k‖δΦ2
mn, the spectrum average 〈k‖〉 and the

zonal flow shearing rate ωZF
E illustrated in Fig. 9 clearly demonstrate that the residual stress

is nonlinearly driven by the fluctuation intensity, acting with the zonal flow shear which

induces symmetry breaking in the k‖ spectrum.

The results for ITG turbulence with non-adiabatic electrons are presented in Fig. 10.

which uses exactly the same set of simulation parameters as in Fig. 9. An immediate ob-

servation is that the spatio-temporal correlations among the plotted four quantities become
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FIG. 9: (Color online) Spatio-temporal evolution of radial flux of toroidal momentum (upper-

left), 〈k‖〉
∑

δΦ2
mn (lower-left), spectrum-averaged 〈k‖〉 (upper-right) and zonal flow shearing rate

(lower-right) from ITG simulation with adiabatic electrons.

obviously lesser clear, compared to the ITG case with adiabatic electrons (Fig. 9). First, the

lesser similarity in spatio-temporal structures between the momentum flux (residual stress,

upper-left panel) directly calculated from Eq. 9 and an estimate of
∑

k‖δΦ2
mn (lower-left)

indicates that the turbulence intensity driven residual stress does not fully account for the

residual stress produced by the turbulence. Further, less correlation in spatio-temporal

structures between 〈k‖〉 (upper-right) and ωZF
E (lower-right) indicates that the zonal flow

shear does not fully account for the origin of non-vanishing 〈k‖〉. The non-adiabatic elec-

trons are shown to introduce finer radial scales into the zonal flows. In the configuration

space, this appears as small wiggles (finer structures with small amplitude) sitting on a large

scale structure with large amplitude. The corresponding E × B shear at small scales and

low frequencies, however, appears too weak to have a visible impact on the k‖ spectrum

(upper-right and lower-right panels). The key points made by these results clearly indicate:

i) the existence of other possibilities for driving residual stress, and ii) the existence of other
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mechanisms beyond E×B shear for k‖ symmetry breaking. For the former, one interesting

candidate is the turbulence intensity gradient12 whose important role will be elucidated in

our CTEM simulations to be presented later. For the latter, the possible mechanisms in-

clude the effects of magnetic shear, nonlinear mode couplings, and turbulent radial current,

which will be addressed in a future publication.

FIG. 10: (Color online) Spatio-temporal evolution of radial flux of toroidal momentum (upper-

left), 〈k‖〉
∑

δΦ2
mn (lower-right), spectrum-averaged 〈k‖〉 (upper-right) and zonal flow shearing rate

(lower-right) from ITG simulation with nonadiabatic electrons, which uses the same parameters as

Fig. 9.

Now we present a simulation of an experimental case, which shows trapped electron effects

on ion turbulence and transport. Simulation results presented in Fig. 11 are for a DIII-D

experiment. This is an ion transport dominated DIII-D discharge with low toroidal rotation.

A relatively large ion temperature gradient exists in the range r/a ∼ 0.2− 0.5, which makes

ITG modes unstable, while TEMs are stable for most minor radii. The real mass ratio

mi/me = 3672 for deuterium plasma is used in this simulation. As is illustrated in the left

panel of Fig. 11, the ITG turbulence with adiabatic electrons is shown to produce ion heat
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transport at a much higher level than the neoclassical in the inner core area, which matches

the experimental level in the region. However, the ITG simulation with adiabatic electrons

fails to account for the observed high level ion transport in the outer core region beyond

r/a ∼ 0.45 where the ITG instability is marginal or even stable. Trapped electron physics

is found to play a critical role in this region. When trapped electrons are included, they

substantially destabilize the ITG mode due to the resonance between the mode frequency

and the toroidal precession frequency with a corresponding change in the electron response as

compared to the adiabatic case. This resonance occurs for precession drift-reversed trapped

electrons, and has dependence on the magnetic shear. The net effect of trapped electrons

is to increase linear growth rate and nonlinear saturation level. Consequently, ITG driven

fluctuation intensity is substantially enhanced, particularly in the outer core region where

the pure ITG modes are marginal or stable. As a result, the simulated ion heat flux is

increased to be closer to the experimental observations in the region, while the ion transport

is not considerably affected in the inner core region where the ITGs are strongly unstable.

In the two cases, the core ITG turbulence can not reproduce the experimental level of ion

heat transport in the further outer core region beyond r/a > 0.6, where ion transport may

be largely controlled by edge-core coupling. On the other hand, the ITG driven toroidal

momentum flux is also substantially increased by non-adiabatic electrons (the right panel of

Fig. 11). For this DIII-D shot, the toroidal rotation is small and flat with ωφ ∼ 104 (1/sec)

in the region r/a > 0.4 due to using counter neutral beam injection which balances the

intrinsic torque. This implies that the momentum flux observed in the simulation mostly

comes from the residual stress.

Now we turn to discussing one of key results of our simulation study, i.e., nonlinear

residual stress and flow generation in CTEM turbulence. The CTEM simulation presented

below employs typical parameters of DIII-D plasmas. The major parameters used here are:

R0/LTe = R0/Ln = 6.0, R0/LTi
= 2.4, Te = 4.8Kev and Ti = 3.5Kev at r/a = 0.5, and

an initial rotation ωφ = 0. A numerical MHD equilibrium corresponding to a real DIII-

D discharge is used. An equilibrium electric field, which satisfies the radial force balance

relation, is also included in this CTEM simulation. As a key player in drift wave turbulence

in general and in residual stress generation specifically, zonal flows generated by global

CTEM turbulence display distinct characteristics compared to large scale, stationary ones

typically observed in global ITG turbulence (see the top panel of Fig. 3 of Ref. 26). As
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FIG. 11: (Color online) Ion heat fluxes vs r/a from ITG simulations with adiabatic and non-

adiabatic electrons and comparison with experimental result from TRANSP and neoclassical level

from GTC-NEO19 (left), and time history of ITG driven toroidal momentum fluxes (right), showing

enhancement due to trapped electrons.

illustrated in Fig. 12, in additional to radially global structures with krρs ∼ 0 which are

dominant, there are significant shorter scale structures with krρs ∼ 0.2 and even fine (but

weak) structures at krρs ∼ 0.6. Recent theoretical calculations of zonal flow growth rate

indicate the zonal flow generation at fine-scales with krρi ∼ 1 in CTEM turbulence.40 The

zonal flows are also shown to be less stationary, exhibiting significant temporal variation

in amplitude. In the frequency domain, the zonal flows peak at zero frequency, but with a

certain extension to the low frequency range. At the same time, the zonal flow component at

the geodesic acoustic frequency is very weak. The zonal flow shearing rate, however, is high,

which is shown to have a strong effect on the turbulence parallel wavenumber spectrum.
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FIG. 12: (Color online) Spatio-temporal evolution of zonal flows generated in CTEM turbulence

(left) and (b) corresponding spectra in (ω, kr) space (right).

27



The nonlinear residual stress generation by CTEM turbulence, for the first time, is clearly

observed in global simulations, as illustrated in Fig. 13. First, the CTEM-driven residual

stress exhibits coherent spatio-temporal bursting behavior with momentum flux pulses prop-

agating both inward and outward in the radial direction, as shown in the top-left panel of

Fig. 13. The residual stress at steady state changes direction from outward in the inner

core region to inward in the outer core region. The mid-left panel of Fig. 13 is
∑

k‖δΦ2
mn,

which represents the component of the residual stress driven by the turbulence intensity in

the presence of non-vanishing 〈k‖〉. The observation of a clear correlation between ΓRS
φ and∑

k‖δΦ2
mn indicates that the turbulence intensity plays a major role in driving the residual

stress, particularly in the inner core region (r/a < 0.55). In the outer core region, however,

the turbulence intensity effect appears not to account well for the residual stress generation.

Again, strong correlation between 〈k‖〉 (top-right) and ωZF
E (mod-right) shown in Fig. 13

elucidates that the CTEM self-generated zonal flow shear plays a key role in breaking k‖

symmetry. It is interesting to compare the effect of equilibrium shear, which is included in

this simulation via the radial force balance relation, and the effect of zonal flow shear. The

total E × B shear rate (zonal flows + equilibrium E × B flow) is plotted in the bottom

panel, showing very similar structures to those of pure zonal flows. This is because the equi-

librium shear is much weaker than the zonal flows. In this particular case, the equilibrium

shear is shown to have a minor effect on k‖ symmetry breaking, and thus on residual stress

generation. However, the equilibrium flow shear is expected to have a significant effect on

turbulence driven residual stress in regions of transport barriers,11 both in the core and at

the edge.

It has been remarked that the mechanism of turbulence intensity does not fully explain the

residual generation, particularly in the outer core region (r/a >∼ 0.55). It has been suggested

in theory that turbulence intensity gradients can also contribute to driving residual stress,12

in addition to the turbulence intensity. The intensity gradients in both the radial direction

and the wavenumber kr direction may act for driving a residual stress. Here, we focus our

discussion on the role of the intensity gradient in radial direction. Figure 14 shows the spatio-

temporal evolution of the quantity −〈k‖〉
∑

∂/∂r(δΦ2) which can be used to approximately

represent the intensity gradient driven residual stress. Its apparent correlation with the

directly calculated residual stress (top-left panel of Fig. 13) is noted particularly in the

outer core region where a significant effect of the turbulence intensity is not observed. This
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FIG. 13: (Color online) Spatio-temporal evolution of radial flux of toroidal momentum (top-left),

〈k‖〉
∑

δΦ2
mn (mid-left), spectrum-averaged 〈k‖〉 (top-right), zonal flow shearing rate (mid-right),

and total E × B shearing rate (bottom) from simulation of CTEM turbulence.

simulation result is a clear identification of the turbulence intensity gradient driving residual

stress in the presence of zonal flow shear induced symmetry breaking.

A few highly remarkable, interesting features revealed in the CTEM simulation are worth

further discussion. First, the CTEM-driven residual stress changes sign from outward in the

inner core region to inward in the outer core region, as is more clearly seen in Fig. 15

(upper-left panel) which shows the radial profile of the residual stress (time averaged over
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FIG. 14: (Color online) Spatio-temporal evolution of 〈k‖〉
∑

∂/∂r(δΦ2) which represents the part

of the residual stress driven by the turbulence intensity gradient.
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steady state). What determines the sign of the residual stress, particularly its relation with

plasma parameters, remains as an important issue. The residual stress is shown to act as an

intrinsic torque effectively. The resultant parallel flow (or toroidal flow) generation process

is demonstrated in the lower panels of Fig. 15. In this case, a parallel flow is driven mostly

in the counter-B direction in the whole region r/a ∼ 0.25 − 0.8 where CTEM turbulence

is excited (see upper-right panel). The corresponding toroidal rotation is in the co-current

direction for this DIII-D geometry case, which is in agreement with the experimental trend

of intrinsic rotation observed in various tokamaks. The maximum parallel flow velocity

generated at the end of the simulation reaches ∼ 5% of the local ion thermal velocity

(see upper-right panel). Further, the CTEM turbulence and transport are characterized by

burstings which emerge regularly in time and propagate radially (see Fig. 14). The coherent

spatio-temporal bursting phenomenon was observed in ITG simulations,7 but appears more

pronounced in the TEM turbulence regime. The bursting generation frequency and the radial

propagation velocity are estimated to be fb ∼ 0.1cs/a and Vb ∼ (5−10)×10−3cs, respectively,

where cs is the sound speed. More interestingly, it is found that the temporal burstings

and radial propagation are also directly displayed in the parallel flow during its generation

process, as is clearly seen in the lower panels of Fig. 15. Particularly, it is shown that small

parallel flow perturbations are generated locally (in the center of the plasma in the simulation

case) by the turbulence, and then propagate radially. The measured propagation velocity is

∼ 7×10−3cs. This “flow pinch” phenomenon revealed in the simulations may have analogues

in experiments. The radially inward propagation of toroidal flow perturbations generated

by modulated beams in the peripheral region near the plasma edge was demonstrated in

JT-60U experiments,16,37 which was attributed to the turbulence driven momentum pinch.

Nevertheless, our simulation results of flow pinch may offer a new insight into the underlying

dynamics governing the radial penetration of localized modulated flows in perturbation

experiments. We should particularly point out that the meso-scale phenomena and their

critical role in determining plasma transport and its radially nonlocal nature are highly

pronounced in the TEM turbulence regime.
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VI. PHASE SPACE STRUCTURES OF TURBULENCE DRIVEN FLUXES

It is highly interesting and instructive to examine the phase space structures of various

turbulence driven fluxes. This type of study can provide physical pictures at a very fun-

damental level with regard to which and how particles contribute to plasma transport due

to turbulence. Particularly, this can help elucidate the roles of resonant and non-resonant

particles.

In Fig. 4, it is observed that the ITG driven toroidal momentum flux reverses its sign from

inward in the post saturation phase to outward in the long-time steady state. The phase

space structures of the momentum flux at the two stages are presented in Fig. 16. To be pre-

cise, illustrated in Fig. 16 is the function Γφ(r, v‖, v⊥), which relates to the momentum flux

(defined in Eq. (9) without a flux surface average), defined by Γφ =

∫
dv‖dv⊥Γφ(r, v‖, v⊥),

and is calculated at the mid-plane (θ = 0) and r/a = 0.54. A similar definition applies to the

particle and energy fluxes whose structures are also discussed in this section. First, it is ob-

served that the momentum flux is carried mostly by passing and barely trapped ions. There

are four signed peaks which are regularly located in the (v‖, v⊥) space, indicating dominant

contributions from four different particle groups. The four groups of particles are distin-

guished by the amplitude of energy (low or high) and the sign of v‖ (positive or negative),

and contribute to the momentum flux in different ways. Specifically, one higher energy group

with positive v‖ and one lower energy group with negative v‖ make positive contributions

to the momentum flux (i.e, outward momentum flux); another higher energy group with

negative v‖ and another lower energy group with positive v‖ make negative contributions to

the momentum flux (i.e, inward momentum flux). On the other hand, contributions from

high energy ions with |v‖|, v⊥ > 3 are small. Note that these characteristic phase space

structures persistently appear in both the post-saturation stage and the long-time steady

state with no considerable difference, while the net momentum fluxes at the two stages are

in opposite directions. As for what makes the total momentum flux inward or outward, the

simulation results suggest that it depends on the relative amount of each particle group’s

contribution, which may have to do with the details of the turbulence spectrum.

It is highly instructive to compare phase space structures in different transport channels.

As illustrated in Fig. 17, the ITG driven heat flux is carried by different ions in a different

way. First, the heat flux is carried mostly by trapped and barely trapped ions. Higher
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FIG. 16: (Color online) Phase space dependence of ITG turbulence driven ion toroidal momentum

flux at long-time steady state phase (top) and at post saturation phase (bottom), corresponding

to Fig. 4. The straight lines denote the boundaries of trapping-passing particles.

energy, mostly trapped, ions make a the largest contribution, which is positive and peaked

at v ∼ 2.5vth; lower energy ions around trapped-passing boundaries centered at v ∼ 1vth

make a negative contribution. These features share similarity to some extent with the

neoclassical transport in collisionless regime, which may imply that the ion transport driven

by the fluid-type ITG turbulence is non-resonance dominated.

FIG. 17: (Color online) Phase space dependence of ITG turbulence driven ion heat flux at the

steady state, corresponding to Fig. 4.

We have shown in Sec. V that the trapped electron physics has a strong impact on ITG

turbulence particularly in a regime close to or below the ITG marginality. Particularly,

the non-adiabatic electrons are shown to substantially enhance residual stress generation.

It is interesting to understand how the inclusion of trapped electrons could change the

way of ions interacting with turbulence and thus carrying the momentum flux. The phase
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space dependence of the momentum flux is compared between the ITG turbulence with

adiabatic and nonadiabatic electrons in Fig. 18, which is obtained from the same simulation

of the DIII-D discharge as in Fig. 11. It is shown that the ITG driven momentum flux in

experimental conditions possesses all the characteristics described previously for Fig. 16 for

the case of large aspect ratio circular geometry and model plasma profiles. More importantly,

trapped electrons are found not to change the qualitative phase space structure of ITG driven

momentum and heat fluxes. The enhancement in the momentum flux production due to

trapped electrons in ITG turbulence is mainly related to the increase of turbulence intensity.

FIG. 18: (Color online) Phase space structures of toroidal momentum flux driven by ITG turbulence

with kinetic electrons (top) and adiabatic electrons (bottom). This is from the same simulation of

Fig. 11.

For typical plasma parameters of fusion experiments, collisionless TEM turbulence can

be a major source to drive multiple-channel transport. Now we turn to discuss the phase

space characteristics of plasma transport produced by CTEM turbulence. First, the TEM

turbulence driven momentum flux shows highly distinct topology in phase space structures

compared to that of ITG turbulence. Figure 19 shows the CTEM simulation results of

the residual stress component. For both ∇Te- and ∇n-driven CTEM turbulence, the ion

momentum flux of residual stress is carried by two group of ions which are divided by

the sign of v‖: ions with positive v‖ carry outward flux and ions with negative v‖ carry

inward flux. The dominant contributions come from passing ions at around v⊥/vth ∼ 1 and
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FIG. 19: (Color online) Phase space structures of momentum flux in ∇Te-driven (top) and ∇n-

driven (bottom) CTEM turbulence.

FIG. 20: (Color online) Phase space structures of electron (top) and ion (bottom) energy flux in

CTEM turbulence.

v‖/vth ∼ ±(1.5−2). While the phase space structures between the ∇Te- and ∇n-driven cases

look qualitatively similar, it is also possible to notice a subtle difference, i.e, in ∇Te-driven

CTEM turbulence, the trapped ion region is basically a null region for the momentum flux.

Compared to the ITG case, the CTEM turbulence driven ion energy transport is also

caused by ions from different regions and in a different way. As shown in the lower panel

of Fig. 20, the dominant contributions come from two groups of passing ions, both carrying

positive (outward) ion flux. On the other hand, the electron responses in CTEM turbulence
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are shown to concentrate sharply in the trapped region, clearly spelling out the effect of

trapped electron modes. As illustrated in the upper panel of Fig. 20, an outward flux

of energy is carried by trapped electrons with higher energy, with little contribution from

passing electrons. At the same time, deeply trapped, low energy electrons are shown to

carry an inward, but small, flux for energy. Moreover, the electron phase space structures

appear symmetric around v‖ = 0. Apparently, the electron transport is dominated by the

precession drift resonance of trapped electrons.

FIG. 21: (Color online) Phase space structures of electron (top) and ion (bottom) particle flux in

CTEM turbulence. This is obtained from the same simulation of Fig. 21.

Remarkably, our simulation results clearly reveal that the particle flux is carried by the

same particles in the phase space as the energy flux. This result holds true for both ions

and electrons at different turbulence regimes. The results of CTEM driven ion and electron

flux are presented in Fig. 21, which displays high similarity to the energy fluxes in Fig. 20.

In the regime of ITG turbulence with adiabatic electrons, Fig. 22 illustrates how a net,

outward heat flux and a vanishing ion particle flux can be produced by the same groups

of ions. Higher energy ions, mostly trapped ones, carry outward fluxes for both heat and

particle; and lower energy ions, mostly barely trapped ones, carry inward fluxes for both

heat and particle. For the heat flux, the inward flux is greater than the outward, and a net

outward flux remains. For the particle flux, however, the inward and outward components

are balanced with each other, resulting in a vanishing net flux.
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FIG. 22: (Color online) Phase space structures of heat flux (top) and particle flux (bottom) in ITG

turbulence with adiabatic electrons.

VII. CONCLUSIONS

Global gyrokinetic simulations using experimentally relevant parameters have revealed

an important nonlinear flow generation process due to the residual stress produced by elec-

trostatic turbulence of ion temperature gradient modes and trapped electron modes. Turbu-

lence self-generated low frequency zonal flow shear has been identified to be a key, universal

mechanism in various turbulence regimes for k‖ symmetry breaking, which is a critical in-

gredient for parallel (and toroidal) flow generation by turbulence. The principle results of

this study are summarized as follows.

i) The nonlinear residual generation has been clearly observed, for the first time, in CTEM

turbulence. Particularly, in additional to turbulence fluctuation intensity driving residual

stress which was also reported previously for ITG turbulence,26 the intensity gradient is also

identified to drive significant residual stress, by acting with the CTEM self-generated zonal

flow shear which induces symmetry breaking in the k‖ spectrum.

ii) The residual stress, acting as an intrinsic torque, is shown to spin up toroidal rotation

effectively. In the simulated CTEM case with typical DIII-D parameters, where the plasma

is initially rotation-free and momentum-source-free, a net toroidal rotation is produced in

the co-current direction in the whole turbulence region. This is consistent with the exper-

imental trend of observed intrinsic rotation. The total toroidal momentum is generated at
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an approximately constant rate with the the peak of the corresponding parallel flow profile

at the end of the simulation reaching ∼ 5% of local ion thermal velocity. This net, direc-

tional mechanical flow generation phenomenon is an indication of momentum transfer from

turbulence waves to particles via residual stress.

iii) The CTEM turbulence and transport including the momentum flux are character-

ized by burstings which emerge regularly in time and propagate radially both inward and

outward. The meso-scale phenomena appear more pronounced than in the ITG turbulence

regime, and are found to play a critical role in determining plasma transport and its radi-

ally nonlocal nature. One highly remarkable result is the observation of the “flow pinch”

phenomenon. Specifically, toroidal flow perturbations, which are generated locally (in the

center of the plasma in the simulation case) by the turbulence, are found to propagate ra-

dially. This result may offer an interesting new insight into the experimental phenomenon

of radially inward penetration of perturbed flows created by modulated beams in peripheral

regions.

iv) In the ITG turbulence regime, the intrinsic torque associated with residual stress is

predicted to increase close to linearly with the value of the temperature gradient offset from

the ITG critical gradient, (R0/LTi
− R0/L

crit
Ti

). The dominant underlying physics governing

this scaling is that both the residual stress and the zonal flow shear are increased with the

turbulence intensity which, in turn, is increased with the strength of the ITG drive R0/LTi
.

This simulation result is in qualitative agreement with experimental trends observed in

various devices, such as the Rice scaling36 in which the increment of central toroidal flow

velocity for H-mode plasmas scales linearly with the increment in the plasma stored energy

divided by the plasma current.

v) For typical tokamak parameters, the nonlinearly generated residual stress is found to

contribute up to more than 50% of the total momentum flux produced by ITG turbulence.

It is plausible that the portion of the residual stress is shown to increases with the decrease

of the rotation gradient. The intrinsic Prandtl number is shown to increase with the ion

temperature gradient, specifically, ranging from Pr ∼ 0.4 - 0.7 for R0/LTi
∼ 5.5 − 8.5.

This result is in general agreement with observations in NSTX where the estimated intrinsic

Prandtl number Pr ∼ 0.5 - 0.8 was reported from the experimental data base of various

shots.41

vi) While the critical effect of zonal flow shear on the parallel wavenumber spectrum

38



is clarified, our simulations, particularly with electron physics included, also indicate the

existence of other mechanisms beyond E × B shear for symmetry breaking. The possible

mechanisms include the effects of magnetic shear, nonlinear mode couplings, and turbulent

radial current, which will be addressed in a future publication.

vii) Our simulations reveal highly distinct phase space structures between ITG and TEM

turbulence for momentum, energy and particle fluxes, with a lot of interesting details with

regard to which and how particles contribute to ion and electron transport in different

channels. This study can ultimately help elucidate the roles of resonant and non-resonant

particles in plasma transport in different turbulence regimes, which is a highly non-trivial

issue under turbulence circumstances with many modes nonlinearly coupled together.

viii) In the ITG marginality regime, trapped electron physics is shown to play a critical

role in determining plasma transport, not only producing the proper ion heat flux in experi-

ments but also largely enhancing the residual stress generation. However, trapped electrons

do not change the qualitative phase space structure of ITG driven momentum and heat

fluxes.
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