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Nonlinear gyrokinetics: A powerful tool for the

description of microturbulence in magnetized

plasmas

John A. Krommes

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ

08543–0451 USA

Abstract. Gyrokinetics is the description of low-frequency dynamics in magnetized

plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for

numerical simulations of microturbulence; there are astrophysical applications as well.

In this tutorial, a sketch of the derivation of the novel dynamical system comprising

the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK

Poisson equation will be given by using modern Lagrangian and Lie perturbation

methods. No background in plasma physics is required in order to appreciate the

logical development. The GKE describes the evolution of an ensemble of gyrocenters

moving in a weakly inhomogeneous background magnetic field and in the presence

of electromagnetic perturbations with wavelength of the order of the ion gyroradius.

Gyrocenters move with effective drifts, which may be obtained by an averaging

procedure that systematically, order by order, removes gyrophase dependence. To

that end, the use of the Lagrangian differential one-form as well as the content and

advantages of Lie perturbation theory will be explained.

The electromagnetic fields follow via Maxwell’s equations from the charge and

current density of the particles. Particle and gyrocenter densities differ by an important

polarization effect. That is calculated formally by a “pull-back” (a concept from

differential geometry) of the gyrocenter distribution to the laboratory coordinate

system. A natural truncation then leads to the closed GK dynamical system.

Important properties such as GK energy conservation and fluctuation noise will be

mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid

equations suitable for rapid numerical solution — although it is probably best to

directly simulate the GKE. By the end of the tutorial, students should appreciate the

GKE as an extremely powerful tool and will be prepared for later lectures describing

its applications to physical problems.

PACS numbers: 52.30.Gz, 52.25.Dg, 52.35.Kt, 45.20.Jj

Submitted to: Phys. Scr.
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1. Introduction: Heuristic gyrokinetics

This article1 is an introductory tutorial on the plasma-physics formalism known as

nonlinear gyrokinetics, which is used for the description of low-frequency fluctuations in

magnetized plasmas. No prior knowledge of plasma physics is assumed.

From the perspective of a conference on “Turbulent Mixing and Beyond,” the

relevance of this article is that it provides an entry point to a vast literature on

research directed at the magnetic confinement of fusion plasmas. Observed particle,

momentum, and heat losses in tokamak devices are generally much larger than what

can be attributed to classical Coulomb collisions, and are believed to result from low-

frequency microturbulence. Both analytically and numerically, nonlinear gyrokinetics

provides the appropriate description of that turbulence.

A comprehensive review of the nonlinear gyrokinetic formalism has been given by

Brizard and Hahm (2007); that sophisticated article contains the details of many issues

not covered here. A closely related review article by Cary and Brizard (2009) on the

Hamiltonian theory of guiding-center motion is also of interest. The present article

merely attempts to focus on the core ideas and technical tools; if those are firmly in

hand, the details will take care of themselves.

For neutral fluids, the canonical partial differential equation (PDE) is the Navier–

Stokes equation, displayed here in the incompressible limit:

∂tu(x, t) + u · ∇u = −∇P + µ∇2u (∇ · u = 0). (1)

Of course, this dynamical equation lives in three-dimensional (3D) configuration space.

Plasmas2 (collections of charged particles) present several kinds of additional

complexity. Because of wave–particle interactions (responsible for linear growth rates

and kinetic dissipation, i.e., Landau damping) and Coulomb collisions, it is frequently

necessary to study the distribution of particles in a 6D phase space comprising both

position x and velocity v. Furthermore, one must calculate from Maxwell’s equations

a self-consistent electric field E and magnetic field B. One is then led to the plasma

kinetic equation for the probability density function (PDF) of the particles of species s:

∂fs(x, v, t)

∂t
+ v · ∇f +

( q

m

)
s
(E + c−1v × B) ·

∂f

∂v
= −Cs[f ]. (2)

Here Cs[f ] is the plasma collision operator, frequently approximated by the Landau

form.3 Because it supports physics on greatly disparate length and time scales

and evolves a 6D dynamics, this equation is extremely complicated; it is virtually

impossible to solve it numerically in its raw form for macroscopic time and length scales

1 This article is the written version of a tutorial talk presented at the Second International Conference

and Advanced School on “Turbulent Mixing and Beyond,” July 27 – August 7, 2009, International

Centre for Theoretical Physics, Trieste, Italy.
2 An introductory textbook on plasma physics is by Chen (1983). A tutorial set of lectures that

introduces many of the plasma-physics topics mentioned in the present article is by Krommes (2006a).
3 The Landau collision operator is derived in many plasma-physics textbooks and monographs, such

as the one by Helander and Sigmar (2002).
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characteristic of current and future fusion devices such as the ITER machine currently

under construction in France (ITE, 2009).

Fortunately, for microturbulence characteristic of fusion devices, the collective

modes of oscillation (generically, “drift waves”) have frequencies much lower than the

ion gyrofrequency ωci
.
= qiB/mic (I use

.
= for definitions):

ω

ωci

.
ρi

Ln

∼
0.2 cm

2 × 102 cm
≈ 10−3 � 1. (3)

Here ρi
.
= vti/ωci is the ion gyroradius, vti

.
= (Ti/mi)

1/2 is the ion thermal velocity, and

Ln is the characteristic scale length of the background density profile. The estimate (3)

implies that one can make some analytical reductions by averaging the motion over

the rapid gyration (described by gyrophase ζ). The final result of that program is

the nonlinear gyrokinetic equation, the physics of which I will describe heuristically in

the remainder of this section. In sections (2) and (3) I will sketch a more systematic

derivation.

1.1. The drift equations

For electromagnetic fluctuations that satisfy ω/ωci � 1 and k⊥ρi � 1 (k⊥ is a

characteristic wave number perpendicular to B) , it is well known that the gyro-averaged

particle motion obeys the drift equations (I now drop the species label)

dX

dt
= v‖b̂ + VE + Vd, (4a)

dv‖
dt

=
q

m
E‖ + µωc∇‖ ln B, (4b)

dµ

dt
= 0. (4c)

Here B
.
= |B|, b̂

.
= B/B, the guiding-center drifts are

VE
.
= cE × b̂/B (E × B drift), (5a)

Vd
.
=

v2
⊥/2

ωc

b̂ × ∇ ln B +
v2
‖

ωc

b̂ × (b̂ · ∇b̂) (magnetic drifts), (5b)

and the magnetic moment is approximately

µ ≈
1

2
mv2

⊥/ωc(x). (6)

One may use the drifts as characteristics in the evolution equation for the guiding-

center PDF:
∂F (X, v‖, µ, t)

∂t
+ v‖∇‖F︸ ︷︷ ︸

parallel

streaming

+ (VE + Vd) · ∇F︸ ︷︷ ︸
guiding-center

drifts

+
( q

m
E‖ + µωc∇‖ ln B

) ∂F

∂v‖︸ ︷︷ ︸
parallel acceleration

= 0. (7)

The key features of this equation are (i) it contains no ∂/∂ζ (thus one has reduced

the dimensionality by one and removed high-frequency motion); and (ii) it contains no

∂/∂µ because the magnetic moment is (adiabatically) conserved. Thus µ enters only as

a parameter.



Nonlinear gyrokinetics 4

ĉ

ê 2

â= ρ
â

ê 1

v⊥ v⊥ĉ=

ρ
ζ

Figure 1. Illustration of the lowest-order gyrokinetic variables. â and ĉ rotate with

the particle. Vectors can be decomposed with respect to either of the orthonormal sets

{â, b̂, ĉ} or {ê1, ê2, b̂}, where ê1 is chosen arbitrarily in the plane locally perpendicular

to B. The gyrophase ζ is measured clockwise from ê1.

1.2. The gyrokinetic equation

For k⊥ρi � 1, the particle position and the guiding-center position are essentially

coincident. But it turns out that k⊥ρi = O(1) for the microturbulence of interest.4

In this situation, one must introduce the notion of the gyrocenter, which is the gyro-

averaged position of the particle. (For circular motion, the gyrocenter is precisely defined

by X
.
= x − ρ, where ρ is the vector gyroradius ρ = ρâ; see figure 1.) Figure 2 makes

it clear that gyrocenters feel effective potentials. In order to quantify this notion, let

E = −∇ϕ (electrostatic approximation). Upon introducing the Fourier representation

ϕ(x) = (2π)−3
∫

dk ϕkeik·x and assuming circular motion, one has

〈ϕ(x)〉ζ ≡ ϕ(X) =
1

2π

∫ 2π

0

dζ

∫
dk

(2π)3
ϕkeik·[X+ρ(ζ)] (8a)

=

∫
dk

(2π)3
eik·XJ0(k⊥ρ)ϕk, (8b)

where J0 is a Bessel function. We see that the effective potential felt by the spiraling

particle is reduced by the wave-number-dependent factor J0(k⊥ρ). This is a kind of

renormalization. The corrections embodied in the J0 factor are called finite-Larmor-

radius (FLR) effects.

Now, by appropriately introducing the effective fields, one can write the gyrokinetic

4 From the estimate in (3), one sees that ρi is much less than the characteristic macroscopic scale,

which is why one refers to microturbulence.
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v⊥

ϕ

ρ

Figure 2. When k⊥ρ = O(1), the gyrocenter feels an effective potential that is

averaged over the phases of the wave.

equation immediately:

∂F (X, v‖, µ, t)

∂t
+ v‖∇‖F︸ ︷︷ ︸

parallel

streaming

+ (V E + Vd) · ∇F︸ ︷︷ ︸
gyrocenter

drifts

+
( q

m
E‖ + µωc∇‖ ln B

) ∂F

∂v‖︸ ︷︷ ︸
parallel acceleration

= −C[F ]. (9)

This gyrokinetic equation is the workhorse of research on modern fusion microturbu-

lence. It has the same structure as the guiding-center kinetic equation (7): It contains

neither a ζ̇ term (gyration has been averaged away) nor a µ̇ term (the magnetic moment

is conserved and enters merely as a parameter); the only new wrinkle is the presence of

the gyro-averaged fields (indicated by the overlines).

This “derivation” of the gyrokinetic equation is incomplete because I have been

cavalier about the definitions of the gyrokinetic variables. In realistic, inhomogeneous

magnetic fields, particles do not execute perfect circles around the field lines; therefore

it is unclear how to precisely define a gyrocenter. That same issue afflicts the definition

of the magnetic moment. In section 2 we will see how these difficulties can be overcome

by a more systematic approach.

1.3. The gyrokinetic Poisson equation

To close the gyrokinetic equation, one needs the electromagnetic fields, so we must

consider the GK Maxwell equations. For simplicity, I will consider only electrostatics

in the remainder of the article.5 Then one has E = −∇ϕ and one must solve Poisson’s

equation

−∇2ϕ(x, t) = 4πρ(x, t), (10)

5 Electromagnetic corrections can be important for modern, high-pressure tokamaks, but the

electrostatic analysis captures the essence of the difficulties.
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where ρ is the charge density.6 Although this equation appears innocent, subtlety

arises because in gyrokinetics the particle position x and the gyrocenter position X

are distinct. One needs the particle charge density ρ(x), but has available from solution

of the GKE the gyrocenter (phase-space) density F (Z). The route between these

involves a coordinate transformation denoted by the operator T (to be defined precisely

in section 2.3). Thus

F (Z)
T
⇒ ρ(x)

Poisson
⇒ ϕ(x)

∇
⇒ E(x)

T−1

⇒ E(X)
GKE
⇒ F (Z). (11)

Now although T is quite complicated in general, the most important physical distinction

between particles and gyrocenters is easy to understand; it lies in the polarization drift

(of the ions7). Iterative solution of the ion fluid equation

m
du

dt
= q(E + c−1u × B) + · · · (12)

for constant B and slow variations leads to u = uE + upol + · · ·, where (the lowest-

order-approximation to) the polarization drift velocity is (correct for Ti = 0)

upol .
=

1

ωc

∂

∂t

(
cE⊥

B

)
. (13)

The polarization drift leads to a polarization charge density ρpol that heuristically obeys

a simple continuity equation:

∂tρ
pol = −∇ · jpol = −∇ · (nqupol). (14)

Because upol contains a time derivative, one can integrate immediate to find

ρpol
i = (nq)iρ

2
s∇

2
⊥Φ, (15)

where Φ
.
= eϕ/Te, ρs

.
= cs/ωci is the so-called sound radius, and cs

.
= (ZTe/mi)

1/2 is the

sound speed (Z is the atomic number8). Note that ρs = ρi for Ti = Te, but ρi → 0 as

Ti → 0 while ρs remains nonzero in that limit.

One can now process Poisson’s equation by separating the total charge into a

gyrocenter charge and a polarization charge:

−∇2ϕ = 4πρ = 4π[(ρG
i + ρpol

i ) + (ρG
e + ρpol

e )]. (16)

Electron polarization is negligible, so (16) becomes

−∇2Φ = k2
De

(
nG

i

ni
+ ρ2

s∇
2
⊥Φ −

nG
e

ne

)
, (17)

6 The distinction between the gyroradius and the charge density, both denoted by the symbol ρ, should

be clear from the context.
7 Electron polarization is negligible, as can be seen from (13).
8 Z enters through the condition for overall charge neutrality ne = Zni, where n denotes the mean

density.
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where kDe
.
= (4πnee

2/Te)
1/2 is the inverse of the electron Debye length λDe. Finally, it

is natural to place the ion polarization term on the left-hand side, where it renormalizes

the vacuum dielectric permittivity (= 1) of the original Poisson equation:

−

[
∇2
︸︷︷︸

original

Poisson

+

(
ρ2

s

λ2
De

)
∇2

⊥

︸ ︷︷ ︸
ion

polarization

]
Φ = k2

De

(
nG

i

ni
−

nG
e

ne︸ ︷︷ ︸
gyrocenter

charge density

)
. (18)

Note that the left-hand side of (18) is the only place where the polarization effect enters;

in particular, the polarization drift does not appear in the gyrokinetic equation.

Equation (18) is similar to the familiar equation ε∇ · E = 4πρ used for the

description of dielectric media. One is therefore motivated to define the dielectric

constant of the gyrokinetic vacuum (this phrase is explained below) as

εG .
=

ρ2
s

λ2
De

=
ω2

pi

ω2
ci

. (19)

Then Poisson’s equation can be written as

−λ2
De

( small︷ ︸︸ ︷
∇2
︸︷︷︸

original

Poisson

+

quasineutrality︷ ︸︸ ︷
εG∇2

⊥︸ ︷︷ ︸
ion

polarization

)
Φ =

nG
i

ni

−
nG

e

ne︸ ︷︷ ︸
gyrocenter

(charge) density

. (20)

Now for fusion applications it turns out that εG � 1. In that case one can neglect

the ∇2 of the original Poisson equation and deal with the quasineutrality condition

−ρ2
s∇

2
⊥Φ =

nG
i

ni
−

nG
e

ne
. (21)

The left-hand side describes the ion polarization effect while the right-hand side gives

the net gyrocenter (charge) density. [Equation (21) is correct only for Ti = 0, but it can

be generalized; see section 3.]

We now have a self-consistent and closed set of equations, the gyrokinetic–Poisson

system. Given the potential, the GKE evolves the gyrocenter PDF F . That can be used

to calculate the gyrocenter charge; then the GK Poisson equation can be solved for the

potential.

Although the operations I have described are rather simple, the final result is

conceptually profound. We have obtained a new nonlinear dynamical system that is

not continuously deformable into the original kinetic equation. The clean separation

between the E × B and magnetic drifts (appearing only in the gyrocenter kinetic

equation) and the polarization drift (whose effect appears only in the gyrokinetic Poisson

equation) motivates an interpretation built upon a gyrokinetic vacuum (Krommes,

1993a). The gyrokinetic vacuum is an ether-like medium with dielectric permittivity εG.

Into that vacuum state, one now places gyrocenters (each characterized by its own

conserved µ). Those move cross-field with the (effective) E × B and magnetic drifts,
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and are accelerated parallel to the lines by the effective parallel electric field and the

µ∇B mirroring force. The electromagnetic potentials are then determined from the

gyrokinetic Maxwell equations. (Here I have only discussed the electrostatic limit and

the gyrokinetic Poisson equation.)

This interpretation involving the gyrokinetic vacuum is physically compelling, and

it argues against attempts to incorporate the polarization drift into the kinetic equation.

That is, in fact, done in some formulations [notably those based on the methodology of

Frieman and Chen (1982)], which if carried through correctly will ultimately also give

the correct low-frequency physics. But the present approach provides the fundamental

description of gyrocenters, which is the natural entity that emerges in the low-frequency

regime.

The ion polarization response is intimately related to the plasma vorticity. Indeed,

if one takes the curl of the E×B velocity for constant B, one finds that the (b̂-directed)

vorticity of the E × B motion is

$
.
= b̂ · ∇ × (cE × b̂/B) = ωci(ρ

2
s∇

2
⊥Φ), (22)

so the vorticity and the ion polarization charge are identical except for a scale factor.

An illustration of this result is given as figure 2 of Krommes (2006b). A consequence

is that fluid equations for low-frequency plasma motion invariably include a vorticity

equation that is recognizably similar to the 2D Navier–Stokes equation. That implies

that the plasma physics shares some properties with canonical 2D turbulence, such as

the existence of dual cascades. Unfortunately, I cannot pursue that important topic

here; see the review article by Krommes (2002) for discussion and references.

The elimination of high-frequency physics from the gyrokinetic dynamical system

has consequences in addition to the reduction in dimensionality and the adiabatic

conservation of the magnetic moment. If the gyrokinetic distribution is realized

numerically as a collection of discrete gyrocenters, one can ask questions about the

discreteness-induced noise, which is relevant to the fidelity of numerical schemes. The

simplest case is thermal equilibrium, for which a fluctuation–dissipation theorem (FDT)

is available. For exact dynamics based on the Klimontovich formalism, it is well known

(Birdsall and Langdon, 1985) that the FDT (Ecker, 1972) predicts (for weak coupling)

〈δE2〉(k)

8π
=

T/2

1 + k2λ2
D

; (23)

this result arises from an integration over all frequencies of the FDT-specified formula

for the spectral function 〈δE2〉(k, ω). If one attempts a similar calculation for the

gyrokinetic system, one must be very careful because the “high”-frequency limit of

gyrokinetics is nontrivial and differs from the infinite-frequency limit of the true plasma.

Krommes et al. (1986) carried out the analysis and demonstrated that the equilibrium

fluctuation energy of the electrostatic gyrokinetic plasma model is much smaller than

that of the full plasma — a consequence of the shielding due to ion polarization. [Later,

Krommes (1993b,a) extended the analyis to nonzero-pressure plasmas with fluctuating

magnetic fields.] The low-noise properties of gyrokinetic plasma are a boon for numerical
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simulation, since it is easier (and less expensive) to separate signal from noise. Issues

related to gyrokinetic noise were reviewed by Krommes (2007).

1.4. The drift wave

To gain insight into the gyrokinetic formalism, let us see how to recover the famous

drift wave. Drift waves are driven by a gradient in the background (mean) density

profile; such profiles are inevitable in any situation in which plasma is confined. A

collective normal mode arises because the physics of (light) electrons and (heavy) ions

are very different. Suppose a slowly varying potential fluctuation δϕ arises in the plasma.

Because electrons have little inertia, they can respond to the potential by moving rapidly

along the field lines and establishing a Maxwell–Boltzmann distribution:

δne/ne → eeδϕ/Te − 1 ≈ δΦ. (24)

This is called adiabatic response, adiabatic being used here in the sense of slow variations,

not in its thermodynamic connotation. On the other hand, the dominant motion of the

ions is across the magnetic lines. The cleanest model is obtained by setting Ti = 0,

which removes the FLR effects (but not the polarization drift); I also assume a constant

magnetic field for simplicity. Then a straightforward moment of the GKE leads to the

continuity equation for ion gyrocenters:

∂tn
G
i + ∇⊥ · (uEnG

i ) + ∇‖(u‖in
G
i )︸ ︷︷ ︸

neglect

= 0. (25)

The parallel motion of the ions is small and is ignored in the simplest approximation.

For the perpendicular motion, observe that only the E × B drift enters. (Remember

that we are studying gyrocenters, which do not polarize.) Now linearize (25) with the

ansatz nG
i = n + δnG

i ; one obtains

∂t(δn
G
i /n) + δuE · ∇ ln n = 0. (26)

If one now defines the density scale length Ln by L−1
n

.
= −∂x ln n(x), assuming that the

profile is inhomogeneous in only the x direction, one obtains

∂t(δn
G
i /n) + V∗∂yδΦ = 0, (27)

where the diamagnetic velocity9 is

V∗
.
= ρscs/Ln. (28)

9 The diamagnetic velocity also emerges in discussions of the diamagnetic current that arises from

the gyrations of particles in an inhomogeneous background, a well-known effect that is illustrated, for

example, in the article by Braginskii (1965). It is important to note that diamagnetic current has

nothing to do with the simple model of the drift discussed here; indeed, ion diamagnetic flow vanishes

for Ti → 0 because ρi → 0 in that limit. Rather, the physics of the drift wave involves the E × B

advection of parcels of background density.
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Finally, the quasineutrality condition (21) closes the system. One may solve that

equation for the ion response in terms of the potential. Upon substituting that result

into the continuity equation (27), one obtains

∂t[(1 − ρ2
s∇

2
⊥)δΦ] + V∗∂yδΦ = 0. (29)

The form of this equation is invariant under a time-reversal transformation, which shows

that there is no dissipation or instability at this level of approximation; it describes a

wave propagating in the positive y direction. Fourier analysis reveals that the real

frequency of the eigenmode is

Ωk =
ω∗(k)

1 + k2
⊥ρ2

s

, (30)

where ω∗
.
= kyV∗ is the diamagnetic frequency. Equation (30) is the dispersion relation

of the drift wave. The (k⊥ρs)
2 term in the denominator arises from ion polarization. Its

presence introduces dispersion, which is an important physical property of the modes.

Nondispersive wave frequencies can be transformed away; the resulting fluctuations are

strongly turbulent. Dispersive waves can be weakly turbulent in at least some regimes;

that is a simplifying approximation in the analytical statistical theories of turbulence.

See Ottaviani and Krommes (1992) for some discussion of weakly and strongly turbulent

drift waves.

1.5. The Hasegawa–Mima equation

If the E × B nonlinearity is retained in the continuity equation for ion gyrocenters,

the calculation proceeds almost identically. One finally obtains the Hasegawa–Mima

equation (Hasegawa and Mima, 1978)10:

( 1︸︷︷︸
adiab.

elect.

− ρ2
s∇

2
⊥︸ ︷︷ ︸

ion

polarization

)
∂δΦ

∂t
+ V∗

∂δΦ

∂y︸ ︷︷ ︸
linear

drift wave

+ uE · ∇(−ρ2
s∇

2
⊥δΦ)︸ ︷︷ ︸

nonlinear E × B

advection of vorticity

= 0. (31)

We see that the ρ2
s∇

2
⊥ term now appears both linearly and nonlinearly. The nonlinear

term, which can be seen to describe E×B advection of vorticity, is frequently called the

polarization-drift nonlinearity. That term does not change the time-reversal properties

of the equation, so the Hasegawa–Mima equation is nondissipative. One can put in

realistic growth and damping by hand or derive a more sophisticated equation from a

more complete gyrokinetic approximation. For studies of such equations, see Horton

(1986).

10 The original derivation of this equation by Hasegawa and Mima (1978) proceeded from particle

fluid equations (the Braginskii equations), not gyrofluid equations. The gyrokinetic derivation is much

cleaner. In particular, the polarization drift does not appear in the continuity equation for gyrocenters,

whereas it must be included in the continuity equation for particles.
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The Hasegawa–Mima equation is similar to the 2D Navier–Stokes equation in the

vorticity representation. If the adiabatic electron response and the linear drift-wave

term are dropped, the equation reduces to precisely 2D Navier–Stokes:

∂t$ + uE · ∇$ = 0. (32)

The Hasegawa–Mima equation inherits many of the properties of 2D Navier–Stokes,

including the dual cascade.

The Hasegawa–Mima equation is not suitable for the treatment of zonal flows. Zonal

flows are sheared poloidal flows; their shear can regulate the nonlinear saturation of drift

waves by destroying drift-wave eddies. It is crucial to note that because zonal flows

have vanishing parallel wave number k‖, they do not respond adiabatically. Adiabatic

response requires that ω/k‖vte � 1, and that is violated for modes with k‖ = 0. Instead,

zonal modes are in the fluid regime. That can be taken into account with various degrees

of rigor. The simplest leads to the modified (or generalized) Hasegawa–Mima equation

(Krommes and Kim, 2000):

( α̂︸︷︷︸
electron

response

− ρ2
s∇

2
⊥︸ ︷︷ ︸

ion

polarization

)
∂δΦ

∂t
+ V∗

∂δΦ

∂y︸ ︷︷ ︸
linear

drift wave

+ uE · ∇[(α̂ − ρ2
s∇

2
⊥)δΦ]︸ ︷︷ ︸

nonlinear E × B

advection of ion density

= 0. (33)

Here

α̂
.
=

{
1 (k‖ 6= 0)

0 (k‖ = 0)
(34)

is a projection operator that projects onto the nonzonal modes (the drift waves). Its

presence in the nonlinear term leads to an interesting coupling between the drift waves

and the zonal flows. Specifically, the zonal flows are driven by drift-wave-induced

Reynolds stresses. This observation (Diamond et al., 1998) is the starting point for

a good deal of interesting analysis (Krommes and Kim, 2000; Krommes and Kolesnikov,

2004; Krommes, 2004b,a). For example, statistical closure theory (Krommes, 2002) can

be used to calculate the nonlinear growth rate of the zonal modes (Krommes and Kim,

2000), and a close connection to Kraichnan’s theory of 2D eddy viscosity (Kraichnan,

1976) can be demonstrated. However, I shall not pursue those topics here because that

would divert us from our main theme, namely the gyrokinetic formalism.

Let me summarize what we have learned from our heuristic introduction to

gyrokinetics:

• Gyrocenters move cross-field (only) with effective E ×B drifts and magnetic drifts

(not the polarization drift).

• Knowing the gyrocenter drifts, one can write the gyrokinetic equation.

• In time-varying fields, particles polarize with respect to the gyrocenter motion.

• Polarization and vorticity are intimately related.

• Ion polarization endows the “gyrokinetic vacuum” with a large dielectric

permittivity εG.
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• For large εG, the GK Poisson equation reduces to quasineutrality:

(net gyrocenter charge) + (ion polarization charge) ≈ 0. (35)

• The gyrokinetic-Poisson system is a new nonlinear dynamical system with unique

properties.

• A system of discrete gyrocenters exhibits equilibrium fluctuation noise that is much

suppressed from that of the true plasma.

• Gyrokinetics predicts a turbulent “soup” of interacting drift waves and zonal flows.

• The GK–Poisson system can be simulated and used to calculate turbulent transport

fluxes.

We have already accomplished a lot without really working very hard. Nevertheless,

various things have been swept under the rug. Most fundamentally, the formalism

assumes that µ is conserved. But in reality, what most people call µ, namely

µ
.
= 1

2
mv2

⊥/ωc(x), is not exactly conserved. (It is not even Galilean invariant!) One

must ask just what quantity µ is really conserved.

Also, how does one generalize the notion of gyrokinetic polarization for Ti 6= 0 and

k⊥ρi = O(1)?

When appropriately formulated, gyrokinetics is a Hamiltonian system (a fact that

is very useful to know both analytically and numerically). However, that is not apparent

from the “derivation” given so far.

Finally, are we sure that the gyrokinetic system conserves the appropriate things

(e.g., energy or momentum)?

To answer questions such as these, one must engage a more systematic formalism.

I will turn to that in the next several sections.

2. Systematic gyrokinetics, Part I: The gyrokinetic equations of motion

2.1. A brief history of gyrokinetics

Gyrokinetics has an interesting and instructive intellectual history. [The following

brief sketch does not pretend to be complete; for more details and references, see the

review article by Brizard and Hahm (2007).] Several logical threads are intertwined.

Catto (1978) discussed linearized gyrokinetics by implementing a straightforward

transformation to guiding-center variables, then gyro-averaging. Frieman and Chen

(1982) wrote the first nonlinear gyrokinetic equation; their formalism inspired many

subsequent workers. However, they wrote separate equations for the background

and the fluctuating distribution. That frustrated W. W. Lee, who was interested in

applying particle-simulation techniques (Birdsall and Langdon, 1985) to gyrokinetics.

That method fundamentally relies on characteristic equations of motion (here for the

gyrocenters), but the Frieman–Chen equations were not in characteristic form. Lee

(1983) used a recursive transformation method to reformulate gyrokinetics in terms of a

single equation for the total gyrocenter distribution function that was in characteristic
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form, and he obtained initial numerical results; his work fathered a massive industry in

gyrokinetic simulation that continues to the present.

None of the works mentioned so far made explicit use of the Hamiltonian nature of

the problem. But soon after Catto’s 1978 work, Littlejohn (1979) described “A guiding

center Hamiltonian: A new approach.” And a few years later he discussed “Hamiltonian

perturbation theory in noncanonical coordinates” (Littlejohn, 1982), which provided the

key insight that paved the way for all future systematic developments.

Motivated by Littlejohn’s work, Dubin et al. (1983) reconsidered Lee’s 1983 attempt

and provided a Hamiltonian formulation of the nonlinear GK–Poisson system. In order

to focus on the most fundamental conceptual points, they worked with a constant

magnetic field, thereby ignoring the magnetic drifts. But although that paper contained

a number of significant advances, it still did not fully exploit modern techniques. In

particular, Cary and Littlejohn (1983) discussed noncanonical Lagrangian mechanics,

which provided the formalism followed by essentially all subsequent workers. It took

about five years for those techniques to be appreciated, but finally Hahm (1988)

developed nonlinear gyrokinetics in an inhomogeneous magnetic field by using the

Lagrangian one-form. Brizard (1989) made further contributions, as did Qin (1998).

All this and more is summarized in the review article by Brizard and Hahm (2007).

The resulting edifice of nonlinear gyrokinetics is beautiful, elegant, and efficient. It

is also subtle and involves nontrivial approximations, so it is therefore not surprising that

questions remain. Some of those were voiced in two independent papers by Sugiyama

(2008) and Parra and Catto (2008), published three decades after Catto’s 1978 work on

linearized gyrokinetics. The status of the ensuing debates will be described in section 4.

2.2. Modern gyrokinetics via the Lagrangian one-form

Our goal will be a systematic derivation of nonlinear gyrokinetics from first principles

(meaning Newton’s laws and Maxwell’s equations). In the course of this, we will be led to

an asymptotic construction of the “true” adiabatic invariant µ in complicated geometry

with inhomogeneous and slowly time-varying electromagnetic fields. The methodology

will follow the seminal contributions of Littlejohn (1979, 1981, 1982, 1983), including the

use of Lagrange’s variational principle, differential forms, and Lie perturbation theory.

Much of analytical physics consists of finding the best variables. Contrast the

particle position x, the lowest-order gyrocenter position X (well defined for circular

motion), and the “true” gyrocenter position X. The procedure will be to first

transform {x, v} to the set of lowest-order gyrocenter variables Z
.
= {X, U, µ, ζ}, where

X
.
= x − ρ, U ≡ v‖

.
= v · b̂, µ is defined by (6), and ζ is the lowest-order gyrophase,

measured with respect to the arbitrary unit vector ê1 (see figure 1). Then, to deal with

the consequences of fluctuations and inhomogeneous geometry, we will perturbatively

transform from Z to Z
.
= {X, U, µ, ζ}. The latter variables will be chosen specifically

so that µ is conserved.

It is well known that both Hamilton’s and Lagrange’s equations of motion follow
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from the action variational principle (Lanczos, 1949)

0 = δ

∫ t1

t0

L dt. (36)

where no variations are permitted at the endpoints. Here L
.
= p·q̇−H is the Lagrangian,

H
.
= |p− qA/c|2/2m + qϕ is the Hamiltonian (Goldstein, 1951), and p is the canonical

momentum: p
.
= mv + qA/c, where B = ∇ × A. In the language of differential forms

(Flanders, 1963; Fecko, 2006),

0 = δ

∫ t1

t0

γ, (37)

where the fundamental differential one-form is

γ
.
= p · dq − H dt. (38)

A problem with standard formulations in terms of either {x, v} (Lagrange) or {x, p}

(Hamilton) is the nonintuitive presence of A in the canonical momentum. A quick glance

at the one-form γ probably does not reveal the simple physics that a charged particle

spirals around a magnetic field line. Technically, it is difficult to implement a gyrophase

average by working with γ as expressed in the original variables.

Fortunately, the variational principle is indifferent to the variables used to express γ.

On is free to use “better” variables (chosen to satisfy some criterion); then the variational

principle will provide the equations of motion for those variables. In our case, we will

choose variables such that the magnetic moment is conserved.

Technically, one can cast γ into a representation-free form by defining

zν .
= {t, x, p}, (39a)

γν
.
= {−H, p, 0}. (39b)

Then γ can be written covariantly as

γ = γνdzν, (40)

where the summation convention is understood. This can now be transformed to any

set of variables one pleases:

γ(z) = γ(z) = γνdzν. (41)

For any zν ’s, the Euler–Lagrange equations of motion are

ωσν
dzν

dt
= 0, (42)

where the symplectic two-form is11

ωσν
.
=

∂γν

∂zσ
−

∂γσ

∂zν
. (43)

For motivation relating to the choice of good variables, recall the famous and

crucially important Noether’s theorem (Noether, 1918), which shows how symmetries

11 The two-form ω is the exterior derivative of the one-form γ. However, the form (43) also follows

directly by carrying out the variation in (38).
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of the Lagrangian are intimately related to conservation laws. In the present context,

Noether’s theorem states that if all of the γν’s are independent of a particular variable zα,

then γα is conserved. That is,

γ = γ1(z
1, . . . , zα, . . . , zn)dz1 + · · ·+ γα(z1, . . . , zα, . . . , zn)︸ ︷︷ ︸

conserved!

dzα + · · ·

+ γn(z1, . . . , zα, . . . , zn)dzn. (44)

The proof is simple and is left to the reader; it is given by Cary and Littlejohn (1983).

Since our goal is to develop a dynamical system that is independent of gyrophase,

it is natural to choose z̄α = ζ (the “true” gyrophase). Let us write

γ = γ(ν)dz(ν) + µdζ, (45)

where (ν) denotes all variables except ζ, and adopt µ as one of our variables. Then, if

one chooses the γ(ν)’s so that12

∂γν

∂ζ
= 0 (∀ν), (46)

µ will be conserved according to Noether’s theorem.

Thus, in summary of the general procedure, gyrokinetics is derived by removing

gyrophase dependence from the one-form γ. As a byproduct, one obtains formulas for

the conserved µ and the other gyrocenter variables.

For realistic fields, it is in practice only possible to remove gyrophase dependence

perturbatively. Several small parameters are available: εB
.
= ρ/LB, the size of the

magnetic inhomogeneity; and εδ, the size of the fluctuating fields. (For electrostatics,

one may take εδ
.
= eδφ/Te ≡ δΦ.) For the simplest asymptotic expansion in terms of a

single parameter ε, I will order εB ∼ εd ∼ ε. To explicitly display gyrophase dependence,

one can express γ in terms of the lowest-order gyrocenter variables Z
.
= {x, U, µ, ζ}.

Then

γ =
q

c
A · dx

︸ ︷︷ ︸
O(ε−1)

+ m[U b̂(x) + v⊥ĉ(ζ, x)] · dx︸ ︷︷ ︸
O(1)

−

(
1

2
mU2 + µωc(x)

)
dt

︸ ︷︷ ︸
O(1)

+ qϕ(x, t)dt︸ ︷︷ ︸
O(ε)

. (47)

In determining the order of the various terms, I used

mv⊥
qA/c

=
v⊥

LB[q(A/LB)/mc]
=

v⊥/ωc

LB
=

ρ

LB
= εB. (48)

Let us represent the transformation from the old to the new coordinates by the

operator T : z = Tz. We must determine T so that γ is independent of ζ. But how is γ

related to γ? Recall that the value of the scalar γ is independent of coordinate system:

γ(z) = γ(z). Then

T︸︷︷︸
“pull-back”

γ(z) = γ(z), (49a)

γ(z) = T−1
︸︷︷︸

“push-forward”

γ(z). (49b)

12 When µ is chosen to be one of the independent variables, ∂µ/∂ζ vanishes automatically.
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Because T operating on γ recovers the original γ, it is called a pull-back transformation.

Similarly, T−1 is called a push-forward transformation. Equation (49b) is (almost) the

result we need. But also note that the differential of a scalar function S does not

contribute to the equations of motion because δ
∫ t1

t0
dS = 0 (no endpoint variations are

permitted). The gauge scalar S provides extra freedom that helps in determining an

appropriate T . Therefore, the basic formula is

γ = T−1(ζ)︸ ︷︷ ︸
push-forward

transformation

γ(ζ) + dS(ζ)︸ ︷︷ ︸
d(gauge scalar)

. (50)

Into this formula we must substitute (47). Then we can expand both sides of (50) order

by order in ε, finally determining T and S such that gyrophase dependence is absent

from γ.

2.3. Lie perturbation theory

Traditionally, perturbative (canonical) transformations were implemented with the aid

of mixed-variable generating functions (Goldstein, 1951). But untangling the nonlinear

mixture of old and new variables is quite cumbersome beyond first order. Lie methods,

which untangle the variables from the start, provide a dramatic improvement. They go

back to the seminal work of S. Lie on groups of continuous transformations in the latter

part of the 1800’s, and they figure as core material in modern differential geometry

(Fecko, 2006). The basic idea can be motivated from the theory of ordinary differential

equations. Consider the autonomous flow

∂tz = V (z) [z(0) = z]. (51)

The solution can be represented in terms of a time evolution operator U(t), namely

z(t; z) = U(t)z. U(t) is a Lie transformation in time. One has

U(t) = etLV , (52)

where

LV
.
= V (z)

∂

∂z
. (53)

Now consider the transformation

z(ε; z) = T (ε)z, (54)

where ε is a perturbation parameter. By analogy to the temporal evolution problem,

this can be represented as the solution to the equation

∂εz = g(z) [z(0) = z], (55)

and one has

T (ε) = eεLg . (56)

Here g(z) is called the generating function of the transformation.



Nonlinear gyrokinetics 17

For use in a perturbation expansion, one might simply allow g to contain terms of

each order in ε. But a more efficient procedure is the following. Consider the set of

generating functions {gn | n = 1, 2, . . .}, where gn = O(εn), and define Ln ≡ Lgn
. Then

one can construct the full transformation by compounding elemental ones (Dragt and

Finn, 1976b):

T = eL1eL2eL3eL4 . . . , (57)

T−1 = . . . e−L4e−L3e−L2e−L1 (58a)

= 1 − L1 +

(
−L2 +

1

2
L2

1

)
+

(
−L3 + L2L1 −

1

6
L3

1

)

+

(
−L4 + L3L1 +

1

2
L2

2 −
1

2
L2L

2
1 +

1

24
L4

1

)
+ · · · . (58b)

The history, theory, and uses of Lie perturbation theory have been reviewed by Kaufman

(1978) and Cary (1981).

The algebra for determining the gyrokinetic one-form is now straightforward, if

tedious. At nth order one needs to determine gσ
n and S(n). The goal is to remove ζ

dependence from γ(n)
σ , and there is more than enough freedom to do this. Here is an

example drawn from the midst of the algebra. At second order, one finds

γ(2)(Z) = (. . .) · dx + (. . .)dt + (. . .)dU + (. . .)dµ

+

(
fµ + ∆gζ

1 +
∂S(2)

∂µ

)
dµ +

(
fζ − gµ

1 +
∂S(2)

∂ζ

)
dζ, (59)

where fζ is a known function. Write S = 〈S〉 + δS, such that 〈δS〉 = 0. (S must

be periodic in ζ in order to avoid secularities.) δgµ
1 was determined at O(ε). From

〈γ
(2)
ζ 〉 = 〈fζ〉 − 〈gµ

1 〉, choose 〈gµ
1 〉 to eliminate 〈γ

(2)
ζ 〉. Now the condition δγ

(2)
ζ = 0

determines δS(2) =
∫
dζ (−δfζ + δgµ

1 ).

Avoidance of secularities is crucial in this kind of scheme. In plasma physics, there

are many important historical precedents. See in particular the seminal work of Dewar

(1973), who formalized Kaufman’s treatment of quasilinear theory (Kaufman, 1972) by

introducing the concept of the oscillation center.13

Ultimately, the procedure gives us the new ζ-independent one-form correct through

some chosen order in ε. Through second (relative) order, one finds

γ ≈ [(q/c)A + mU b̂ − µK∗] · dx + µdζ −

(
1

2
mU

2
+ µωc + q〈ϕ〉

)

︸ ︷︷ ︸
gyroaveraged Hamiltonian

dt, (60)

where

K∗ .
= K +

1

2
(b̂ · ∇ × b̂︸ ︷︷ ︸

torsion

)b̂, K
.
= (∇ê1) · ê2︸ ︷︷ ︸

gyrogauge vector

. (61)

13 Forthcoming Proceedings of a recent Symposium held (October 31, 2009, Atlanta, Georgia) in honor

of Dewar, to be published in Plasma Phys. Control. Fusion, will contain various articles summarizing

his research contributions.
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From γ, one can calculate the symplectic two-form ω; thus one obtains the equations of

motion for the gyrocenter, schematically

ωσν
dzν

dt
= 0. (62)

These essentially reduce to the gyrokinetic characteristic equations of motion that were

introduced heuristically in section 1. One important improvement is the appearance of

a velocity-dependent quantity B∗ = B + O(v‖), which is required in order to preserve

the Hamiltonian properties of the equations.

Finally, the g’s give us T (ε), i.e., the asymptotic expansion of the proper (µ-

conserving) gyrocenter variables: Z = T (ε)Z. We will see in the next section how

this result is used to systematically obtain the GK Poisson equation.

The appearance of the vector K requires substantial discussion (more than space

permits here). At first glance, it might appear that it introduces an unwelcome

ambiguity into the formalism, since it involves the gradient of the unit vector ê1, which

was chosen arbitrarily. In fact, however, the appearance of that gradient is just what is

required to make the theory independent of the choice of ê1. As Littlejohn has shown

(Littlejohn, 1984, 1988), redefinition of the gyrophase by an arbitrary field χ(x) leaves

γ invariant; the extra term that arises from the gradient appearing in K is canceled by

a contribution from dζ. Thus the formalism is properly gyrogauge-invariant.

Some residual confusion arising from the presence of K is discussed in section 4.

3. Systematic gyrokinetics, Part II: The gyrokinetic Poisson equation

I now turn to a discussion of the systematic derivation of the gyrokinetic Poisson

equation. This is possibly the most subtle aspect of the formalism, since it is here

that the fundamental closure is made that disconnects the physics of the gyrocenters

from that contained in the full kinetic equation.

Poisson’s equation (10) requires the charge density ρ(x, t) at the position of the

particles. The goal is to express that in terms of the gyrocenter distribution, the

quantity that is evolved by the gyrokinetic equation. Following Dubin et al. (1983),

one must consider various distribution functions: f(z, t), the particle PDF; F̃ (Z, t),

the particle PDF written in lowest-order gyrocenter coordinates; F̃ (Z, t), the particle

PDF written in the “true” gyrocenter coordinates; and F (Z, t), the gyroaveraged PDF
.
= 〈F̃ 〉ζ . Poisson’s equation is explicitly

−∇2ϕ(x, t) = 4π
∑

s

(nq)s

∫
dv′ fs(x, v′, t), (63)

where fx must be obtained from F̃ . One proceeds as follows:

I
.
=

∫
dv′ f(x, v′, t) =

∫
dz′ δ(x − x′)f(z′, t) (64a)

=

∫
J(Z)dZ δ(x − x′(Z))F̃ (Z, t), (64b)
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where the Jacobian is J
.
= ∂(z′)/∂(Z). Now recall the pull-back transformation

F̃ = T F̃ . Therefore

I =

∫
J dZ δ(x − x′(Z))T F̃ (Z, t). (65)

This expression is still formally exact (assuming that µ is conserved).

At this point, one has the following coupled system:

∂F̃

∂t
+ Ẋ · ∇ F̃ + v̇‖

∂F̃

∂v‖

+ ζ̇
∂F̃

∂ζ
= −C[F̃ ], (66a)

−∇2ϕ = 4π
∑

s

(nq)s

∫
J dZ δ(x − x′(Z)) T︸︷︷︸

pull-back

F̃ (Z, t). (66b)

This system is still exact; it is merely a transcription of the Vlasov–Poisson system

to the barred variables. In particular, (66a) still involves a derivative with respect to ζ.

But Ẋ, v̇‖, and ζ̇ has each been constructed to be independent of ζ. Following Dubin

et al. (1983), one may therefore argue as follows. ζ dependence can enter the kinetic

equation for F̃ in just one of two ways: from (i) initial conditions, or (ii) collisional

effects. For collisionless theory, the kinetic equation does not couple the evolution of

F
.
= 〈F̃ 〉ζ and δF

.
= F̃ − 〈F 〉, so (66a) can be trivially averaged over ζ to obtain an

equation for F . One can then make in Poisson’s equation the gyrokinetic closure

F̃ (z, t) ≈ F (Z, t), (67)

where F obeys the GKE. Furthermore, if one writes T = 1 + δT , then one has

I ≈

∫
J dZ δ(x − x′(Z))( 1︸︷︷︸

gyrocenter

density

+ δT︸︷︷︸
polarization

density

)F (Z, t). (68)

This gives a precise (nonperturbative, in principle) meaning to the polarization charge

density (which represents the difference between the particle motion and the gyrocenter

motion).

The correct generalization to collisional theory is nontrivial. It is clear that collisions

drive a gyrophase-dependent part of the distribution function (Brizard, 2004). Although

that is small, it may be necessary to retain it, along with other small terms, when

approximating the polarization charge. Failure to do this correctly may mean that

some neoclassical effects14 cannot be recovered; for more discussion, see section 4.

In the above brief description, I followed the traditional route, advocated by Dubin

et al. (1983), of writing the particle PDF in terms of the gyrokinetic variables. But note

that in order to achieve a tractable theory truncations must be done at two places: in

the GKE (Ẋ and v̇‖), and in the GK Poisson equation (in the form of the polarization

density). If that is not done consistently, trouble may arise, for example in the violation

of conservation laws for energy and/or momentum. With a reasonable truncation, Dubin

14 Neoclassical theory (Rosenbluth et al., 1972) describes the physics of classical Coulomb collisions

occurring in toroidal magnetic fields, which are necessarily inhomogeneous.
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et al. (1983) were able to find a particular energy constant; however, their method does

not really enforce consistency in general. A breakthrough occurred when Sugama (2000)

showed that it is possible to derive both the gyrokinetic equation and the GK Poisson

equation from a single field-theoretic variational principle. That is, one can postulate an

action functional S[F , ϕ] such that a variational derivative with respect to F generates

the GKE while a derivative with respect to ϕ gives the GK Poisson equation. The

crucial property of this approach is that a form of Noether’s theorem guarantees that

any approximation to S leads to an energetically consistent theory. (This of course does

not guarantee that the resulting theory is physically reasonable, but one has considerable

experience in the selection of a reasonable action.) Brizard (2000) has given an alternate

form of the variational principle that is easier to use than the original one of Sugama,

and Scott (2009) has used that methodology to derive energetically consistent equations

suitable for computer simulation. This topic is worthy of much more space than is

available here.

In summary of the systematology of the GK Poisson equation:

• The particle PDF can be transformed to various variables.

• In particular, F̃ = T F̃ (use of the pull-back transformation).

• For collisionless theory, make the gyrokinetic closure F̃ ≈ F , where F
.
= 〈F̃ 〉ζ .

• Truncate T to some order in ε [usually O(ε)] (being sure to not lose energy

conservation).

• Alternatively, derive both the GKE and the GK Poisson equation from a single

variational principle employing an approximate Lagrangian (thereby guaranteeing

energetic consistency).

• Arrive at a new, nonlinear dynamical system appropriate for studies of low-

frequency (ω � ωci) collisionless plasma microturbulence.

4. The current status of gyrokinetics

Gyrokinetics is used extensively for studies of low-frequency microturbulence in both

fusion and astrophysical contexts. Regarding the analytical theory of drift waves and

related modes, the linear theory in general magnetic geometry is well developed; wave

(gyro)kinetic equations for weak turbulence have also been studied.

Because the gyrokinetic equation in the presence of velocity variables is complicated,

one sometimes derives nonlinear gyrofluid equations (e.g., the HME) by taking moments

of the GKE, then implementing the important Landau-fluid closure (Hammett and

Perkins, 1990) to capture the effects of wave–particle resonances. Gyrofluid closures were

pioneered by G. Hammett and his collaborators (Dorland and Hammett, 1993; Hammett

et al., 1993; Beer, 1995) The method works well linearly, but has problems with nonlinear

wave–wave–particle interactions (Mattor, 1992). Therefore, as computing power has

increased, the tendency has been to revert to simulations of the full gyrokinetic equation.

There are two principle methods: the particle-in-cell (PIC) technique, pioneered by Lee
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(1983) [this amounts to a Monte Carlo sampling of phase space (Aydemir, 1994; Hu

and Krommes, 1994; Krommes, 2007)]; and the “continuum” or “Vlasov” approach,

which refers to direct solution of the gyrokinetic PDE [see, for example, the GYRO code

of Candy and Waltz (2003), described by R. Waltz at this conference].

This article is not a review of the many applications of nonlinear gyrokinetics, either

analytically or numerically; for that, see the forthcoming article of Hammett (2010).

Suffice it to say that it has had many successes. In particular, large-scale gyrokinetic

simulations appear to be in quantitative agreement with nontrivial experimental data

on turbulent transport; see the above-mentioned article by Waltz.

However, there remain some serious concerns. I will enumerate some of them, then

discuss one in more detail.

(i) In the PIC approach to solution of the GKE, Monte Carlo sampling noise may

sometimes be an issue, as it can obscure measurement of the desired drift-wave

signal and lead to invalid predictions for saturated fluctuation levels and turbulent

transport coefficients. For further information and references, see the review article

of Krommes (2007).

(ii) Although conventional gyrokinetics is predicated on the conservation of µ, that

conservation cannot always be assumed. Because of the Hamiltonian nature of

gyrokinetics, there is an analog to Kolmogorov–Arnold–Moser (KAM) theory:

conservation of µ corresponds to good KAM surfaces. But nonlinear interaction

between gyration and slower degrees of freedom can produce stochastic regions

(Dubin and Krommes, 1982). That is why it is said that µ is merely an adiabatic

invariant. Even if µ is formally conserved through all orders in ε, it need not be

truly conserved (Dragt and Finn, 1976a). The familiar analog is to the function

exp(−1/ε), which has an asymptotic expansion that is zero to all orders but is not,

in fact, zero. In the fusion applications, it is generally assumed that the stochastic

regions are negligible. That is probably reasonable, but one must not lose sight of

the possibility that certain physical phenomena can break the invariance of µ.

(iii) Sugiyama (2008) has recently asserted that gyrokinetics is ill-posed for general 3D

magnetic fields (torsional or stochastic). Fundamentally, her concern arises from

the appearance at second relative order of the gyrogauge vector K, which, as I have

discussed, involves the gradient of the arbitrary unit vector ê1. Sugiyama worries

that for the indicated magnetic fields it may be impossible to construct a global

coordinate system with all of the constraints that are invoked in the asymptotic

development of gyrokinetics. In a formal Comment, Krommes (2009) has argued

in favor of the conventional asymptotics,15 but the Response by Sugiyama (2009)

shows that the issue is not yet settled.

(iv) Parra and Catto (2008, PC) have argued in a series of papers that the conventional

gyrokinetic closure is inadequate for the study of long-wavelength phenomena

15 The point is that the triad (ê1, ê2, b̂) forms an anholonomic frame field. That is perfectly fine for

local analysis; the theory makes no requirement that the frame field be globally integrable.



Nonlinear gyrokinetics 22

such as macroscopic electric fields, plasma rotation, and zonal flows. That is an

important concern. Traditionally gyrokinetics has been used for studies of low-

frequency microturbulence on the nonlinear saturation time scale (which is much

less than the plasma confinement time). However, there is increasing demand for

simulations on the transport time scale in order to determine profile relaxation,

the development of plasma rotation, etc. One could easily worry that there might

be interchanges of limits (ε → 0; t → ∞), inconsistent truncations between the

gyrokinetic equation and the gyrokinetic Poisson equation; confusion in ordering

when one takes the limit k⊥ρi → 0 although the formalism was originally derived

for k⊥ρi = O(1), etc.

One point raised by PC is that conventional truncations of the GK Poisson system

may not be compatible with neoclassical theory; I have already pointed out that the

gyrophase-dependent part of the PDF may be crucial in that regard. But collisionless

microturbulence is also of concern. Here is brief further detail on the arguments

of PC for that situation. Following Dubin et al. (1983), consider a slab geometry

with constant B, in which x is the “radial” direction of the profile gradients, y is

the “poloidal” direction, and z is the direction of B. Parra and Catto (2009) argue

that the standard gyrokinetic truncations may introduce a spurious momentum source.

Let Q(x)
.
= (LyLz)

−1
∫ Ly

0
dy

∫ Lz

0
dz Q(x, y, z) denote the “flux-surface average.” Then an

exact moment of the Vlasov equation leads to

∂t(nimiui,y) = −∂xπxy. (69)

Here π is the stress tensor and the relevant off-diagonal component describes Reynolds

stresses due to the E × B motion:

πxy ∼ nimiVE,xVE,y. (70)

The result of Parra and Catto (2009) is that when slab gyrokinetics is truncated to

O(ε2),

∂t(nimiui,y) = −∂xπxy + (spurious momentum source). (71)

The extra term is O(ε3), but it is nonconservative. Parra and Catto have suggested

that this term can be as large as the Reynolds stresses. However, it is important to

understand just what it means to “truncate gyrokinetics to O(εn).” To PC, that means

keep terms through O(εn) in both the gyrokinetic equation and the gyrokinetic Poisson

equation. However, the variational formulation of gyrokinetics (Brizard, 2000) shows

that, if terms through O(εn) are kept in the gyrokinetic equation, then only terms

through O(εn−1) should be kept in the gyrokinetic Poisson equation because that is

obtained by differentiating the action functional with respect to the potential, which

reduces the order of a fluctuation term by one. Magnetic-field inhomogeneities do add

extra complications, and final resolutions of the important points raised by PC are still

pending.
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5. Summary and conclusions

Gyrokinetics is the appropriate description of low-frequency fluctuations in magnetized

plasmas such as fusion confinement devices. It contains the physics of the drift wave

(and several important related modes also driven by profile gradients). Here I have

sketched the heuristic physical content and the systematic derivation of the novel

dynamical system known as the coupled gyrokinetic–Poisson system; the formalism can

be readily generalized to include electromagnetic effects. The clean separation between

gyrocenter drifts (in the gyrokinetic equation) and polarization effects (in the GK

Maxwell equations) fosters both concise analytical manipulations and efficient numerical

methods. The roots of gyrokinetics in Hamiltonian and Lagrangian physics allow

modern techniques drawn from disciplines such as differential geometry and Lie groups

to be brought to bear. And without gyrokinetics, one’s understanding of turbulent

transport in fusion research devices and, ultimately, reactors would be in a much more

primitive and inadequate state.

Gyrokinetics is one of the central analytical formalisms of modern plasma physics.

It is therefore surprising that after a quarter of a century gyrokinetics is hardly treated

at all in the textbooks. In particular, the compelling physical interpretation in terms

of the gyrokinetic vacuum appears to be described only in research papers (and tutorial

summaries such as this). This situation should be corrected. It is clear that when the

final building block of the discipline of plasma physics is in place, gyrokinetics will be

seen to be an invaluable cornerstone.
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