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The current density in the vicinity of a rational surface of a force-free magnetic field subjected to
an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution,
which give comparable currents. The maximum perturbation to the smooth current density is
comparable to a typical equilibrium current density and the width of the layer in which the current
flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory,
the plasma displacement has an unphysical jump across the rational surface, but the full theory
gives a continuous displacement.

A magnetic field whose field lines lie on toroidal mag-
netic surfaces, !B · !∇ψt = 0 can be represented as

2π !B = !∇ψt × !∇θ + ι(ψt)!∇ϕ× !∇ψt. (1)

The toroidal magnetic flux enclosed by a surface is ψt, the
poloidal angle is θ, the toroidal angle is ϕ, and the rota-
tional transform is ι(ψt), which is the average number of
poloidal transits of a field line per toroidal transit. If such
a magnetic field is subjected to a perturbation δ !B such
that b ≡ δ !B·!∇ψt/ !B·!∇ϕ has a resonant Fourier coefficient
at a rational surface ι(ψt = ψr) = N/M , then the topol-
ogy of the magnetic field is changed by the opening of
what is known as a magnetic island. A resonant Fourier
coefficient means a term such as bMN sin(Mθ − Nϕ).
Changes in the topology of magnetic field lines require
an electric field parallel to the magnetic field lines. Such
electric fields are very small in a low collisionality plasma
and are by definition zero in an ideal magnetic evolution.

In the simplest ideal model, the magnetic field is force
free, which means !j × !B = 0, so Ampere’s law takes
the form !∇ × !B = µ0(j||/B) !B. The divergence gives
!B · !∇(j||/B) = 0, which implies j||/B = κ0(ψt) +∑

κMNδ(ι − M/N) cos(Mθ − Nϕ) plus a similar sinu-
soidal term, where δ(· · ·) is the Dirac delta function. An
appropriate choice of the κMN ’s can ensure the resonant
Fourier components of b ≡ δ !B·!∇ψt/ !B·!∇ϕ are zero on the
rational surfaces, so it is natural to assume such delta-
function currents arise in an ideal equilibrium. However,
it will be shown that delta-function currents at the reso-
nant rational surfaces cannot by themselves prevent the
breaking of the magnetic topology on a spatial scale δr,
Equation (6), which is proportional to the perturbation
amplitude.

In 1942 Hannes Alvén introduced the concept of an
ideal magnetic evolution and the term magnetohydro-
dynamics (MHD) [1], and in 1955 he pointed out that
currents in MHD systems can be so spatially localized
that they should be called line currents [2]. In 1967
Harold Grad noted that a singular current density natu-
rally arises on rational surfaces [3]. However, the classic
paper on the existence of delta-function currents in force-
free equilibria is the 1973 paper of Rosenbluth, Dagazian,
and Rutherford [4]. That paper developed a technique for

studying perturbations at rational surfaces but applied
the technique approximately. Waelbroeck [5] extended
their analysis by including the effect of resistivity to ex-
plain the rapid growth of the m = 1, n = 1 instability.

In this paper, the Rosenbluth, Dagazian, and Ruther-
ford technique [4] is applied without approximations
made in their paper. The solution for the current density
is found to have a smooth as well as a delta function dis-
tribution with the two distributions having a comparable
contribution to the island shielding.

To obtain the non-singular part of the current density,
the solution to the ideal evolution equations must include
the effects of non-linearity. In contrast, for example, the
solution for a perturbed magnetic field found by Hahm
and Kulsrud [6] evolves toward a pure delta-function cur-
rent profile at the rational surface when the resistivity is
zero. They used an equation that is equivalent to Equa-
tion (4) but with the xξ + ξ2/2 replaced by xξ, where x
is the distance from the rational surface and ξ is the dis-
placement of the magnetic surfaces by the perturbation.
The actual width of the current distribution is roughly
the |ξ| of the linearized theory. If xξ + ξ2/2 replaced by
xξ, the plasma displacement ξ has a non-physical dis-
continuity at x = 0. The full non-linear equations give a
continuous displacement.

The width of the current distribution near rational sur-
faces is needed to determine the required resolution of
codes that study magnetic island shielding and opening.
The approximate half-width of the current channel is δr,
Equation (6). In many cases of interest to the magnetic
fusion program, this width can be comparable to ρs ≡
Cs/ωc, where the speed of sound Cs ≡

√
(Te + Ti)/mi

depends on the electron and ion temperatures and the
ion mass. The ion cyclotron frequency is ωc = qB/mi,
where q is the ion charge. Plasmas provide little shield-
ing for islands that are narrower than ρs, so δr and ρs

are competing scales for setting the width of the current
channel [7]. Reference [8] is a recent discussion of the
importance of ρs to fast reconnection.

Slab model—Equation (1) can be generalized to ob-
tain an island at the rational surface ι(ψr) = N/M by
writing 2π !B = !∇ψt × !∇(θ − Nϕ/M) + !∇ × (A!∇ϕ),
where A = A0(ψt) + δA(ψt, θ − Nϕ/M) and A0 =



2

−(dι/dψt)r(ψt − ψr)2/2. Then, !B · !∇A = 0 and ι(ψt) =
N/M + (dι/dψt)r(ψt − ψr).

When the inverse aspect ratio of the resonant surface,
ε = a/R0 is small, this representation of a magnetic field
with an island can be simplified to a slab model,

!B = B0Ẑ − Ẑ × !∇A(X, Y ), (2)

where B0 is a constant and Z = R0ϕ. The co-
ordinate X is the distance from the rational surface,
dψt/dX = 2πB0a, and the coordinate Y is defined by
kY = Mθ − Nϕ, where k = M/a is a wavenumber.
Since !B · !∇A = 0, the magnetic field lines lie in sur-
faces of constant A(X, Y ) = A0(X) + δA(X, Y ), where
A0 = −ει′B0X2/2 and ι′ ≡ dι/dX.

The slab equilibrium is assumed to be force free, so the
current density !j is parallel to the magnetic field lines.
In the vicinity of the rational surface at X = 0, the con-
straint !B · !∇j||/B = 0 is equivalent to !j = j(A)Ẑ. Am-
pere’s law then implies ∇2A = −µ0j(A). In the unper-
turbed equilibrium, ∇2A0 = −µ0J0 where J0 ≡ ει′B0/µ0

is a constant background equilibrium current density.
That is

A0 = −µ0J0

2
X2, J0 = const. (3)

However, the physical interpretation of J0 in general dif-
fers from that in a slab. For example consider a cylindri-
cal equilibrium in which |Bθ/BZ | << 1, then J0 is the
spatially averaged current density in the region enclosed
by the rational surface. The current itself can be zero in
the vicinity of a rational surface.

The displacement ξ of the magnetic surfaces in the slab
model is defined by letting A(X − ξ) = A0(X). The spa-
tial coordinate x ≡ X−ξ is constant along the perturbed
magnetic surfaces. The relation between the perturbed
vector potential and the displacement is

A = −µ0J0

2
x2, and δA = µ0J0

(
xξ +

ξ2

2

)
. (4)

Residual islands—A zero of the resonant magnetic
perturbation bMN at the rational surface ι = N/M does
not eliminate topology breaking in the vicinity of the ra-
tional surface when dbMN/dψt is non-zero. This property
of Hamiltonian systems was demonstrated in his thesis
by Ilon Joseph [9] and its importance to toroidal plasmas
was discussed in Section III of Reference [7]. This section
reproduces the results of References [9], and [7] that are
required to understand this paper and gives the form of
the plasma displacement in the slab model near a ratio-
nal surface on which bMN = 0 but dbMN/dψt %= 0. An
appreciation of this form is required to understand the
solution for the displacement.

Before showing the inadequacy of a delta-function for
preserving magnetic topology in the vicinity of a ra-
tional surface, the slab model will be used to calculate
the width of magnetic islands when a curl-free magnetic

perturbation δA = A∞ exp(kX) cos(kY ) is applied at
X = ∞. The X component of the magnetic perturbation
is δBX = −B∞ exp(kX) sin(kY ), where B∞ ≡ kA∞.
When |kX| << 1, the identity cos θ = 1 − 2 sin2(θ/2)
implies 2A/µ0J0 = −X2 − δ2

I{sin
2(kY/2) − 1/2}, where

δ2
I ≡ 4A∞/µ0J0. Since A is constant along the field

lines, the magnetic field line trajectories are X(Y ) =

±
√

X2
0 − δ2

I sin2(kY/2), where X0 is a constant. For
X0 > δI , each magnetic field line extends over the full
range of Y . However for X0 < δI , each magnetic field
line extends only over a limited range of Y , which is a
different topology from that of the magnetic field lines of
the unperturbed system in which δI = 0. The quantity
δI is the half-width of the magnetic islands.

Now consider the current-free perturbation

δA = δA∞(ekX − e−kX) cos(kY ). (5)

This perturbation can represent (1) the effect of pertur-
bations applied at X = ±∞ or (2) the effect for X > 0
of a perturbation applied at X = ∞ but with shielding
at the rational surface. The first case is logically simpler,
so it will be assumed. Since δA = 0 on the rational sur-
face, X = 0, the rational surface is neither split to form
an island nor does its position vary in X as a function of
Y . However, this perturbation breaks the topology of the
magnetic field lines by limiting the range in Y of some of
the magnetic field lines. Let

δr ≡
2k

µ0J0
δA∞ =

1
2
kδ2

I , (6)

where δI is the half width of the island that would be
produced by the perturbation in the absence of shielding.
When |kX| << 1, the vector potential can be written as
2A/µ0J0 = −X2 + 2δrX cos kY . This expression for A
has maxima at X = ±δr, when cos kY = ±1, and saddle
points at X = 0, when cos kY = 0. The implication is
that a break in the topology has occurred, Figure (1), in
a region of width 2δr on either side of the rational sur-
face, which is itself preserved. A delta-function current
at X = 0 cannot shield out the residual islands. Instead,
a current layer that has a half-width of approximately 2δr

is required to eliminate these islands. For small pertur-
bations the residual islands are very narrow compared to
the magnetic islands discussed in the previous paragraph,
δr = kδ2

I/2. In the regions on either side of the rational
surface in which 1/k >> |X| >> δr, the displacement is
a function of Y alone ξ = δr cos(kY ) and is the same on
the two sides of the rational surface, Figure (1).

The scale δr is also the distance from a rational surface
at which the linearized equation for the ideal evolution
of a magnetic field, δ !B = !∇ × (!ξ × !B) must fail. The
vector !ξ is the displacement of a field line. The X com-
ponent of the ideal evolution equation is δBX = !B · !∇ξ,
where ξ(X,Y ) ≡ ξX . Since !B · !∇ξ = µ0J0X∂ξ/∂Y and
δBX = −δB∞(ekX − e−kX) sin(kY ), the displacement is
ξ = δr cos(kY ). This equation has two important impli-
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FIG. 1: Although the curl-free perturbation δA = A∞(ekX −
e−kX) cos(kY ) drives no primary islands at the location of the
unperturbed rational surface, it does drive residual islands on
either side of the rational surface. The figure gives computed
trajectories of the perturbed magnetic field lines near the X =
0, A = 0 magnetic surface.

cations for the region near a rational surface: (1) the lin-
ear ideal-evolution equations cannot be valid closer than
a distance δr from the rational surface for otherwise the
plasma could cross itself at the rational surface and (2)
the plasma displacement is a constant for |X| >> δr but
k|X| << 1.

Solution near a rational surface—The technique
developed by Rosenbluth, Dagazian, and Rutherford [4]
and used by Waelbroeck [5] can be extended to resolve
two paradoxes associated with the ideal evolution equa-
tions near a rational surface and to obtain a solution for
the current density in a force-free equilibrium. These
paradoxes are (1) the unphysical discontinuity in the
plasma displacement ξ across the resonant surface in lin-
earized theory and (2) the breaking of the magnetic sur-
faces by residual islands if the shielding current is re-
stricted to a delta function.

Since kδr << 1, the X variation is far more rapid
than the Y variation in the current layer of width ∼ δr

about the rational surface, and ∇2A can be approxi-
mated as d2A/dX2 with Y held constant. If the equation
d2A/dX2 = −µ0j(A) is multiplied by dA/dX, one finds
(dA/dX)2Y = (µ0J0)2 {f(A) + g(Y )} , where g(Y ) is an
integration “constant,” which is set by the form of the
magnetic perturbation imposed on the system, and

f(A) ≡ −2
∫

j(A)dA

µ0J2
0

. (7)

As |X| →∞ , f(A) → −2A/(µ0J0) → X2 and dA/dX →
−J0X. These relations imply that the appropriate sign
choice for (dA/dX)Y on the two sides of the resonant
surface, which means x = X + ξ positive or negative, is

(
dA

dX

)

Y

= −µ0J0

√
f(A) + g(Y ) x > 0;

= +µ0J0

√
f(A) + g(Y ) x < 0. (8)

If (x, Y ) coordinates are used instead of (X, Y ), where
X = x + ξ and A = −µ0J0x2/2, then (dA/dX)Y =
(dA/dx)/(dX/dx) = (−µ0J0x)/(1 + dξ/dx). This equa-
tion and Equation (8) give expressions for the displace-
ment:

dξ

dx
= +

x√
f(x) + g(Y )

− 1 for x > 0;

= − x√
f(x) + g(Y )

− 1 for x < 0. (9)

Although the function f(x) could in principle depend on
whether x is positive or negative, the form of the solution
that will be found implies that it does not.

As discussed above, the displacement is a function of
Y alone in the regions on either side of the rational sur-
face in which 1/k >> |x| >> δr. In these regions the
displacement is written as ξ+(Y ) or ξ−(Y ) depending on
whether x is positive or negative. Equation (9) implies

ξ+(Y ) = ξ0 + ξ∞ and ξ−(Y ) = ξ0 − ξ∞. (10)

The displacement of the rational surface is ξ0(Y ). The
displacement ξ∞(Y ) = ξ̄∞(Y )δ0, where δ0 ∼ δr is a
length scale,

x = x̄δ0, f = f̄ δ2
0 , g = ḡδ2

0 , and (11)

ξ̄∞(Y ) ≡
∫ ∞

0

(
x̄√

f̄(x̄) + ḡ(Y )
− 1

)
dx̄. (12)

Boundary conditions determine the scale length δ0 and
the function g(Y ) and give a unique solution for the dis-
placement. The boundary conditions are the displace-
ments ξ+(Y ) and ξ−(Y ). Equation (10) implies that the
scale length δ0 is given by ξ̄∞(Y )δ0 = {ξ+(Y )−ξ−(Y )}/2
and that the sum of the two displacements gives the dis-
placement of the rational surface, ξ0(Y ) = {ξ+(Y ) +
ξ−(Y )}/2. The Y dependence of ḡ(Y ) must be varied
until the Y dependence of ξ+(Y )− ξ−(Y ) is obtained.

The magnetic flux enclosed by a constant-A surface
cannot be changed by an ideal perturbation. Near
the rational surface at x = 0, this is equivalent to∮

ξ(x, Y )dY = 0, which requires

S(f̄) ≡ 1〈
1√

f̄(x̄)+ḡ(Y )

〉 = ±x̄, (13)

where 〈· · ·〉 is an average over a period in Y . Equation
(13) determines f̄(x̄) once the function ḡ(Y ) is given.
Since the argument of the square root must be positive,
f̄(x̄) ≥ −ḡmin. As x̄ → 0, which means near the rational
surface,

〈
1/

√
f̄(x̄) + ḡ(Y )

〉
must go to infinity, so f̄(x̄ →

0) = ḡmin. Equation (13) also implies f̄(x̄ → ∞) = x̄2,
which ensures the convergence of the integral for ξ̄∞, Eq.
(12), as x̄ →∞.

The shielding current—The shielding current in the
layer around the rational surface, I ′∞(Y ) is related to the
jump in the displacement across the region by

I ′∞(Y ) ≡
∫ ∞

−∞
(j − J0)dX = −[ξ]J0 = −2δ0ξ̄∞J0, (14)

which coupled with the condition that
∮

ξdY = 0 im-
plies

∮
I ′∞(Y )dY = 0. This expression for I ′∞(Y ) follows
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from µ0j = −d2A/dX2, so µ0

∫
jdX = −[dA/dX]. Now

A = −µ0J0(X − ξ)2/2, consequently (dA/dX)/(µ0J0) =
−X +ξ+(X−ξ)dξ/dX, but dξ/dX goes to zero far from
the rational surface.

At the rational surface dA/dX has a jump, Equation
(8), which implies a surface current

I ′δ = 2J0

√
f(0) + g(Y ). (15)

The current between the rational surface and a
constant-x surface can be found using Equation (7) for f ,
and A(x) = −µ0J0x2/2, which together give the current
density

j(x) =
J0

2
1
x

df

dx
. (16)

Since dX/dx = x/
√

f + g for x > 0,
∫ x

0
j(x)

dX

dx
dx = J0

(√
f(x) + g −

√
f(0) + g

)
(17)

using dx = df/(df/dx). Since dX/dx = −x/
√

f + g for
x < 0,
∫ 0

−|x|
j(x)

dX

dx
dx = J0

(√
f(x) + g −

√
f(0) + g

)
. (18)

The shielding current that lies between the surfaces at
x = ±|x| is

I ′(x, Y ) ≡
∫ x

−|x|
(j − J0)

dX

dx
dx + I ′δ. (19)

Equations (15), (17), and (18) imply I ′(x, Y ) =
2J0

√
f(x) + g(Y ) − J0[X]x−|x|. Using X = x + ξ, the

shielding current is

I ′(x, Y ) = 2J0

(√
f(x) + g(Y )− |x|

)
− J0[ξ]x−|x|, (20)

which in the limit as |x| →∞ becomes Equation (14).

Requirement for a non-analytic g(Y )—In order
to have an analytic displacement ξ̄∞(Y ) and shielding
current I ′∞(Y ), the function g(Y ) must be non-analytic
as Y → 0. This is illustrated in Figure (2) for various
choices of g(Y ). If ξ∞(Y ) is an even function, g(Y ) must
also be even, so g(Y ) = sin2p(kY ) represents the general
analytic function as Y → 0. For this g(Y ) and for p = 1, 2
and 3, the Fourier series for ξ∞(Y ) is seen to converge
approximately as 1/m(p−1), which means derivatives of
ξ∞(Y ) greater than the p − 2 derivative have divergent
Fourier series. The implication is that if ξ∞(Y ) is to
be analytic, then g(Y → 0) must be non-analytic. The
non-analytic function

ḡ(Y ) = ec(1− 1
| sin(kY/2)| ), where c = 5.5, (21)

gives an exponentially convergent Fourier series for
ξ̄∞(Y ), Figure (2), with Fourier coefficients that are
bounded by e−m/2.5.

FIG. 2: The convergence of the Fourier series for ξ∞(Y ) is
illustrated for various g(Y ). When g(Y ) = sin2p(kY ) with
p = 1 (!), p = 2 (") and p = 3 (•), the Fourier series for
ξ∞(Y ) are well represented by the solid curves, which are
proportional to 1/m(p−1). The Fourier series (#) for ξ∞(Y )
given by the non-analytic g(Y ) of Equation (21) is bounded
from above by the dashed line, 0.15e−m/2.5. The Fourier series
of this ξ∞(Y ) is exponentially convergent as required for an
analytic function.

The non-analytic g(Y ) of Equation (21) lies in the
range 0 ≤ g(Y ) ≤ 1 for any value of c, but c = 5.5
gives an almost cosinusoidal ξ̄∞(Y ), Figure (2) and (3a).
The Fourier expansions of ξ̄∞ and

√
ḡ(Y ) are ξ̄∞ =

0.905 cos(kY )+0.019 cos(2kY )+· · · and
√

ḡ(Y ) = 0.408−
0.527 cos(kY ) + 0.092 cos(2kY ) + · · ·, Figure (3a). The
current density j(x), Figure (3b), in the layer of width
∼ 2δ0 gives a current I ′∞ = −2δ0J0{0.905 cos(kY ) +
0.019 cos(2kY ) + · · ·} while the delta-function current is
I ′δ = 2J0δ0{0.4 − 0.527 cos(kY ) + 0.092 cos(2kY ) + · · ·}.
The non-singular part of the current in the layer is
the difference between the two, I ′ns = −2J0δ0{0.408 +
0.378 cos(kY ) + 0.111 cos(2kY ) + · · ·}, so 42% of the
shielding current is in the smooth distribution and 58%
is in the delta function.
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FIG. 3: The normalized displacement ξ̄∞(Y ), (—), Equation
(12), is shown in (a) together with the function g(Y ), (- - -), of
Equation (21) that produces it. The deviation in the current
density on each magnetic surface j(x) from its unperturbed
value J0 if shown in (b).
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